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Abstract. We present a survey of recent results in the geometry of ergodic solenoids.

We discuss the ideas behind the theory and its perspectives.

Dedicated to Emilio Elizalde in his 60th anniversary.

1. Introduction.

Geometry is at the origin of numerous applications of Mathematics to other fields, and
to Mathematics itself. Classical Differential Geometry is nowadays a fundamental tool in
Theoretical Physics. Needless to say that it is one of the most successful modern interaction
and has marked the development of both fields. The objects of classical Differential Geometry
are manifolds. One can envision many other geometric theories whose fundamental objects
can be very different from classical manifolds. This idea is already present in Riemann’s
fundamental Memoir on the Foundations of Geometry.

We present in this article recent results on Ergodic Solenoidal Geometry. We do an
informal presentation of the theory and we refer to our recent articles [2][3][4][5][6][7] for
precise definitions, theorems in full generality, and complete proofs.

Ergodic Solenoidal Geometry is a generalization Differential Geometry where the central
objects that extend manifolds are uniquely ergodic solenoids. Roughly speaking a solenoid
is an abstract foliated space by finite dimensional leafs with transverse structure embedding
into a finite dimensional space. Thus, contrary to other theories whose objects are foliated
spaces, here we request some sort of finite dimensional transverse structure. This hypothesis
is natural considering that our aim is to generalize finite dimensional Differential Geometry
and not, for example, Banachian Differential Geometry. Example of solenoids are manifold
with a foliation, but we have many more, as the dyadic solenoid T̂ = lim←−{T→ T; x 7→ 2x} ,
where T = R/Z.

Figure 1. The dyadic solenoid
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The objects corresponding to compact and connected manifolds (we shall restrict to them
from now on) are compact connected solenoids, but we need to restrict furthermore the
structure in order to be able to generalize basic properties. Note that a compact manifold is
a solenoid with trivial atomic transverse structure and a unique leaf. We consider solenoids
that are topologically minimal, that is, all leaves are dense. We also consider solenoids
possessing daval measures (the name comes from ”measures that decompose as volume along
leaves”). These are probability measures that locally disintegrate along the leaves as a
product of a measure on a local transversal and a riemannian measure on the local leafs. It
is easy to see that the existence of daval measure is equivalent to the existence of transverse
measure in the sense of the theory of foliations. We recall that such a transverse measure is a
collection of measures supported in each local transversal that are transported into each other
by holonomy maps. Transverse measures are considered up to equivalence by multiplication
by a positive scalar. Obviously any riemannian metric defines a daval measure on a manifold,
the transverse measures being trivial atomic masses. But, in general, as is well known from
foliation theory, transverse measures do not need to exist.

Thus, for the moment, our generalized objects are compact minimal solenoids admitting
a transverse measure. A transverse measure is ergodic if for any local transversal, any
Borel set that is invariant by the holonomy pseudogroup has zero or full measure. This is
obviously the case for the trivial atomic measure associated to connected manifolds, since
the holonomy is transitive on the points of the transversal. Thus we realize that it is natural
to request to the transverse measure to be ergodic. And this is not enough to have a
proper generalization. For manifolds the transverse measure is unique by the precedent
argument. Thus we require unique ergodicity of the transverse measure: The transverse
measure is unique (up to multiplication by a positive scalar as usual). It turns out that
unique ergodicity implies topological minimality. Also unique ergodicity is determined by
the geometry, but ergodicity is not.

We then arrive to the basic object of our geometry.

The objects in Ergodic Solenoidal Geometry that generalize compact con-
nected manifolds in classical Differential Geometry are compact uniquely ergodic
solenoids.

It is important to understand why we do not require just ergodicity. We could do this, but
then only the underlying topological space is not sufficient to fully determine the object, more
precisely its measurable transverse structure as happens for classical manifolds. Indeed the
correct intuition is that the same solenoid endowed with distinct transverse ergodic measures
should be considered as two objects of the geometry. By classical ergodic theory, ergodic
measures generate all transversal measures. Note that two distinct ergodic measures are
mutually singular.

In the following we explain how uniquely ergodic solenoids arise naturally from classical
differential topology when we desire to represent geometrically real homology classes by a
geometric class of currents on a manifold à la Ruelle-Sullivan, or à la Schwarzman, both
being equivalent by Birkhoff ergodic theorem ([3]). Some important problems in geometry
are about representing geometrically homology clasees, as the famous Hodge conjecture.
Indeed solenoidal geometry allows to put in a new context the Hodge conjeture, and allows
to isolate de geometric aspects from the algebraic ones. We formulating a natural solenoidal
Hodge conjecture in this context (see [4] and section 2). We present then homological and
cohomological theories for solenoids (section 3), and how Hodge theory extends to ergodic
solenoidal geometry (section 4).

Acknowledgements. As a student, the second author first learned Riemannian geome-
try from Emilio Elizalde notes in the class ”Metodos Matemáticos” at the University of
Barcelona. Thus it is a double pleasure to congratulate him for his birthday with this
geometric article, and to thank him for his excellent notes.
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2. Geometric realization of the real homology.

We describe in this section our original motivation for introducing uniquely ergodic
solenoids.

