
NUMBER OF SOLUTIONS TO THE LIGTHS OUT GAME

VICENTE MUÑOZ

Abstract. Using linear algebra over the field F2, we compute the number of solutions to the game
Lights Out. This is given in terms of the irreducible polynomials over F2.

The present text is a (somehow trimmed) English version of the paper “Las matemáticas del juego Lights
Out!” (in Spanish, La Gaceta de la RSME, 2015).

Lights Out is an electronic game, released by the Company Tiger Toys in 1995. The game consists of
a 5 by 5 grid of lights. When the game starts, a random number or a stored pattern of these lights is
switched on. Pressing any of the lights will toggle it and the four adjacent lights. The goal of the puzzle
is to switch all the lights off.

A number of papers and webpages in Recreational Mathematics have appear since on the topic, mainly
occupied in ways to solve the puzzle (see [9, 15] and the references therein). We are interested in the
problem for a board of general size n×n, specifically in the problem of starting with all lights on. By the
work of Sutner, it is known that this game has always solutions. Here we shall study how many solutions
there are.

In the case of a grid 5 × 5, this problem has been analysed mathematically in the papers [1, 8], by
matrix algebra arguments over the field F2. We are going to extend this method to general grids n×n and
use some (elementary) theory on finite fiels and irreducible polynomials (over F2) to help us computing
the number of solutions. Similar results have appeared already in the literature [2, 3, 4, 7, 5, 6, 12, 14, 16].

Let us start with some notations. Consider an n×n-grid. The position of a square is given by a bit in
F2 = {0, 1}, where 0 means “off” and 1 means “on”. Therefore the set of possible positions of the grid is

given by the F2-vector space V = (F2)n
2

. Here each factor corresponds to a square and the order is going
from left to right line by line, and then from top to bottom. Pressing a square an even number of times
is like no pressing it at all, and pressing it an odd number of times is like just pressing it once. Hence

the possible ways of pressing squares is given again by V = (F2)n
2

, where a 0 means “not pressing” and
1 means “pressing”. The order of the factors corresponds to the squares in the same way as before. The
effect of the possible ways of pressing squares is given by an F2-linear function

(1) fn : V → V
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2 V. MUÑOZ

whose matrix is

(2) Mn =



Bn In 0 . . . 0 0
In Bn In . . . 0 0
0 In Bn . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . Bn In 0
0 0 . . . In Bn In
0 0 . . . 0 In Bn


,

where In is the identity (n× n)-matrix and

(3) Bn =



1 1 0 . . . 0 0
1 1 1 . . . 0 0
0 1 1 . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . 1 1 0
0 0 . . . 1 1 1
0 0 . . . 0 1 1


.

That is, if a = (a1, . . . , an2)t ∈ V is a way of pressing squares then f(a) = M a is the resulting pattern
of lights. The result of [13] means that 1 = (1, 1, . . . , 1)t ∈ im(f). Therefore the number of possible
solutions to f(a) = 1 is M(n) = 2dn, where

dn = dim ker(fn).

Theorem 1. Let Pn(t) = det(Bn − tIn) ∈ F2[t] be the characteristic polynomial of Bn. Then dn is the
degree of gcd(Pn(t), Pn(t+ 1)).

Proof. The characteristic polynomial of (3) is a degree n polynomial Pn ∈ F2[t]. By the Cayley-Hamilton
theorem, Pn(Bn) = 0. Now let us see that Pn is the minimal polynomial, that is, the minimum degree
monic polynomial P satisfying P (Bn) = 0. If v1 = (1, 0, 0, . . . , 0), then v2 = Bn(v1) = (∗, 1, 0, . . . , 0),
v3 = Bn(v2) = (∗, ∗, 1, 0, . . . , 0) and so on. So v1, . . . , vn = Bn−1n (v1) are linearly independent. Therefore
I,Bn, . . . , B

n−1
n are linearly independent. This means that Pn(t) is the minimal polynomial.

As a consequence, all repeated eigenvalues of Bn appear in Jordan blocks of maximum size. Let
λ1, . . . , λr be the (distinct) eigenvalues of Bn in the algebraic closure F2, and let di be the multiplicity of
λi. There is a basis (over F2) in which we can write

Bn ∼ B′n =


J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jr

 , where Ji =


λi 0 . . . 0
1 λi . . . 0
...

. . .
. . .

