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1. Introduction

Problem: Find topological properties of a manifold with a particu-
lar geometric structure (e.g. complex structure, Riemannian structure
with prescribed holonomy group, ...)

This would help on the classification problem: Given a smooth man-
ifold X, we may have topological obstructions for X to admit a partic-
ular geometric structure. This can be useful to know when a manifold
admits some geometric structure.

Geometric structures we shall focus on:

We consider smooth (oriented) compact manifold M . We are inter-
ested in whether M admits either of the following structures:

• Kähler (and complex projective).

• Symplectic.
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2. Kähler vs. symplectic

2.1. Complex projective manifolds

Let CPn = {(z0, . . . , zn); zi ∈ C}/C∗ be the complex projective space.

A (smooth) complex projective manifold is a smooth submanifold
X ⊂ CPn which is described as the zeroes of some complex polinomials
F1, . . . , Fn in the variables (z0, . . . , zn).

CPn has a natural metric, the Fubini-Study metric. In coordinates
z′ = (z1, . . . , zn) for the open subset U = {z0 6= 0} ⊂ CPn,

g = Re

(∑
(1 + ‖z′‖2)dzi · dz̄i −

∑
z̄izjdzi · dz̄j

(1 + ‖z′‖2)2

)
.

Consider the 2-form ω ∈ Ω2(CPn) given as

ω =

√
−1

2

(∑
(1 + ‖z′‖2)dzi ∧ dz̄i −

∑
z̄izjdzi ∧ dz̄j

(1 + ‖z′‖2)2

)
.
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These satisfy:

• ω determines (and is determined) by g, through g(u, v) = ω(u, Jv),
where J is the complex structure.

• dω = 0, so [ω] ∈ H2(X,R).

• ωn = vol > 0 in Ω2n(CPn).

The complex projective manifold X ⊂ CPn inherits (J, g, ω) from
CPn. This structure determines X completely.
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These satisfy:

• ω determines (and is determined) by g, through g(u, v) = ω(u, Jv),
where J is the complex structure.

• dω = 0, so [ω] ∈ H2(X,R).

• ωn = vol > 0 in Ω2n(CPn).

The complex projective manifold X ⊂ CPn inherits (J, g, ω) from
CPn. This structure determines X completely.

2.2. Kähler manifolds

A Kähler manifold (X, J, g, ω) is a manifold X endowed with:
• J a complex structure (i.e. a complex atlas),
• g a J-invariant Riemannian metric, i.e. g( · , · ) = g(J( · ), J( · )),
• ω ∈ Ω2(X), g( · , · ) = ω( · , J( · )),
• and satisfying dω = 0 (automatically ωn = vol > 0).

Theorem (Kodaira, 1954):

X complex projective ⇐⇒ X Kähler with [ω] ∈ H2(X,Z).
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2.3. Symplectic manifolds

A symplectic manifold (M,ω) is a manifoldM with a 2-form ω ∈ Ω2(M)
satisfying:

• dω = 0,

• ωn = vol > 0.

So we do not require the existence of a complex structure.

We may always put an almost-complex structure I. This makes
the tangent bundle TM into a complex bundle (weaker than having a
complex atlas). It allows to have a Riemannian metric g associated
to ω as before.
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3. Topological properties

Problem: Construct symplectic manifolds which do not admit Kähler
structures.

3.1. Topological properties of Kähler manifolds

Kähler (compact) manifolds satisfy many topological restrictions:

(i) The Betti numbers b1, b3, b5, . . . are even.

(ii) Hard-Lefschetz theorem (Lefschetz): Let dimM = 2n. For any
k = 0, 1, . . . , n− 1, the map

[ω]k∪ : Hk(M) → H2n−k(M)

is an isomorphism. (This implies (i))

(iii) The fundamental group π1(M) is of a particular type (what is
known as a Kähler group).

(iv) Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan,
1975).
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3.2. Topological properties of symplectic manifolds

Do symplectic manifolds satisfy the same topological properties?

• Kodaira-Thurston manifold (Thurston, 1976). This is a symplectic
4-manifold with b1 = 3.
McDuff (1984) constructed a simply-connected symplectic manifold
with b3 = 3.

• Gompf (1995) constructed symplectic manifolds with π1(M) iso-
morphic to any given (presentable) group.

• There exist symplectic manifolds not satisfying hard-Lefschetz (e.g.
Kodaira-Thurston). There are examples with bi even and with
prescribed fundamental group.

• Also there are non-formal symplectic manifolds:

– Kodaira-Thurston is non-formal.

– Babenko-Taimanov (1998) found the first simply-connected ex-
ample: McDuff’s manifold is non-formal. These manifolds have
dimension at least 10.

