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Let p : Ω ⊂ R −→ [1,+∞) be a measurable function on the open set Ω.
Let us denote by Lp(·)(Ω) the Banach space of measurable functions
such that for λ > 0, ∫

Ω

|f(x)/λ|p(x) dx < +∞,

with norm

‖f‖Lp(·) = inf

{
λ > 0 :

∫
Ω

|f(x)/λ|p(x) dx ≤ 1

}
·

Spaces Lp(·)(Ω) are examples of the Musielak-Orlicz spaces.
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Recently, some possible extensions of results concerning classical
operators in harmonic analysis have been studied in the context of
variable exponents. Explicitly, inequalities in norm for an operator T

‖Tf‖Lp(·) ≤ C‖f‖Lp(·),

or inequalities of modular type∫
Ω

(Tf(x))p(x) dx ≤ C

∫
Ω

(f(x))p(x) dx.

In this sense, we can mention:

A. Lerner (2005): modular inequalities for M , the Hardy-Littlewood
maximal operator.

L. Diening (2003): Cruz-Uribe, Fiorenza and Neugebauer (2004),
norm inequalities for M .

Cruz-Uribe, Fiorenza, Martell and Pérez (2006): norm inequalities
for singular integral operators, commutators or fractional integrals.
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Let us consider the Hardy operator

(Sf)(x) =
1

x

∫ x

0

f(t) dt, x > 0.

Weighted norm inequalities for the Hardy operator: Kokilashvili and
Samko (powers weights) (2004) , Edmunds, Kokilashvili and Meshki
(2005).

Sinnamon (2000): shows that, for arbitrary functions, the only
possibility for having a modular inequality for the Hardy operator is
that p is essentially a constant function.

A. Lerner (2005): concludes the same but, in this case, for the
Hardy-Littlewood maximal operator or Calderón-Zygmund singular
integrals.
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I. Aguilar and P. Ortega (2006): weak type inequalities of modular
type for operators of Hardy type:

∫
{x∈A: Tf(x)>λ}

w(x) dx ≤
∫
A

(
K |f(x)|

λ

)p(x)

w(x) dx,

being T an operator of Hardy type, A ⊂ R, K > 0 and f an
arbitrary measurable function.
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In our work (JMAA (2008)), the main purpose was to characterize the
weights w for which the following modular inequality holds for the Hardy
operator restricted to decreasing functions,

∫ +∞

0

(Sf(x))p(x) w(x) dx ≤ C

∫ +∞

0

(f(x))p(x) w(x) dx, (1)

for some positive constant C and f decreasing.

If p is constant, the theory of Ariño and Muckenhoupt prove that (1) is
equivalent to the Bp condition for the weight w; that is, the existence of
some constant C > 0 such that, for r > 0,

∫ +∞

r

( r

x

)p

w(x) dx ≤ C

∫ r

0

w(x) dx. Bp condition
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Given p : R+ −→ R
+ such that 0 < p− ≤ p+ < +∞ and w a weight in

(0,+∞), let us define the local oscillation of p as

ϕp(·),w(δ) = sup
x∈(0,δ)∩supp w

p(x)− inf
x∈(0,δ)∩supp w

p(x).

We observe that ϕp(·),w is an increasing and positive function such that

lim
δ→∞

ϕp(·),w(δ) = p+w − p−w ,

where p−w and p+w denote the infimum and essential supremum,
respectively, of p on the support of w.
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THEOREM.

Let w be a weight in (0,∞) and p : R+ −→ R
+ such that

0 < p− ≤ p+ < +∞, let us suppose ϕp(·),w(0+) = 0. The following facts
are equivalent:

(a) There exists C > 0 such that, for every f positive and decreasing:

∫ +∞

0

(Sf(x))p(x) w(x) dx ≤ C

∫ +∞

0

(f(x))p(x) w(x) dx.

(b) For every r, s > 0

∫ +∞

r

( r

sx

)p(x)

w(x) dx ≤ C

∫ r

0

w(x)

sp(x)
dx. (2)

(c) p|supp w ≡ p0 a.e. and w ∈ Bp0 .
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REMARKS.