...
0 . . . 1 λi

 , i = 1, . . . , r

Consider now the matrix (2), which is an endomorphism of V = Fn2

2 = Fn2⊕ (n). . . Fn2 . Going to the
algebraic closure F2, and using the basis found above on each copy of Fn2 , we have

Mn ∼M ′n =



B′n In 0 . . . 0 0
In B′n In . . . 0 0
0 In B′n . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . B′n In 0
0 0 . . . In B′n In
0 0 . . . 0 In B′n


.
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Now we reorde the basis. Take the first vector of each of the factors Fn2 , then continue by the second
vector of each of the factors, and so successively. This gives a matrix as follows:

Mn ∼M ′′n =


K1 0 . . . 0
0 K2 . . . 0
...

...
. . .

...
0 0 . . . Kr

 , with Ki =


Λλi 0 0 . . . 0
I Λλi 0 . . . 0
0 I Λλi . . . 0
...

...
. . .

. . .
...

0 0 . . . I Λλi

 ,

where we have written

Λλ =


λ 1 0 . . . 0
1 λ 1 . . . 0
0 1 λ . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 λ

 .

Note that Λλ = Bn + (λ − 1)In, so the basis that puts Bn in Jordan form, does also put Λλ into its
Jordan form Λ′λ = B′n + (λ− 1)In. Hence

Mn ∼M ′′′n =


K ′1 0 . . . 0
0 K ′2 . . . 0
...

...
. . .

...
0 0 . . . K ′r

 , with K ′i =


B′n + (λi − 1)In 0 . . . 0

I B′n + (λi − 1)In . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . B′n + (λi − 1)In

 .

where

B′n+(λi−1)In =


Ji1 0 . . . 0
0 Ji2 . . . 0
...

...
. . .

...
0 0 . . . Jir

 , and Jij =


λj + λi − 1 0 . . . 0

1 λj + λi − 1 . . . 0
...

. . .
. . .

...
0 . . . 1 λj + λi − 1

 .

Rearranging the blocks, we see that Mn ∼ M ′′′n , which is formed by blocks, for each pair (i, j) of the
form

(4) Tij =


Jij 0 . . . 0
I Jij . . . 0
...

. . .
. . .

...
0 . . . I Jij

 .

The size of Jij is the multiplicity of the eigenvalue λj in Pn(t), and the number of Jij in (4) is the
multiplicity of the eigenvalue λi.

To compute dn = dim kerMn, we need to sum the dimensions of the kernels of each Tij . Note that
there is a contribution to the kernel only when λi − λj = 1. Suposse now that λi − λj = 1, and let v
be a vector in the kernel of Tij . Write it as v = v1 + . . . + vdi , according to the splitting in (4). Then,
abbreviating J = Jij , we have Tij(v) = 0 =⇒ Jv1 = 0, Jv2 = v1, . . . , Jvdi = vdi−1. If di ≤ dj , the kernel
is determined by v = vdi subject to Jdiv = 0, that is of dimension di. If dj < di, can choose vdi freely,
and the dimension is dj . So dim kerTij = min{di, dj}. Finally

dn = dim kerMn =
∑

λi=λj+1

dim kerTij =
∑

λi=λj+1

min{di, dj} = deg gcd(Pn(t), Pn(t+ 1)).

�

Note that a trivial consequence to Theorem 1 is that

dn ≤ n
(initially we only know dn ≤ n2). This of course follows by the Lights Chasing solving method explained
in [1, 15]). Another consequence of the formula is dn =

∑
λi=λj+1 min{di, dj} is that dn is even.
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Now we want to compute the polynomial Pn(t).

Proposition 2. Pn(t) =
∑[n/2]
b=0

(
n−b
b

)
(1 + t)n−2b. Moreover, Pn satisfy the recurrence Pn+1(t) = (1 +

t)Pn(t) + Pn−1(t).

Proof. The polynomial Pn(t) is the determinant of

Bn − tIn =



1− t 1 0 . . . 0 0
1 1− t 1 . . . 0 0
0 1 1− t . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . 1 1− t 1
0 0 . . . 0 1 1− t


.

Consider the algebraic closure F2 of F2, which is an infinite field. We shall calculate the above determinant
for t ∈ F2 generic. Then by Gauss elimination applied to Bn − tIn, we get the matrix

c1 0 0 . . . 0 0
∗ c2 0 . . . 0 0
∗ ∗ c3 . . . 0 0
...

...
. . .

. . .
...