We consider a smooth compact connected oriented manifold M of dimension n ≥ 1. Any
closed oriented submanifold N ⊂M of dimension 0 ≤ k ≤ n determines a homology class in
Hk(M,Z). This homology class in Hk(M,R), as dual of De Rham cohomology, is explicitly
given by integration of the restriction to N of differential k-forms on M . Also, any immersion
f : N → M defines an integer homology class in a similar way by integration of pull-backs
of k-forms. Unfortunately, because of topological reasons dating back to Thom [11] [12],
not all integer homology classes in Hk(M,Z) can be realized in such a way. Geometrically,
we can realize any class in Hk(M,Z) by topological k-chains. The real homology Hk(M,R)
classes are only realized by formal combinations with real coefficients of k-cells. This is not
satisfactory for various reasons. In particular, for diverse purposes it is important to have
an explicit realization, as geometric as possible, of real homology classes.

The first contribution in this direction came in 1957 from the work of S. Schwartzman
[9]. Schwartzman showed how, by a limiting procedure, one-dimensional curves embedded
in M can define a real homology class in H1(M,R). More precisely, he proved that this
happens for almost all curves solutions to a differential equation admitting an invariant
ergodic probability measure. Schwartzman’s idea is very natural. It consists on integrating
1-forms over large pieces of the parametrized curve and normalizing this integral by the
length of the parametrization. Under suitable conditions, the limit exists and defines an
element of the dual of H1(M,R), i.e. an element of H1(M,R). This procedure is equivalent
to the more geometric one of closing large pieces of the curve by relatively short closing
paths. The closed curve obtained defines an integer homology class. The normalization by
the length of the parameter range provides a class in Hk(M,R). Under suitable hypothesis,
there exists a unique limit in real homology when the pieces exhaust the parametrized curve,
and this limit is independent of the closing procedure. In the article [3], we study the different
aspects of the Schwartzman procedure, that we extend to higher dimension.

Later in 1975, D. Ruelle and D. Sullivan [8] defined, for arbitrary dimension 0 ≤ k ≤
n, geometric currents by using oriented k-laminations embedded in M and endowed with
a transversal measure. They applied their results to stable and unstable laminations of
Axiom A diffeomorphisms. In a later article Sullivan [10] extended further these results and
their applications. The point of view of Ruelle and Sullivan is also based on duality. The
observation is that k-forms can be integrated on each leaf of the lamination and then all over
the lamination using the transversal measure. This makes sense locally in each flow-box,
and then it can be extended globally by using a partition of unity. The result only depends
on the cohomology class of the k-form. In [3] we review and extend Ruelle-Sullivan theory.

It is natural to ask whether it is possible to realize every real homology class using a
topologically minimal Ruelle-Sullivan current. In order to achieve this goal we must enlarge
the class of Ruelle-Sullivan currents by considering immersions of abstract oriented solenoids.
For these oriented solenoids we can consider k-forms that we can integrate provided that we
are given a transversal measure invariant by the holonomy group. We define an immersion
of a solenoid S into M to be a regular map f : S → M that is an immersion in each leaf.
If the solenoid S is endowed with a transversal measure µ, then any smooth k-form in M
can be pulled back to S by f and integrated. The resulting numerical value only depends
on the cohomology class of the k-form. Therefore we have defined a closed current that
we denote by (f, Sµ) and that we call a generalized current. This gives a homology class
[f, Sµ] ∈ Hk(M,R). The main result from [4] is the following:
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Theorem 2.1. (Realization Theorem) Every real homology class in Hk(M,R) can be
realized by a generalized current (f, Sµ) where Sµ is an oriented, minimal, uniquely ergodic
solenoid.

This result strengthens De Rham’s realization theorem of homology classes by abstract
currents, i.e. forms with coefficients distributions. It is a geometric De Rham’s Theorem
where the abstract currents are replaced by generalized currents that are geometric objects.
Moreover, we prove in [6] that such geometric currents are dense in the space of currents.

We can ask why we do need to enlarge the class of Ruelle-Sullivan currents. The result
does not hold for minimal Ruelle-Sullivan currents due to the observation that homology
classes with non-zero self-intersection cannot be represented by Ruelle-Sullivan currents with
no compact leaves ([5]). Therefore it is not possible to represent a real homology class in
Hk(M,R) with non-zero self-intersection by a minimal Ruelle-Sullivan current that is not a
submanifold. Note that this obstruction only exists when n − k is even. This may be the
historical reason behind the lack of results on the representation of an arbitrary homology
class by minimal Ruelle-Sullivan currents.

The space of solenoids is large, and we would like to realize the real homology classes by a
minimal class of solenoids enjoying good properties. We are first naturally led to topological
minimality. As we prove in [2], the spaces of k-solenoids is inductive and therefore there
are always minimal k-solenoids. However, the transversal structure and the holonomy group
of minimal solenoids can have a rich structure. In particular, such a solenoid may have
many distinct transversal measures, each one yielding a different generalized current for the
same immersion f . Also when we push Schwartzman ideas beyond 1-homology for some nice
classes of solenoids, we see that in general, even when the immersion is an embedding, the
generalized current does not necessarily coincide with the Schwartzman homology class of the
immersion of each leaf (actually not even this Schwartzman class needs to be well defined).
Indeed the classical literature lacks of information about the precise relation between Ruelle-
Sullivan and Schwartzman currents, in particular in higher dimension. One would naturally
expect that there is some relation between the generalized currents and the Schwartzman
current (if defined) of the leaves of the lamination. We study this problem in [3].

