ON UNIFORM NON- ℓ_1^n -NESS FOR DIRECT SUMS OF BANACH SPACES

MIKIO KATO SHINSHU UNIVERSITY

Abstract. We shall first discuss the uniform non- ℓ_1^n -ness for the direct sum of Banach spaces X and Y with the norm associated with a convex function ψ on the unit interval. Next, as the extreme cases, the uniform non- ℓ_1^n -ness of the ℓ_1 - and ℓ_{∞} -sums for fintely many Banach spaces will be mentioned.

Let Ψ be the family of all convex functions ψ on [0, 1] satisfying

(1)
$$\psi(0) = \psi(1) = 1 \text{ and } \max\{1 - t, t\} \le \psi(t) \le 1 \ (0 \le t \le 1).$$

For any $\psi \in \Psi$ define

(2)
$$\|(z,w)\|_{\psi} = \begin{cases} (|z|+|w|)\psi\left(\frac{|w|}{|z|+|w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$

Then $\|\cdot\|_{\psi}$ is an absolute normalized norm on \mathbb{C}^2 , that is,

(3)
$$||(z,w)|| = ||(|z|,|w|)||$$
 and $||(1,0)|| = ||(0,1)|| = 1$,

and $\|\cdot\|_{\psi}$ satisfies

(4)
$$\psi(t) = \|(1-t,t)\|_{\psi} \ (0 \le t \le 1).$$

Conversely for any absolute normalized norm $\|\cdot\|$ on \mathbb{C}^2 , let $\psi(t) = \|(1-t,t)\|$ $(0 \le t \le 1)$. Then $\psi \in \Psi$. Thus Ψ and the collection N_a of all absolute normalized norms on \mathbb{C}^2 correspond in a one to one way (Bonsall and Duncan, "Numerical ranges II", 1973).

The ℓ_p -norms $\|\cdot\|_p$ are typical examples of this situation. The convex functions ψ_p corresponding to the ℓ_p -norms are given by

(5)
$$\psi_p(t) = \begin{cases} \{(1-t)^p + t^p\}^{1/p} & \text{if } 1 \le p < \infty \\ \max\{1-t,t\} & \text{if } p = \infty. \end{cases}$$

It is immediate to see that for all $\psi \in \Psi$

 $\|\cdot\|_{\infty} \le \|\cdot\|_{\psi} \le \|\cdot\|_{1}$

The ψ -direct sum $X \oplus_{\psi} Y$ of Banach spaces X and Y is the direct sum $X \oplus Y$ equipped with the norm $||(x, y)||_{\psi} = ||(||x||, ||y||)||_{\psi}$. This extends the notion of the ℓ_p -sum $X \oplus_p Y$.

The key result for this talk is the following (Kato-Saito-Tamura, MIA, 2004): $X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and neither $\psi = \psi_1$ nor $\psi = \psi_{\infty}$, where $\psi_1(t) = 1$ and $\psi_{\infty}(t) = \max\{1 - t, t\}$ are the convex functions corresponding to the ℓ_1 - and ℓ_{∞} -norms, respectively.

This is a joint work with Takayuki Tamura and with Kichi-Suke Saito in part. *E-mail address:* katom@shinshu-u.ac.jp