...
∗ ∗ . . . ∗ cn−1 0
∗ ∗ . . . ∗ ∗ cn


,

where

c1 = 1− t
ck+1 = 1− t− c−1k , k ≥ 1.

Then the characteristic polynomial of M is

Pn(t) = det(M − tI) =

n∏
k=1

ck

Writing ds =
∏s
k=1 ck, we have that ds+1 = ck+1ds = (1−t)ds−dsc−1k = (1−t)ds−ds−1, and Pn(t) = dn.

The recurrence relation follows readily from this (noting that as we are in characteristic 2, signs are not
relevant).

Consider the generating function g(x) =
∑
s≥0 dsx

s. We have the recurrence g(x) = 1 +x(1− t)g(x)−
x2g(x), hence

g(x) =
1

1− x(1− t) + x2

and
Pn(t) = Coeffxng(x).

Expanding in power series,

g(x) =
∑
a≥0

(x(1− t)− x2)a =
∑
a≥0

a∑
b=0

(
a

b

)
(−1)b(1− t)a−bxa+b.

Recalling that we are in characteristic 2, so ±1 = 1, we have

Pn(t) =

[n/2]∑
b=0

(
n− b
b

)
(1 + t)n−2b.

�

Note that we can write

(5) Qn(t) = Pn(t+ 1) =

[n/2]∑
b=0

(
n− b
b

)
tn−2b,
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and then dn = deg gcd(Qn(t), Qn(t + 1)). Moreover, the binomial coefficients
(
m
k

)
are easily computed

modulo 2. Certainly,
(
m
k

)
= 1 if, writing m and k in binary, every time we have a 1 at a position for k,

then we also have a 1 at the same position for m. Otherwise
(
m
k

)
= 0.

Here it goes a list of the polynomialds Rn(t) = gcd(Pn(t), Pn(t+ 1)) for n ≤ 57

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 1 1 (1 + t+ t2)2 t(1 + t) 1 1 1 (1 + t+ t2)4 1 t3(1 + t)3 1 1 (1 + t+ t2)2

R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28

1 (1 + t+ t4)2 t(1 + t) 1 (1 + t+ t2)8 1 1 1 t7(1 + t)7 (1 + t+ t2)2 1 1 1 1

R29 R30 R31 R32

t(1 + t)(1 + t+ t2)4 (1 + t3 + t5)2(1 + t2 + t3 + t4 + t5)2 1 (1 + t+ t2 + t3 + t5)2(1 + t+ t3 + t4 + t5)2

R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44

(1 + t+ t4)4 (1 + t+ t2)2 t3(1 + t)3 1 1 1 (1 + t+ t2)16 1 t(1 + t) 1 1 (1 + t+ t2)2

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57

1 1 t15(1 + t)15 1 (1 + t+ t2)4 (1 + t+ t4)2 1 1 t(1 + t) (1 + t+ t2)2 1 1 1

These polynomials are factored into irreducible polynomials in F2[t]. We see there are clear patterns
for the repetition of each irreducible factor. Actually this is so, as we show next.

First, let us recall some basic facts on irreducible polynomials in F2[t]. If F (t) is an irreducible
polynomial of degree α, then F2[t]/(F ) is a field of order 2α, hence isomorphic to F2α . In F2α , all
elements satisfy ξ2

α − ξ = 0. Hence F (t)|(t2α − t). Therefore all irreducible polynomials of degree α
appear as irreducible factors of

Vα(t) = t2
α

− t.
This gives an easy an effective way of finding them all recursively. Note that if β|α then Vβ |Vα. So
Wα(t) for the product of all irreducible polynomials of degree α, then Vα =

∏
β|αWβ . Note that W1(t) =

t(t− 1) = t2 − 1. If ϕ(α) is the degree of Wα, the
∑
β|α ϕ(β) = 2α. This can be solved with the Möbius

inversion formula

ϕ(α) =
∑
d|α

µ(d)2α/d

where µ(d) = 1 if d is square-free and has an even number of prime factors, µ(d) = −1 if d is square-free
and has an odd number of prime factors and µ(d) = 0 if d is divisible by a square. Note that the number
of irreducible polynomials of degree α is Nα = ϕ(α)/α. Here there is a short list of the first few irreducible
polynomials

t, t+ 1, t2 + t+ 1, t3 + t+ 1, t3 + t2 + 1, t4 + t+ 1, t4 + t3 + 1, t4 + t3 + t2 + t+ 1, t5 + t2 + 1,

t5 + t3 + 1, t5 + t3 + t2 + t+ 1, t5 + t4 + t2 + t+ 1, t5 + t4 + t3 + t+ 1, t5 + t4 + t3 + t2 + 1, . . .