– Cavalcanti (2004) gave the first example satisfying hard-Lefschetz.

– Fernández-Muñoz (2005) constructed the first simply-connected
example of dimension 8 (the lowest possible dimension).
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One should not be misled. There are striking parallelisms between
symplectic and Kähler manifolds:

• Theory of pseudo-holomorphic curves, Gromov-Witten invariants,
Quantum cohomology (Gromov, 1985, and others).

• Asymptotically holomorphic techniques, Lefschetz pencils (Donald-
son, 1996, 1999, and others).
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One should not be misled. There are striking parallelisms between
symplectic and Kähler manifolds:

• Theory of pseudo-holomorphic curves, Gromov-Witten invariants,
Quantum cohomology (Gromov, 1985, and others).

• Asymptotically holomorphic techniques, Lefschetz pencils (Donald-
son, 1996, 1999, and others).

Kähler ↔ Symplectic:

Similarities at analytical level

Differences at topological level
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4. The first example

The Kodaira-Thurston manifold was the first example of a symplectic
manifold not admitting a Kähler structure.

Let H be the Heisenberg group,

H =


1 b c

0 1 a

0 0 1

 ; a, b, c ∈ R

 ,

Γ =


1 b c

0 1 a

0 0 1

 ; a, b, c ∈ Z

 ,

and E = Γ\H.

Note that E is the total space of a S1-bundle over the 2-torus with
Chern class 1.

E → T 2

[a, b, c] 7→ [a, b] .

A basis for the left invariant 1-forms on E is given by:

α = da, β = db, γ = dc− b da.

Note that α ∧ β = dγ.
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The Kodaira-Thurston manifold is

KT = E × S1 .

Let η = dθ the standard 1-form comming from the S1-factor. Then the
cohomology of KT is

H0(KT ) = 〈1〉,
H1(KT ) = 〈[α], [β], [η]〉,
H2(KT ) = 〈[α ∧ γ], [β ∧ γ], [α ∧ η], [β ∧ η]〉,
H3(KT ) = 〈[α ∧ γ ∧ η], [β ∧ γ ∧ η], [α ∧ β ∧ γ]〉,
H4(KT ) = 〈[α ∧ β ∧ γ ∧ η]〉.

KT is sympletic, with symplectic form

ω = β ∧ γ + α ∧ η .

Clearly, dω = 0 and ω2 = 2α ∧ β ∧ γ ∧ η > 0.

b1(KT ) = 3 =⇒ KT does not admit a Kähler structure.
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5. Minimal models (Sullivan, 1977)

Rational homotopy deals with spaces up rational homotopy equivalence,
in particular, with

• Rational homotopy groups: πn(X)⊗Q.

• Rational (co)homology: Hn(X,Q), Hn(X,Q).

(Actually, Q may be replaced by the field of real numbers R with no
harm.)

If X is a smooth manifold, we consider the differential forms

(ΩX, d) .

This is a graded-commutative differential algebra (GCDA for short).
We extract an “invariant” from it as follows.
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Consider the equivalence relation ∼ between GCDAs generated by
quasi-isomorphisms, ψ : (A1, d1) −→ (A2, d2), i.e. morphisms inducing
isomorphisms

ψ : H(A1, d1)
∼=−→ H(A2, d2).

Then associate to (ΩX, d) its class in (GCDAs/ ∼).

The theory of minimal models tells us that this codifies the rational
homotopy type of X in most cases.
It is clear that it contains the information on H(ΩX, d) = H∗(X).



Introduction

Kähler vs. symplectic

Topological properties

The first example

Minimal models . . .

Formality

Non-formal simply- . . .

J I

JJ II

Full Screen

Close

Quit

Consider the equivalence relation ∼ between GCDAs generated by
quasi-isomorphisms, ψ : (A1, d1) −→ (A2, d2), i.e. morphisms inducing
isomorphisms

ψ : H(A1, d1)
∼=−→ H(A2, d2).

Then associate to (ΩX, d) its class in (GCDAs/ ∼).

The theory of minimal models tells us that this codifies the rational
homotopy type of X in most cases.
It is clear that it contains the information on H(ΩX, d) = H∗(X).

The good news is that there is a canonical representative, called the
minimal model, for any (A, d). The minimal model (M, d) satisfies:

• M =
∧

(x1, x2, . . .) is free.∧
means the “graded-commutative algebra freely generated by”

• dxi ∈
∧

(x1, . . . , xi−1).

• dxi contains no linear term.

• (M, d) −→ (A, d) is a quasi-isomorphism.