The main result in [4] is that there is such relation for the class of minimal, ergodic
solenoids with a trapping region. A solenoid with a trapping region has holonomy group
generated by a single map. Then the bridge between generalized currents and Schwartzman
currents of the leaves is provided by Birkhoff’s ergodic theorem. The main result of [4] is
the following:

Theorem 2.2. Let Sµ be a minimal solenoid endowed with an ergodic transversal measure
µ and possessing a trapping region W . Let f : Sµ →M be an immersion of Sµ into M such
that f(W ) is contained in a ball of M . Then for µ-almost all leaves l ⊂ Sµ, the Schwartzman
homology class of f(l) ⊂M is well defined and coincides with the homology class [f, Sµ].

If moreover S is uniquely ergodic, then this happens for all leaves.

The solenoids constructed for the proof of the Realization Theorem do satisfy the hypoth-
esis of this theorem and the transversal measure is unique, that is, the solenoids are uniquely
ergodic.

Solenoidal Hodge Conjecture.

The Hodge Conjecture is an statement about the geometric realization of an integral class
of pure type (p, p) in a complex (projective) manifold. If we drop the condition of the class
being integral, then theorem 2.1 suggests a natural conjecture for real homology classes of
pure type as follows.
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For a compact Kähler manifold M of complex dimension n, a complex immersed solenoid
f : Sµ → M (that is, a solenoid where the images f(l) of the leaves l ⊂ Sµ are complex
immersed submanifolds), of dimension k = 2(n − p), defines a class in Hn−p,n−p(M) =
Hp,p(M)∗ ⊂ Hk(M,R). It is natural to formulate the following conjecture (see [4]):

Conjecture 2.3. (Solenoidal Hodge Conjecture) Let M be a compact Kähler manifold.
Then any class in Hp,p(M) is represented by a complex immersed solenoid of dimension
k = 2(n− p).

Note that the standard Hodge Conjecture is stated for projective complex manifolds, since
it fails for Kähler manifolds [14]. The counterexamples of [14] are non-algebraic complex
tori. It is easy to see that conjecture 2.3 holds for complex tori (using non-minimal complex
solenoids).

3. Differential geometry of solenoids.

We describe in this section how theories and tools of differential topology do extend to
Ergodic Solenoidal Geometry.

3.1. De Rham cohomology. Let S be a solenoid. The space of p-forms Ωp(S) consist of
p-forms on leaves with function coefficients that are smooth on leaves and partial derivatives
of all orders continuous transversally. Using the differential d in the leaf-wise directions, we
obtain the De Rham differential complex (Ω∗(S), d). The De Rham cohomology groups of
the solenoid are defined as the quotients

Hp
DR(S) :=

ker(d : Ωp(S)→ Ωp+1(S))
im(d : Ωp−1(S)→ Ωp(S))

. (3.1)

We can also consider the spaces Ωpm(S) differential forms with function coefficients that are
smooth on leaves and measurable transversally. Then define in the same way the De Rham
measurable cohomology groups Hp

DRm(S) using the complex (Ω∗(S), d). Note the natural
map Hp

DR(S)→ Hp
DRm(S).

Proposition 3.1. Let Rc and Rm be respectively the sheaf of functions which are locally
constant on leaves and transversally continuous, resp. measurable. Then we have isomor-
phisms

Hp
DR(S) ∼= Hp(S,Rc) ,

and
Hp
DRm(S) ∼= Hp(S,Rm) .

Remark 3.2. The spaces Ωp(S) are topological vector spaces. Therefore the De Rham
cohomology (3.1) inherits a natural topology. In general, these spaces are infinite dimensional
(even for compact solenoids). In some references, it is customary to take the closure of the
spaces im d in definition (3.1), obtaining the reduced De Rham cohomology groups

H̄p
DR(S) =

ker d|Ωp
im d|Ωp1

.

This is equivalent to quotienting Hp
DR(S) by {0}, obtaining thus Hausdorff vector spaces.

We shall list some basic properties of the De Rham cohomology:
(1) Functoriality. Let S1, S2 be two solenoids. A smooth map f : S1 → S2 is a

map sending leaves to leaves and transversally continuous. f defines a map on De
Rham cohomologies, f∗ : Hp

DR(S2) → Hp
DR(S1), by f∗[ω] = [f∗ω]. This applies in

particular to an immersion of a solenoid into a smooth manifold f : S → M , or to
the inclusion of a leaf i : l→ S.
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(2) Mayer-Vietoris sequence. Let U, V be two open subsets of a solenoid S. There
is a short exact sequence of complexes: Ω•(U ∪ V )→ Ω•(U)⊕Ω•(V )→ Ω•(U ∩ V ).

(3) Homotopy. A homotopy between two maps f0, f1 : S1 → S2 is a map F : S1 ×
[0, 1]→ S2 (where S1 × [0, 1] is given the solenoid structure with leaves l× [0, 1], for
l ⊂ S1 a leaf of S1) such that F (x, 0) = f0(x) and F (x, 1) = f1(x). We say that
the maps f0, f1 are homotopic, written f0 ∼ f1. In this case f∗0 = f∗1 : Hp

DR(S2) →
Hp
DR(S1).

(4) Homotopy type. We say that two solenoids S1, S2 are of the same homotopy type
if there are maps f : S1 → S2, g : S2 → S1, such that f ◦ g ∼ IdS2 , g ◦ f ∼ IdS1 .
Then the cohomology groups of S1 and S2 are isomorphic.