Consider the set of irreducible polynomials I =
⋃
Iα, where Iα = {Fα,j |1 ≤ j ≤ Nα} are those of degree

α.

If F ∈ I then there are two cases:

• If F (t) 6= F (t+ 1), then both are irreducible polynomials. If F (t)|Rn(t) then also F (t+ 1)|Rn(t).
• If F (t) = F (t + 1), then F (t) can appear alone as a factor of Rn(t). But note that the roots of
F (t) come in pairs (λ, λ+ 1). So degF (t) is even.

Theorem 3. • The maximum power of t(1+t) dividing Rn−1 is (t(1+t))2
l−1 for n = 3·2l ·(2k+1).

• Let F = Fα,j ∈ Iα, α > 1. There is an odd number s = sα,j |4α− 1 such that F |Rn−1 if and only

if s|n. Moreover, the maximum power of F dividing Rn−1 is F 2l+1

for n = s · 2l · (2k + 1).

Proof. We find easier to work with Qn(t) defined in (5). From Proposition 2, Qn satisfy the recurrence
Qn+1 = tQn(t) +Qn−1(t) and Q0(t) = 1. From here it follows that

Qn+a = QnQa +Qn−1Qa−1,
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for all n, a ≥ 1. For a = 1 it is the initial recurrence. For a + 1 it is checked as follows: Qn+a+1 =
Qn+1Qa +QnQa−1 = (tQn +Qn−1)Qa +QnQa−1 = Qn(tQa +Qa−1) +Qn−1Qa = QnQa+1 +Qn−1Qa.
As a consequence, {

Q2n = Q2
n +Q2

n−1 = (Qn +Qn−1)2

Q2n+1 = Qn+1Qn +QnQn−1 = tQ2
n

Now let us prove the statement of the theorem.

(1) First, an easy consequence is that Q2n is not divisible by t and Q2n+1 is divisible by t.
(2) Qn and Qn+1 are coprime for all n ≥ 0.

(3) In the second place, an easy induction shows that for 2n = 2l(2k+1), we have Q2n−1 = t2
l−1(1+

. . .). Equivalently, 2l||2n ⇐⇒ t2
l−1||Q2n−1 (where || means the maximum power dividing

a polynomial). This is clear for l = 1, since in this case n is odd and Qn−1 = 1 + . . ., so
Q2n−1 = tQ2

n−1 = t(1 + . . .). For l ≥ 2, Then 2l||2n ⇐⇒ 2l−1||n, and n is even, n = 2t say. So

t2
l−1−1||Qn−1 which is equivalent to t(t2

l−1−1)2 = t2
l−1||tQ2

n−1 = Q2n−1.
(4) Let F (t) be an irreducible polynomial (not equal to t). Then F |Qn−1 ⇐⇒ F 2|Q2n−1. As

F |Rn−1 ⇐⇒ F (t)|Qn−1, F (t + 1)|Qn−1, we have that F |Rn−1 ⇐⇒ F 2|R2n−1. Therefore if

F p||Rn−1 for n odd, then F 2lp||R2ln−1 (later we shall see that p = 2).
(5) Suppose F |Qa−1, F |Qb−1. Then F |Qa+b−1. This follows from the formula Qa+b−1 = Qb−1Qa +

Qb−2Qa−1. Note that if F |Qa+b−1 and F |Qa−1 then F |Qb−1, since F 6 |Qa (by (2)). Therefore
{a;F |Qa−1} is an ideal intersected by Z>0. Let sF be its generator.

(6) By (4), sF is odd. Let p > 0 be the integer such that F p||QsF−1. Then F p|QksF−1, for any k ≥ 1.
Moreover F 2p|Q2sF−1, so F 2p|Q2ksF−1 for any k ≥ 1. Using Q(2k+1)sF−1 = Q2ksF−1QsF +
Q2ksF−2QsF−1, we have that F p is the maximum power dividing Q(2k+1)sF−1 for any k ≥ 0.

Therefore F 2lp||Q2l(2k+1)sF−1.