A minimal model (MX , d) for X is a minimal model for (ΩX, d).
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Example

The minimal model of the Kodaira-Thurston manifold is the follow-
ing:

ψ : (MKT , d) = (
∧

(x, y, z, u), d)
∼−→ (Ω(KT )L, d) ⊂ (Ω(KT ), d)

x 7→ α

y 7→ β

z 7→ γ

u 7→ η

where dz = x y.

Clearly, (MKT , d) is a minimal algebra, ψ is a CDGA map, and it is
a quasi-isomorphism, since the cohomology of (MKT , d) is

H0(MKT , d) = 〈1〉,
H1(MKT , d) = 〈[x], [y], [u]〉,
H2(MKT , d) = 〈[x z], [y z], [x u], [y u]〉,
H3(MKT , d) = 〈[x z u], [y z u], [x y z]〉,
H4(MKT , d) = 〈[x y z u]〉.

So (MKT , d) is the minimal model.
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Theorem (S): If either:

• X is simply-connected,

• X is nilpotent:

1. Γ = π1(X) is nilpotent:
Γ1 = Γ, Γn = [Γn−1,Γ], n ≥ 1, then ∃n0 such that Γn0

= 0,

2. Γ acts nilpotently on each πk(X):
Gk,1 = πk(X), Gk,n = [Γ, Gk,n−1] ⊂ πk(X), n ≥ 1, then ∃n0

such that Gk,n0
= 0,

then the minimal model

(MX , d) −→ (ΩX, d)

codifies the rational homotopy of X. More specifically, MX =
∧

(V ),

V =
⊕
n≥1

V n

(V n is the vector space corresponding to the degree n generators), then

V n ∼= (πn(X)⊗ R)∗ .
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6. Formality

6.1. Definition

A CDGA (A, d) is formal if (A, d) ∼ (H, 0).

Obviously H = H(A, d). Explicitly,

(M, d)
↙ ↘

(A, d) (H, 0)

So the minimal model can be deduced from H = H(A, d).

All the information is in the cohomology algebra.

A space X is formal if (ΩX, d) is formal.

Theorem (DGMS): Kähler manifolds are formal.
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Example

The Kodaira-Thurston manifold KT = E × S1 is non-formal.

It is enough to see that E is non-formal. Let’s try to construct a
quasi-isomorphism ψ : (ME, d) −→ (H∗(E), 0).

• ψ must un algebra map.

• ψ must commute with the differentials.

• If a ∈ME is closed, ψ(a) = [a].

Recall (ME, d) = (
∧

(x, y, z), d) with dz = x y.

(
∧

(x, y, z), d) −→ (H∗(E), 0)

x 7→ [x]

y 7→ [y]

x y 7→ ψ(x) ∪ ψ(y) = [x] ∪ [y] = 0, x · y = dz

z 7→ ψ(z) = a[x] + b[y], for some a, b ∈ R
x z 7→ ψ(x) ∪ ψ(z) = [x] ∪ (a[x] + b[y]) = 0

ψ(x z) = [x z] 6= 0 ∈ H2(E)

Contradiction! So (KT, ω) is symplectic and non-formal.
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6.2. Massey products

There is a quick way to check non-formality (it often works, but not
always).

Let a1, a2, a3 ∈ H∗(X) be cohomology classes such that a1 ∪ a2 = 0
and a2 ∪ a3 = 0. Take forms αi in X with ai = [αi] and write

α1 ∧ α2 = dξ, α2 ∧ α3 = dζ .

Then

d(α1 ∧ ζ − (−1)deg(a1)ξ ∧ α3) = α1 ∧ α2 ∧ α3 − α1 ∧ α2 ∧ α3 = 0 .

The Massey product of the classes ai is defined as

〈a1, a2, a3〉 = [α1 ∧ ζ − (−1)deg(a1)ξ ∧ α3] ∈ H∗(X)/choices .

If 〈a1, a2, a3〉 6= 0 then X is non-formal. (Basically, the Massey prod-
ucts can be transferred through quasi-isomorphisms, and in (H, 0) they
are automatically vanishing.)
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Example

For the Kodaira-Thurston manifold, take a1 = [α], a2 = [α], a3 = [β].

Let α1 = α, α2 = α, α3 = β, so

α1 ∧ α1 = 0 =⇒ ξ = 0,

α1 ∧ α2 = dγ =⇒ ζ = γ.

The Massey product is

〈[α], [α], [β]〉 = [α ∧ γ] 6= 0 .

This confirmes again that KT is non-formal (without having to com-
pute the minimal model).
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7. Non-formal simply-connected symplectic manifolds

7.1. First example (Babenko-Taimanov, 1998)

Embed KT ⊂ CP5 symplectically and consider the symplectic blow-up
(Gromov, McDuff, 1984)

π : M = C̃P5 → CP5

By analogy with the Kähler situation, E = π−1(KT ) is called the
exceptional divisor.

