METRIC ENTROPY AND SMALL DEVIATIONS OF GAUSSIAN PROCESSES

THOMAS KÜHN UNIVERSITÄT LEIPZIG

Abstract. It is well known that a Gaussian measure μ on a separable Banach space E is uniquely determined by its reproducing kernel Hilbert space H_{μ} , which is always compactly embedded into E. In many problems of probability theory and statistics the logarithmic small ball probabilities of μ ,

$$\varphi_{\mu}(\varepsilon) := \log \mu \left(\{ x \in E : ||x|| \le \varepsilon \} \right)$$

play an important role, e.g. in the case when μ is the distribution of a Gaussian process $X = (X_t)_{t \in [0,1]}$ with paths almost surely in $E = L_2[0,1]$ or C[0,1]. Then the small deviation probabilities of the process X,

$$\mathbb{P}\left(\int_0^1 |X_t(\omega)|^2 dt \le \varepsilon^2\right) \quad \text{resp.} \quad \mathbb{P}\left(\sup_{0\le t\le 1} |X_t(\omega)|\le \varepsilon\right),$$

coincide with the small ball probabilities $\mu(\{x \in E : ||x|| \le \varepsilon\})$ of the measure μ .

Kuelbs and Li discovered a tight connection between the logarithmic small ball probabilities $\varphi_{\mu}(\varepsilon)$ and the ε -entropy of the unit ball K of the RKHS H_{μ} , considered as a subset of E, that means the quantities

$$\mathcal{H}_{\varepsilon}(K) := \log_2 \mathcal{N}_{\varepsilon}(K) \,,$$

where $\mathcal{N}_{\varepsilon}(K)$ is the minimal number of ε -balls in E that are required to cover K.

In the talk we illustrate this connection and determine the exact asymptotic rate (as $\varepsilon \to 0$) of the logarithmic small deviation probabilities with respect to L_2 -norm and sup-norm for a family of smooth Gaussian processes. The results are based on joint work with Frank Aurzada, Fuchang Gao, Wenbo Li and Qi-Man Shao.

E-mail address: kuehn@math.uni-leipzig.de