NEW CALDERON COUPLES OF LORENTZ SPACES WITH SOME APPLICATIONS

EVGENIY PUSTYLNIK TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

Abstract. We prove that two Lorentz spaces $\Lambda_{\alpha_0}, \Lambda_{\alpha_1}$ form a K-monotone couple if even they are very close or equal to L_1 . This allows us to study the function sets $G = \{f : g(t) = t^{-\theta}(f^{**} - f^*) \in A, f^*(\infty) = 0\}$ for various $\theta \in (0, 1)$ and r.i. spaces A. In particular, we show that if the norms of two r.i. spaces B_1, B_2 are equivalent on the functions g(t), generated by all f from some G, then $B_1 = B_2$. And if A is interpolation in the couple $L_1, \Lambda_{t^{\theta}}$, then the set G becomes linear and normable with the norm $||f||_G \sim ||g||_A$. Moreover, if the space A itself is not interpolation in the couple $L_1, \Lambda_{t^{\theta}}$ and the space \widetilde{A} is its smallest interpolation extension, then the space \widetilde{G} with the norm $||g||_{\widetilde{A}}$ is the smallest r.i. extension of the set G. As a simple example we obtain that the space exp L is the smallest r.i. space containing BMO.

E-mail address: evg@techunix.technion.ac.il

¹⁹⁹¹ Mathematics Subject Classification. 46B70, 46E30.

Key words and phrases. Rearrangement-invariant spaces, interpolation.