E = PC(νKT )

where νKT is the normal bundle (with a complex structure, coming
from a suitable almost-complex structure on the ambient manifold).
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Let u ∈ Ω2(M) be a Thom form for E, i.e. [u] = P.D.[E] and u is
supported in a neighborhood of E.

Take α, β, γ ∈ Ω1(KT ) as before.

There are 3-forms α ∧ u, β ∧ u, γ ∧ u ∈ Ω3(M).

The following Massey product:

〈[α ∧ u], [α ∧ u], [β ∧ u]〉 = [(α ∧ u) ∧ (γ ∧ u2)] ∈ H8(M)/choices

is non-zero.

Therefore M is a simply-connected, symplectic and non-formal man-
ifold.
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Let u ∈ Ω2(M) be a Thom form for E, i.e. [u] = P.D.[E] and u is
supported in a neighborhood of E.

Take α, β, γ ∈ Ω1(KT ) as before.

There are 3-forms α ∧ u, β ∧ u, γ ∧ u ∈ Ω3(M).

The following Massey product:

〈[α ∧ u], [α ∧ u], [β ∧ u]〉 = [(α ∧ u) ∧ (γ ∧ u2)] ∈ H8(M)/choices

is non-zero.

Therefore M is a simply-connected, symplectic and non-formal man-
ifold.

We need rankC(νKT ) ≥ 3, so

dimM ≥ 6 + dimKT ≥ 10.
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7.2. Example of dimension 8 (Fernández-Muñoz, 2005)

Start with a non-simply-connected 8-dimensional symplectic manifold:

Take a lattice Λ ⊂ C, so that T = C/Λ is a 2-torus. Note that
H1(C/Λ) = 〈x1, x2〉 ∼= C. Let EC be a complex version of E (con-
structed starting with the complex Heisenberg group), so that

T → EC → T × T

is a non-trivial fiber bundle,

MEC =
∧

(α1, α2, β1, β2, γ1, γ2)

and setting α = α1 +
√
−1α2, β = β1 +

√
−1β2, γ = γ1 +

√
−1γ2, we

have dγ = α ∧ β. Then consider

X = EC × T ,

with MX =
∧

(α1, α2, β1, β2, γ1, γ2, η1, η2).

The 8-manifold X is symplectic choosing

ω =
√
−1α ∧ ᾱ+ β ∧ γ + β̄ ∧ γ̄ +

√
−1 η ∧ η̄ .
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Choosing Λ ⊂ C to be the lattice generated by 1 and ζ = e2πi/3,
there is a group Z3 by rotations on X as

(a, b, c, d) 7→ (ζa, ζb, ζ2c, ζd).

The symplectic orbifold X̂ = X/Z3 is simply-connected. It is easy
to see what happens to the degree 1 cohomology:

H1(X) ∼= 〈α1, α2, β1, β2, η1, η2〉C⊕ C⊕ C ,

and Z3 acts by rotations, so

H1(X̂) = H1(X)Z3 = 0.
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Choosing Λ ⊂ C to be the lattice generated by 1 and ζ = e2πi/3,
there is a group Z3 by rotations on X as

(a, b, c, d) 7→ (ζa, ζb, ζ2c, ζd).

The symplectic orbifold X̂ = X/Z3 is simply-connected. It is easy
to see what happens to the degree 1 cohomology:

H1(X) = 〈α1, α2, β1, β2, η1, η2〉 ∼= C⊕ C⊕ C ,

and Z3 acts by rotations, so

H1(X̂) = H1(X)Z3 = 0.

There is a symplectic resolution of singularities (FM):
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Let X̃ → X̂ the smooth (symplectic) manifold obtained by symplec-
tically resolving the singularities of X̂.

Then X̃ is simply-connected, symplectic, of dimension 8 and ...
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Let X̃ → X̂ the smooth (symplectic) manifold obtained by symplec-
tically resolving the singularities of X̂.

Then X̃ is simply-connected, symplectic, of dimension 8 and ...

X̃ is non-formal.

We can check non-formality for X̂. But unfortunately we can’t use
Massey products.

The following is an useful substitute for Massey products which works
in the current situation:

Let a, x1, x2, x3 ∈ H2(M) be cohomology classes satisfying a∪xi = 0,
i = 1, 2, 3. Choose forms α, βi ∈ Ω2(M) and ξi ∈ Ω3(M), with a = [α],
xi = [βi] and α ∧ βi = dξi, i = 1, 2, 3. If the cohomology class

[ξ1 ∧ ξ2 ∧ β3 + ξ2 ∧ ξ3 ∧ β1 + ξ3 ∧ ξ1 ∧ β2] ∈ H8(M)/choices

is non-zero, then M is non-formal.
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