3.2. Fundamental classes. Let S be an oriented compact k-solenoid (dimension of leaves
is k). The De Rham cohomology groups do not depend on any measure of S. If µ = (µT ) is
a transversal measure, then the integral

∫
Sµ

descends to cohomology giving a map∫
Sµ

: Hk
DR(S)→ R . (3.2)

We define the solenoidal homology as

Hp(S,Rc) := Hp(S,Rc)∗ = Hp
DR(S)∗.

Then the map (3.2) defines a homology class [Sµ] ∈ Hk(S,Rc)∗ = Hk(S,Rc). We shall call
this element the fundamental class of Sµ.

Any map f : S1 → S2 defines a map f∗ : Hp
DR(S2)→ Hp

DR(S1) and hence, by dualizing,
a map f∗ : Hp(S1,Rc) → Hp(S2,Rc). Applying this to an immersion f : Sµ → M of an
oriented, measured, compact solenoid into a smooth manifold, then we have the equality

f∗[Sµ] = [Sµ, f ] ,

with the generalized Ruelle-Sullivan class defined in the previous section.
Note that if S has a dense leaf (in particular when S it is minimal, i.e. all leaves are

dense), then H0(S,Rc) = R. On the other hand, the dimension of the top degree homology
counts the number of mutually singular tranverse measures on S.

Theorem 3.3. Let S be a compact, oriented k-solenoid. Then Hk(S,Rc) is isomorphic to
the real vector space generated by all transversal measures.

Remark 3.4. There is no Poincaré duality for H∗DR(S) in general. Moreover these spaces
may be infinite dimensional (even for uniquely ergodic solenoids): if S is a two-torus foliated
by irrational lines, then H1

DR(S) can be infinite-dimensional.

This result supports the intuition that the natural objects of Ergodic Solenoidal Geometry
are uniquely ergodic solenoids with only one transversal measure.

3.3. Singular cohomology. We consider the space Map(In, S) of continuous maps T :
In → S mapping into a leaf, and endow it with the uniform convergence topology. The
degenerate maps (see [1]) form a closed subspace, therefore the quotient, Map′(In, S), has
a natural quotient topology. The space of singular chains Cn(S) is the free abelian group
generated by Map′(In, S). There is a natural boundary map d : Cn(S)→ Cn−1(S).

LetG be any topological abelian group. Define the cochains Cn(S,G) = Homcont(Cn(S), G)
as the continous homomorphisms. That is, ϕ : Cn(S) → G such that if Tk : In → S are
maps which converge to To : In → S in the uniform topology, then ϕ(Tk) → ϕ(To). Define
the differential δ : Cn(S)→ Cn+1(S) by δϕ(T ) = ϕ(dT ). The solenoid singular cohomology
of S with coefficients in G is defined as:

Hn(S,G) :=
ker(δ : Cn(S,G)→ Cn+1(S,G))
im(δ : Cn−1(S,G)→ Cn(S,G))

.
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We have some basic properties:
(1) Functoriality. Let f : S1 → S2 be a solenoid map. Then there is a map f∗ :

Cn(S1)→ Cn(S2), f∗(T ) = f ◦ T , and a map f∗ : Cn(S2, G)→ Cn(S2, G), f∗(ϕ) =
ϕ ◦ f . Clearly f∗δ = δf∗, so the map descends to cohomology: f∗ : Hn(S2, G) →
Hn(S2, G).

(2) Homotopy. Suppose that f, g : S1 → S2 are two homotopic solenoid maps. The
usual construction yields a chain homotopy H between f∗ and g∗ (one only have to
check that this map sends continuous cochains into continuous cochains). Therefore
f∗ = g∗ : Hn(S2, G)→ Hn(S2, G).

(3) Homotopy type. If S1, S2 are of the same homotopy type, then Hn(S2, G) ∼=
Hn(S2, G).

(4) If U = Dk ×K(U) is a flow-box, then U is of the same homotopy type than {∗} ×
K(U). Therefore Hn(U) = 0 for n > 0, and H0(U) = Mapcont(K(U), G). In
particular, this implies that

Rc → C0(−,R) δ→ C1(−,R) δ→ . . .

is a resolution. Therefore there is an isomorphism Hn(S,R) ∼= Hn(S,Rc).
(5) Mayer-Vietoris sequence. For two open sets U, V with S = U ∪ V , define

Cn(S;U, V ) as the subcomplex generated by those singular chains completely con-
tained in either U or V . Define accordingly Cn(S;U, V ). It is not difficult to see that
the restriction Cn(S,G)→ Cn(S,G;U, V ) is chain homotopy equivalence. Therefore
the exact sequence 0→ Cn(S,G;U, V )→ Cn(U,G)⊕Cn(V,G)→ Cn(U ∩V,G)→ 0
gives rise to a long exact sequence:

. . .→ Hp(U ∪ V,G)→ Hp(U,G)⊕Hp(V,G)→ Hp(U ∩ V,G)→ Hp+1(U ∪ V,G)→ . . .

3.4. De Rham L2-cohomology. Now consider a k-solenoid S with a transversal measure µ.
There is a notion of cohomology which takes into account the transversal measure structure.
For this, we work with forms which are L2-transversal relative to µ.

Definition 3.5. A function f is L2(µ)-transversally smooth if in any (good) flow-box U =
Dk ×K(U) all partial derivatives on the first variable exist and are in L2(µK(U)), i.e. if we
write f as f(x, y) then for all r ≥ 0,∫

K(U)

||f(−, y)||2CrdµK(U)(y) <∞ .