(7) Applying (6) to F = 1 + t, note that Q2 = 1 + t2 = (1 + t)2. So sF = 3. We know that Qn−1 is
divisible by t only for even n, so t(1 + t)|Qn−1 for n multiple of 6. Let n = 2l6(2k + 1). Then

(1 + t)2
l+1 ||Qn−1 and t2

l+1−1||Qn−1. So (t(1 + t))2
l+1−1||Qn−1.

(8) Now let FIα with α > 1. It only remains to see that p = 2. By an explicit computation,

Q2α−2 = 1 + t2
α−1

+ t2
α−1+2α−2

+ . . .+ t2
α−1+...+2

Q2α−1 = t2
α−1

Q2α = 1 + t2
α−1

+ t2
α−1+2α−2

+ . . .+ t2
α−1+...+2 + t2

α

and t2Q2α−2Q2α = t4
α

+ t2 = (t2
α

+ t)2.
An irreducible polynomial F of degree α satisfies that F 2||(t2α +t)2. Therefore F 2||Q2α−2Q2α .

But also Qn and Qn−2 cannot share an irreducible factor different from t, so either F 2||Q2α−2 or
F 2||Q2α . In the first case sF |2α − 1 and p = 2; in the second case sF |2α + 1 and p = 2.

(9) Finally, F 2||Rn−1 for n odd, if and only if F (t)2||Qn−1(t) and F (t + 1)2||Qn−1(t). Let G(t) =
F (t + 1). If G = F then the statement follows taking sα,j = sF , F = Fα,j . If G 6= F ,
then consider sF , sG. There are several possibilities: If F 2, G2||Q2α−2, then sF , sG|2α − 1; then
sα,j = gcd(sF , sG). If F 2, G2||Q2α , then sF , sG|2α + 1; then sα,j = lcm(sF , sG). If F 2||Q2α−2
and G2||Q2α , then sα,j = sF sG, since sF |2α − 1, sG|2α + 1, and 2α − 1, 2α + 1 are coprime. In
all cases sα,j |4α − 1.

�

We rewrite Theorem 3 as follows. Consider the generating function D(x) =
∑
n≥0 dnx

n. Define

S(x) = x+ 2x2 + x3 + 4x4 + x5 + 2x6 + x7 + 8x8 + x9 + . . . =
∑
n≥0

2nx2
n

1− x2n+1 .

Then

D(x) = x

4S(x6)− 2
x6

1− x6
+

∑
α>1,1≤j≤Nα

2αS(xsα,j )

 .
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The remaining information is the numbers sα,j associated to each irreducible polynomial Fα,j with
α > 1. These are odd numbers and we know that sα,j |4α − 1. Therefore an easy way to find them is by
looking at the first divisor n of 4α−1 such that F (t), F (t+ 1) both divide Qn−1(t). There is even a more
efficient method: consider the divisors of either 2α − 1, 2α + 1, and look for sF , sG independently. Then
sα,j = lcm(sF , sG). A Mathematica notebook for doing this is provided here.

P [n , t ]:=Factor[Sum[Binomial[n− k, k]t∧(n− 2k), {k, 0,Floor[n/2]}],Modulus→ 2]P [n , t ]:=Factor[Sum[Binomial[n− k, k]t∧(n− 2k), {k, 0,Floor[n/2]}],Modulus→ 2]P [n , t ]:=Factor[Sum[Binomial[n− k, k]t∧(n− 2k), {k, 0,Floor[n/2]}],Modulus→ 2]

Irreducibles = {t2 + t+ 1, t3 + t+ 1, t3 + t2 + 1, t4 + t+ 1, t4 + t3 + 1, t4 + t3 + t2 + t+ 1, t5 + t2 + 1,Irreducibles = {t2 + t+ 1, t3 + t+ 1, t3 + t2 + 1, t4 + t+ 1, t4 + t3 + 1, t4 + t3 + t2 + t+ 1, t5 + t2 + 1,Irreducibles = {t2 + t+ 1, t3 + t+ 1, t3 + t2 + 1, t4 + t+ 1, t4 + t3 + 1, t4 + t3 + t2 + t+ 1, t5 + t2 + 1,

t5 + t3 + 1, t5 + t3 + t2 + t+ 1, t5 + t4 + t2 + t+ 1, t5 + t4 + t3 + t+ 1, t5 + t4 + t3 + t2 + 1};t5 + t3 + 1, t5 + t3 + t2 + t+ 1, t5 + t4 + t2 + t+ 1, t5 + t4 + t3 + t+ 1, t5 + t4 + t3 + t2 + 1};t5 + t3 + 1, t5 + t3 + t2 + t+ 1, t5 + t4 + t2 + t+ 1, t5 + t4 + t3 + t+ 1, t5 + t4 + t3 + t2 + 1};

