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A. Hardy’s inequality in L1(Rn)

Theorem For all f ∈ C∞0 (Rn)

‖f/| · |‖L1,∞(Rn) ≤ C(1, n)‖∇f‖L1(Rn), (1)

where the optimal constant isC(1, n) = ω1−1/n
n /n, ωn is the volume of the unit

ball and
‖g‖L1,∞(Rn) := sup

t>0
{t meas{x : |g(x| > t}}.

The result is sure to be well-known. It follows from the Sobolev inequality

‖f‖Ln/(n−1) ≤ Cn‖∇f‖L1,

the fact that | · |−1 ∈ Ln,∞ and the “weak”-Holder inequality; the optimal
constant Cn = 1/nω1/n

n .
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B. Hardy’s inequality in L1(Ω)
Hardy’s inequality in Lp(Ω), 1 < p <∞, is∫

Ω

|∇f (x)|pdx ≥ c(n, p,Ω)

∫
Ω

|f (x)|p

δ(x)p
dx, f ∈ C∞0 (Ω),

where δ(x) := dist(x,Rn \ Ω) and if Ω is convex, the optimal constant is

c(n, p,Ω) =

(
p− 1

p

)p

.

Questions

• When p = 1, is there an inequality of the form

‖f/| · |‖L1,∞(Ω) ≤ C(1, n,Ω)‖∇f‖L1(Ω), (2)

subject to some regularity condition on Ω.
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• If there is an inequality (2), what is the optimal constant C(1, n) when Ω is
convex. In this case, can the inequality be extended to one of the form∫

Ω

|∇f (x)|dx ≥ C(1, n)‖{1 + a(δ, ∂Ω)}f/| · |‖L1,∞(Ω) (3)

where a(δ, ∂Ω) depends on δ and geometric properties of the boundary ∂Ω
of Ω.

• Are there rearrangement-invariant spaces closer to L1 than L1,∞ for which
the inequalities (1), (2) and (3) hold.