We consider the space of forms
ΩpL2(µ)(S)

which are L2(µ)-transversally smooth, i.e. locally these are forms α =
∑
fI(x, y)dxI , where

fI are L2(µ)-transversally smooth functions. There is a well-defined differential along leaves
d : ΩpL2(µ)(S) → Ωp+1

L2(µ)(S) which defines the complex (Ω∗L2(µ)(S), d). We define the De
Rham L2-cohomology vector space as the quotients

Hp
DR(Sµ) :=

ker(d : ΩpL2(µ)(S)→ Ωp+1
L2(µ)(S))

im(d : Ωp−1
L2(µ)(S)→ ΩpL2(µ)(S))

. (3.3)

We also introduce the reduced De Rham L2-cohomology:

H̄p
DR(Sµ) :=

ker d
im d

. (3.4)

Note that there are natural maps

Hp
DR(S)→ Hp

DR(Sµ)→ Hp
DRm(S) ,
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since C∞,0-functions are L2(µ)-transversally smooth. The integration map
∫
Sµ

is well-
defined for forms in ΩkL2(µ), since a L2(µ)-transversally smooth k-form is automatically
L1(µ)-transversal (all measures are finite measures on compact transversals). So we have∫
Sµ

: Hk
DR(Sµ)→ R.

Let Rµ be the sheaf of measurable functions which are locally constant on leaves and
L2(µ)-transversally. A standard Poincaré lemma shows that there is a resolution of sheaves

Rµ → Ω0
L2(µ) → Ω1

L2(µ) → . . .→ ΩkL2(µ) .

So we get a natural isomorphism

Hp
DR(Sµ) ∼= Hp(S,Rµ) .

We review basic properties of the De Rham L2-cohomology:
(1) There is not cup product, and therefore the H∗DR(Sµ) are just vector spaces (not

rings).
(2) Functoriality. If f : S1 → S2 is a solenoidal map, then we require that µ2 = f∗µ1.

This means that for any local transversal T1 of S1, f(T1) is a local transversal of
S2 and the transported measure f∗µ1 is a constant multiple of µ2 on the transver-
sal. Note that this is automatic when the solenoids are uniquely ergodic. Then
for any form ω which is L2(µ2)-transversally smooth we have that f∗ω is L2(µ1)-
transversally smooth.

(3) Mayer-Vietoris. It holds exactly as in subsection 3.1.
(4) Poincaré duality. We shall see that it holds for the reduced L2-cohomology for

ergodic solenoids (see [7]).

3.5. Bundles over solenoids. Let S be a k-solenoid. A vector bundle of rank n over S
consists of a (k+n)-solenoid E and a projection map π : E → S satisfying the following con-
dition: there is an open covering Uα for S, and solenoid isomorphisms ψα : Eα = π−1(Uα)

∼=→
Uα × Rn = Dk ×K(Uα) × Rn, such that π = pr1 ◦ ψα, where pr1 : Uα × Rn → Uα denotes
the projection, and the transition functions

ψα ◦ ψ−1
β : (Uβ ∩ Uα)× Rn → (Uβ ∩ Uα)× Rn

are of the form (x, y, v) 7→ (x, y, gαβ(x, y)(v)), where gαβ is a C∞,0-smooth function from
Uα ∩ Uβ to GL(n).

Some points are easy to check:
(1) The usual constructions of vector bundles remain valid here: direct sums, tensor

products, symmetric and anti-symmetric products. Also there are notions of sub-
bundle and of quotient bundle.

(2) A section of a bundle π : E → S is a map s : S → E such that π ◦s = Id. We denote
the space of sections as Γ(E).

(3) If Sµ is a measured solenoid, and E → S is a vector bundle, then we have the
notion of sections which are L2(µ)-transversally smooth. Locally, in a chart Eα =
Dk ×K(U)×Rn → Uα = Dk ×K(U), the section is written s(x, y) = (x, y, v(x, y)).
We require that v is C∞ on x and L2(µ) on y. This does not depend on the chosen
trivialization.

(4) If f : S1 → S2 is a solenoid map, and π : E → S2 is a vector bundle, then the
pull-back f∗E = {(p, v) ∈ S1 × E | f(p) = π(v)} is naturally a vector bundle over
S1.

(5) The tangent bundle TS of S is an example of vector bundle. We have bundles of
(p, q)-tensors TS⊗p ⊗ (TS∗)⊗q on any solenoid S. In particular, we have bundles of
p-forms (anti-symmetric contravariant tensors)

∧p
T ∗S. Its sections are the p-forms

Ωp(S).
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(6) A metric on a bundle E is a section of Sym2(E∗) which is positive definite at every
point. A metric on S is a metric on the tangent bundle. An orientation of a bundle
E is a continuous choice of orientation for each of the fibers of E. An orientation of
S is an orientation of its tangent bundle.

We define Ωp(E) = Γ(
∧p

T ∗S ⊗ E). A connection on a vector bundle E → S is a map

∇ : Γ(E)→ Ω1(E),

such that ∇(f · s) = f∇s + df ∧ s. Consider a local trivialization in a flow-box Uα with
coordinates (x, y). Then ∇|Uα = d + aα, where aα ∈ Ω1(Uα,EndE). Under a change
of trivialization gαβ , for two trivializing open subsets Uα, Uβ , we have the usual formula
aβ = g−1

αβaαgαβ + g−1
αβdgαβ .