Irreducibles2 = PolynomialLCM[Irreducibles/.t→ t+ 1, 1,Modulus→ 2];Irreducibles2 = PolynomialLCM[Irreducibles/.t→ t+ 1, 1,Modulus→ 2];Irreducibles2 = PolynomialLCM[Irreducibles/.t→ t+ 1, 1,Modulus→ 2];

NN = Length[Irreducibles];NN = Length[Irreducibles];NN = Length[Irreducibles];

F [n ]:=Extract[Irreducibles, {n}]F [n ]:=Extract[Irreducibles, {n}]F [n ]:=Extract[Irreducibles, {n}]

G[n ]:=Extract[Irreducibles2, {n}]G[n ]:=Extract[Irreducibles2, {n}]G[n ]:=Extract[Irreducibles2, {n}]

Div[n ]:=Flatten[{Divisors[2∧Exponent[F [n], t]− 1],Divisors[2∧Exponent[F [n], t] + 1]}]Div[n ]:=Flatten[{Divisors[2∧Exponent[F [n], t]− 1],Divisors[2∧Exponent[F [n], t] + 1]}]Div[n ]:=Flatten[{Divisors[2∧Exponent[F [n], t]− 1],Divisors[2∧Exponent[F [n], t] + 1]}]

EF[n , k ]:=Exponent[PolynomialGCD[P [n, t], F [k],Modulus→ 2], t]EF[n , k ]:=Exponent[PolynomialGCD[P [n, t], F [k],Modulus→ 2], t]EF[n , k ]:=Exponent[PolynomialGCD[P [n, t], F [k],Modulus→ 2], t]

EG[n , k ]:=Exponent[PolynomialGCD[P [n, t],G[k],Modulus→ 2], t]EG[n , k ]:=Exponent[PolynomialGCD[P [n, t],G[k],Modulus→ 2], t]EG[n , k ]:=Exponent[PolynomialGCD[P [n, t],G[k],Modulus→ 2], t]

k = 1; While[k < NN + 1, z = 2; While[EF[Extract[Div[k], z]− 1, k]==0, z++];w = z; z = 2;k = 1; While[k < NN + 1, z = 2; While[EF[Extract[Div[k], z]− 1, k]==0, z++];w = z; z = 2;k = 1; While[k < NN + 1, z = 2; While[EF[Extract[Div[k], z]− 1, k]==0, z++];w = z; z = 2;

While[EG[Extract[Div[k], z]− 1, k] == 0, z++]; Print[F [k], “,”,LCM[Extract[Div[k], w],Extract[Div[k], z]]]; k++]While[EG[Extract[Div[k], z]− 1, k] == 0, z++]; Print[F [k], “,”,LCM[Extract[Div[k], w],Extract[Div[k], z]]]; k++]While[EG[Extract[Div[k], z]− 1, k] == 0, z++]; Print[F [k], “,”,LCM[Extract[Div[k], w],Extract[Div[k], z]]]; k++]

The behaviour of sα,j is very erratic as this sample shows:

Fα,j(t) sα,j
1 + t+ t2 5
1 + t+ t3 63
1 + t2 + t3 63
1 + t+ t4 17
1 + t3 + t4 255
1 + t2 + t5 341
1 + t3 + t5 31

1 + t+ t2 + t3 + t5 33
...

...

...
...

1 + t2 + t3 + t5 + t9 262143
1 + t+ t4 + t5 + t9 513
1 + t+ t3 + t6 + t9 171
1 + t3 + t4 + t6 + t9 511

1 + t+ t2 + t3 + t4 + t6 + t9 513
1 + t2 + t5 + t6 + t9 511
1 + t3 + t5 + t6 + t9 37449

1 + t+ t2 + t3 + t5 + t6 + t9 29127
...

...

Remark 4. The (n × n)-grid V = Fn2

2 has an action of the dihedral group D8, and the map (1) is
D8-equivariant. If we can determine ker fn as D8-representation, then we could analyse the number of
solutions of the Lights Out game up to rotation and symmetry, thereby recovering the sequence in [11].

Acknowledgements. I am very grateful to M. Alekseyev, J. Scherphuis, K. Sutner and G. Navarro for
very useful comments, references and encouragement.
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