A partition of unity argument proves that there are always connections on a vector bundle
E → S. The space of connections is an affine space over Ω1(EndE).

Given a connection ∇ on E, there is a unique map d∇ : Ωp(E) → Ωp+1(E), p ≥ 0, such
that d∇s = ∇s for s ∈ Γ(E), and d∇(α ∧ β) = dα ∧ β + (−1)pα ∧ d∇β, for α ∈ Ωp(S),
β ∈ Ωq(E). It is easy to see that F̂∇ : Γ(E) → Ω2(E), given by F̂∇(s) = d∇d∇s, has a
tensorial character (i.e., it is linear on functions). Therefore there is a F∇ ∈ Ω2(EndE),
called curvature of ∇, such that F̂∇(s) = F∇ · s. Locally on a trivialization Uα, we have the
formula F∇ = daα + aα ∧ aα.

Given connections on vector bundles, there are induced connections on associated bundles
(dual bundle, tensor product, direct sum, symmetric product, pull-back under a solenoid
map, etc.). This follows in a straightforward way from the standard theory. In particular,
if l ↪→ S is a leaf of a solenoid S, then we can perform the pull-back of the bundle and
connection to the leaf, which consists on restricting them to l. This gives a bundle and
connection of a complete k-dimensional manifold. Also, if f : S → M is an immersion of a
solenoid in a smooth n-manifold, and E →M is a bundle with connection, then the pull-back
construction produces a bundle with connection on S.

Consider a vector bundle E → S endowed with a metric. We say that a connection ∇ is
compatible with the metric if it satisfies

d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉 .

In the particular case of the tangent bundle TS of a Riemannian solenoid S, we have the
Levi-Civita connection ∇LC , which is the unique connection compatible with the metric and
with torsion T∇(X,Y ) = ∇XY −∇YX = 0. This is the Levi-Civita connection on each leaf,
and the transversal continuity follows easily.

3.6. Chern classes. We can also define a complex vector bundle over a solenoid, by using
Cn as fiber, and taking the transition functions with values in GL(n,C). An hermitian
metric on a complex vector bundle is a positive definite hermitian form in each fiber with
smoothness of type C∞,0 on any local trivialization.

Let E → S be a complex vector bundle over a solenoid of rank n. Put a hermitian
structure on E, and consider any hermitian connection ∇ on E. Then the curvature F∇ is
a 2-form with values in EndE, i.e. F∇ ∈ Ω2(EndE). The Bianchi identity says

d∇F∇ = 0 .

This holds leaf-wise, so it holds on the solenoid.
Consider the elementary functions: Tri : Mr×r → C, given by Tri(A) = Tr(

∧i
A). Then

the Chern classes are

ci(E) =
[
Tri
(√−1

2π
F∇

)]
∈ H2i

DR(S) .
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These classes are well defined (since the forms inside are closed, which again follows by
working on leaves) and do not depend on the connection (different connections give forms
differing by exact forms), see [13, Chapter III].

We have some facts:

(1) If M is a manifold, we recover the usual Chern classes.
(2) If f : S1 → S2 is a solenoid map, then f∗ci(E) = ci(f∗E). In particular,

• If f : S →M is an immersion of a solenoid in a manifold and E|S = f∗E, then
ci(E|S) = f∗ci(E).

• If j : l→ S is the inclusion of a leaf, then ci(E|l) = j∗ci(E).

Question. Are the Chern classes defined as elements in H2i(S,Z)?
(for line bundles it is true).

4. Hodge Theory of solenoids

4.1. Sobolev norms. Let Sµ be a compact Riemannian k-solenoid which is oriented and
endowed with a transversal measure. We denote the associated (finite) daval measure also by
µ. Now consider a vector bundle E → S and endow it with a metric. The space of sections
of class C∞,0 is denoted Γ(S,E). The space of L2(µ)-transversally smooth sections (sections
of class C∞ along leaves and L2 in the transversal directions) is denoted by ΓL2(µ)(S,E).

Now let us introduce suitable completions of these spaces of sections. Fix a connection ∇
for E and the Levi-Civita connection for TS. There is an L2-norm on sections of E, given
by

(s, t)E =
∫
S

〈s, t〉 dµ .

We can complete the spaces of sections to obtain spaces of L2-sections L2(S,E). We consider
also Sobolev norms W l,2 as follows. Take s a section of E. Then we set

||s||2
W l,2
µ

=
∫
S

l∑
i=0

|∇is|2 dµ .

Completing with respect to this norm gives a Hilbert space consisting of sections with reg-
ularity W l,2 on leaves and L2(µ)-transversally, denoted W l,2

µ (S,E). These spaces do not
depend on the choice of metrics and connections.

For future use, we also introduce the norms Crµ, which give spaces of sections with Cr-
regularity on leaves and L2(µ)-transversally. Take s a section of E. Assume it has support
in a flow box U = Dk ×K(U), and assume that E has been trivialized by an orthonormal
frame. Then

||s||2Crµ =
∫
K(U)

||s(·, y)||2Cr dµK(U)(y) .

These norms are patched (via partitions of unity, in a non-canonical way) to get a norm
on the spaces of sections on the whole solenoid. The topology defined by this norm is
independent of the partition of unity. The spaces of sections are denoted Crµ(S,E). Note
that

⋂
r≥0 C

r
µ(S,E) = L2(µ)(S,E).

We can define the norm W l,2
µ by using Fourier transforms. For this we have to restrict

to a flow-box U = Dk × K(U). We Fourier-transform the section s(x, y) in the leaf-wise
directions, to get ŝ(ξ, y), and then take the integral∫

K(U)

(∫
(1 + |ξ|2)l|ŝ(ξ, y)|2dξ

)
dµK(U)(y).

Proposition 4.1 (Sobolev). W s,2
µ (S,E) ⊂ Cpµ(S,E), for s > [k/2] + p+ 1.
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This is similar to Proposition 1.1 in Chapter IV of [13]. The proof carries over to the
solenoid situation verbatim. As a consequence,⋂

r≥0

W r,2
µ (S,E) = ΓL2(µ)(S,E) .

4.2. Pseudodifferential operators. Let E,F be two vector bundles over S of ranks n,m
respectively. A differential operator L of order l is an operator

L : Γ(S,E)→ Γ(S, F )

which locally on a flow-box U = Dk ×K(U) is of the form

L(s) =
∑
|α|≤l

Aα(x, y)Dαs ,

where Aα are (n×m)-matrices of functions (with regularity C∞,0) and α = (α1, . . . , αk) is
a multi-index, with |α| =

∑
αi, Dα = d|α|

dα1x1...d
αkxk

. Note that a differential operator gives
rise to differential operators on each leaf. Moreover, L extends to

L : W p,2
µ (S,E)→W p−l,2

µ (S, F ) .

The usual properties, like the existence of adjoints, extend to this setting.
The symbol of a differential operator on a solenoid is defined in the same fashion as for the

case of manifolds, and coincides with the symbol of the differential operator on the leaves.
We recall that the symbol σl(L) ∈ Hom(π∗E, π∗F ), π : TS → S, has the form

σl(L)(x, y, v) =
∑
|α|=l

Aα(x, y)vα1
1 . . . vαkk .

The properties of the symbol map, such as the rule of the symbol of the composition of
differential operators, or the symbol of the adjoint, hold here. This is just the fact that they
can be done leaf-wise, and the continuous transversality is easy to check.

Differential operators can be generalized to pseudodifferential operators as in the case of
manifolds. A pseudodifferential operator of order l on a flow-box U = Dk × K(U) is an
operator

L(p) : Γc(U,E)→ Γ(U,F )
which sends a (compactly supported) section s(x, y) to

L(p)s(x, y) =
∫
p(x, ξ, y)ŝ(ξ, y)ei〈x,ξ〉dξ ,

where ŝ(ξ, y) is the (leaf-wise) Fourier transform, and p(x, ξ, y) is a function defined in
Dk × Rk ×K(U), smooth on x and ξ, continuous on y, and satisfying:

• |Dβ
xD

α
ξ p(x, ξ, y)| ≤ Cαβ l(1 + |ξ|)l−|α|, for constants Cαβ l,

• the limit σl(p)(x, ξ, y) = limλ→∞
p(x,λξ,y)

λl
exists,

• p(x, ξ, y)− σl(p)(x, ξ, y) should be of order ≤ l − 1 for |ξ| ≥ 1.
A pseudodifferential operator of order l on S is an operator L : Γ(S,E)→ Γ(S, F ) which

is locally of the form L(pU ) for some pU as above. The symbol of L is σl(L) = σl(pU ) for a
local representative L|U = L(pU ). This symbol is well-defined and independent of choices,
which is a delicate point but it is analogous to the case of manifolds (see [13]). The usual
properties of the symbol map (composition, adjoint) hold here.

A pseudodifferential operator of order l is an operator of order l, i.e., it extends as a
continuous map to

L : W p,2
µ (S,E)→W p−l,2

µ (S,E) .
This is done as in Theorem 3.4 of [13, Ch. IV], by noting that ||L(p)s(·, y)||Wp−l,2 ≤
C||s(·, y)||Wp,2 , where C is a constant depending on Cαβ l.
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The key of the theory is the fact that we can construct a pseudodifferential operator given
a symbol σl(L).

Proposition 4.2. Let S be a compact solenoid. Then there is an exact sequence 0 →
OPl−1(E,F ) → PDiff l(E,F ) → Symbl(E,F ) → 0, where OPl−1(E,F ) is the space of
operators of order l−1, PDiff l(E,F ) the space of pseudodifferential operators of order l, and
Symbl(E,F ) the space of symbols of order l.

4.3. Elliptic operator theory for solenoids. We say that a pseudodifferential operator
L : E → F of order l is elliptic if the symbol σl(L) satisfies that σl(L)(x, v) : Ex → Fx is an
isomorphism for each x ∈ S, v ∈ TxS, v 6= 0.

Theorem 4.3. Let L be an elliptic pseudodifferential operator of order l. Then there exists
a pseudo-inverse, a pseudodifferential operator L̃ of order −l such that L ◦ L̃ = Id+K1 and
L̃ ◦ L = Id+K2, where K1,K2 are operators of order −1.

This is done as in Theorem 4.4 [13, Ch. IV]. The basic idea is to construct a pseudo-inverse
by using Proposition 4.2. Note that K1,K2 are not ussually compact operators (this is due
to the failure of the Rellich lemma in our situation), so we will not have finite-dimensionality
of the kernel and cokernel of elliptic operators.

Corollary 4.4. Let L be an elliptic pseudodifferential operator of order l, and let KLs =
ker(L : W s,2

µ (S,E)→W s−l,2
µ (S, F )). Then KLs ⊂ ΓL2(µ)(S,E), and it is independent of s.

An operator L : Γ(E)→ Γ(E) is called self-adjoint if L∗ = L. If L is an elliptic self-adjoint
operator, then there is a pseudo-inverse G which is self-adjoint (just take the pseudo-inverse
L̃ provided by Theorem 4.3 and let G = (L̃ + L̃∗)/2). Then we have that L ◦ G = G ◦ L,
because

〈(L ◦G−G ◦ L)s, s〉 = 〈Gs,Ls〉 − 〈Ls,Gs〉 = 0 .
In particular, K1 = K2 in Theorem 4.3.

For self-adjoint operators, we have the following result

Theorem 4.5. Let L be an elliptic self-adjoint operator of order l. Then

W s,2
µ (S,E) = kerL⊕ imL .

and an analogous result for ΓL2(µ)(S,E).

A complex of differential operators is a sequence

Γ(E0) L0−→ Γ(E1) L1−→ . . .
Lm−1−→ Γ(Em) ,

where Ei are vector bundles, and Li are differential operators such that Li ◦ Li−1 = 0. The
complex is called elliptic if the sequence of symbols

π∗E0
σ(L0)−→ π∗E1

σ(L1)−→ . . .
σ(Lm−1)−→ π∗Em ,

is exact for each v 6= 0. We define the cohomology of the complex as

Hq(S,E) =
ker(Lq : Γ(Eq)→ Γ(Eq+1))

im(Lq−1 : Γ(Eq−1)→ Γ(Eq))
,

and the L2-cohomology by

Hq(Sµ, E) =
ker(Lq : ΓL2(µ)(Eq)→ ΓL2(µ)(Eq+1))

im(Lq−1 : ΓL2(µ)(Eq−1)→ ΓL2(µ)(Eq))
.

The reduced L2-cohomology is

H̄q(Sµ, E) =
kerLq

imLq−1

.
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This is the group Hq(Sµ, E) quotiented by the closure of {0}, making it a Hausdorff space.
We construct the Laplacian operators of the elliptic complex as follows:

∆j = L∗jLj + Lj−1L
∗
j−1 : ΓL2(µ)(Ej)→ ΓL2(µ)(Ej) .

These are self-adjoint elliptic operators. There is an associated operator G given by Theorem
4.5. Denote

Hj(E) = ker ∆j .

And note that ∆js = 0 if and only if Ljs = 0 and L∗js = 0. We remove the subindex j from
now on.

Theorem 4.6. We have the following:
(1) im ∆ = imL⊕ imL∗, and it is an orthogonal decomposition.
(2) ΓL2(µ)(S,Ej) = Hj(E)⊕ imL⊕ imL∗.
(3) There is a canonical isomorphism Hj(E) ∼= H̄j(Sµ, E).

4.4. Harmonic theory. The Riemannian metric and the orientation give rise to a natural
volume form along leaves vol ∈ Ωk(S). The usual Hodge-∗ operator (see [13]) can be defined
for forms on S, actually, it is the ∗ operator on leaves. This operator ∗ : Ωp(S)→ Ωk−p(S)
is defined by

α ∧ ∗β = (α, β) vol ,

for α, β ∈ Ωp(S), where (·, ·) is the point-wise metric induced on forms. Note that ∗ extends
to ∗ : ΩpL2

µ
(S)→ Ωk−pL2

µ
(S), since it is leaf-wise isometric. Note that vol = ∗1.

Lemma 4.7. d∗ = ± ∗ d∗. 2

The Laplacian is defined as ∆ = dd∗+d∗d. Note that if ∆s = 0 then (s,∆s) = (s, dd∗s)+
(s, d∗ds) = (d∗s, d∗s) + (ds, ds) = ||d∗s||2 + ||ds||2. So d∗s = 0 and ds = 0. We define the
space of harmonic forms:

Kj(Sµ) = H∆(∧jT ∗S) .

Then the theory of elliptic operators says the following

Theorem 4.8. We have
• The space of harmonic sections Kj(Sµ) ⊂ ΩjL2(µ)(S).

• There is a natural isomorphism H̄j
DR(Sµ) ∼= Kj(Sµ).

Corollary 4.9. Poincaré duality:

∗ : Kp(Sµ)→ Kk−p(Sµ)

is an isomorphism.
If S is ergodic, then H0(Sµ) ∼= Hk(Sµ) ∼= R (with the isomorphism given by integration∫

Sµ
. Therefore ∫

Sµ

: H̄p
DR(Sµ)⊗ H̄k−p

DR (Sµ)→ R

is a perfect pairing.

In general, the spaces Kp(Sµ) are not finite dimensional. For instance, take a solenoid
which is a fibration, i.e., S is a compact (n + k)-manifold such that there is a submersion
π : S → B onto an n-dimensional manifold, and the transversal measure is induced by a
measure µ on B. Then we have a fiber bundle Hp → B such that Hp

y = Hj(Fy), Fy = π−1(y).
Then Kp(Sµ) ∼= L2(µ)(Hp).

Nonetheless, we propose the following conjecture, as is natural from the standpoint of
Ergodic Solemoidal Geometry:
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Conjecture 4.10. If Sµ is a uniquely ergodic solenoid then the spaces Kp(Sµ) are of finite
dimension.
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