The condition ϕp(·),w(0+) = 0 in the previous theorem is only
necessary to prove (c) from (2).

For w verifying (2), the behavior at the origin of ϕp(·),w is
independent of w, since the support must contain a zero
neighborhood.

ϕp(·),w(0+) = 0 holds, if p belongs to Lip-α, 0 < α ≤ 1, in a zero
neighborhood.

Due to the lack of homogeneity in the modular inequality, in
condition Bp(·) the second parameter s must be introduced.
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Implicit in the proof of last theorem, we obtain the following.

COROLLARY.

Let w be a weight in the Bp(·) class, the function ϕp(·),w must be
constant.

It is false that the modular inequality holds exclusively for constant
exponents without the hypothesis ϕp(·),w(0+) = 0.
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EXAMPLE.
Let us consider the exponent p(x) restricted to the interval (0, 1]:

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p+ for x ∈ A :=
∞⋃
k=0

(
1

22k+1
,
1

22k

]

p− for x ∈ B :=

∞⋃
k=1

(
1

22k
,

1

22k−1

]
,

where 1 < p− < p+ < +∞, and the weight w(x) = χ(0,1)(x), for f a
decreasing function, we have the corresponding strong modular inequality∫ 1

0

(Sf(x))p(x) dx ≤ C

∫ 1

0

(f(x))p(x) dx.
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As it happens in the case of constant exponents, we can prove that the
modular inequality implies a Bp(·)−ε condition for some ε > 0.

PROPOSITION.

Let p : R+ −→ R
+ such that 1 ≤ p− ≤ p+ < +∞ and w a weight for

which the modular inequality holds. Then, for some ε > 0, w ∈ Bp(·)−ε.
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Last proposition represents an improvement of the main theorem due to
the following result that proves the following inclusion relations between
weights in Bp(·):
PROPOSITION.
Given p : R+ −→ R

+ such that 0 < p− ≤ p+ < +∞ and δ > 0, then:

(i) Bp(·) � Bp(·)+δ.

(ii) Bδp(·) � Bp(·), for δ ≤ 1.

REMARK.
In general, inclusion Bp(·) � Bq(·) is false for p(x) ≤ q(x) a.e x > 0.
Let us consider w ≡ 1 ∈ Bp if p > 1, and q(x) ≥ p such that the
corresponding function ϕq(·) don’t be constant in (0,+∞).
for example q(x) = pχ(0,1) + 2pχ(1,+∞)
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We look for conditions on p(·) and in w to verify when it is true that

sup
r>0

∫ r

0

(Sf(r))p(x) w(x) dx ≤ C

∫ +∞

0

(f(x))p(x) w(x) dx. (3)

for every non-increasing f in [0,∞).

For p(·) constant, inequality (3) becomes in

sup
r>0

(Sf(r))pW (r) dx ≤ C

∫ +∞

0

(f(x))p w(x) dx. (4)
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Neugebauer (1991) proved that the class of weights for which (4)
holds is exactly Bp in the case 1 < p < ∞.

In the case 0 < p ≤ 1, Carro and Soria (1993) proved that the class
of weights that characterize (4) is the class Rp, that is, those for
which there exists C > 0 such that if 0 < r < t < +∞

1

tp

∫ t

0

w(x) dx ≤ C
1

rp

∫ r

0

w(x) dx. Rp condition
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THEOREM.(B., Soria) to appear in REMC

Let w a weight in (0,∞) and p : R+ −→ R
+ such that 0 < p− ≤ p+ ≤ 1,

let us suppose that ϕp(·),w(0+) = 0. They are equivalent:

(a) There exists C > 0 such that, for each non-increasing and positive f :

sup
r>0

∫ r

0

(Sf(r))p(x) w(x) dx ≤ C

∫ +∞

0

(f(x))p(x) w(x) dx. Wp(·)

(b) For all 0 < t < r, s > 0

∫ r

0

(
st

r

)p(x)

w(x) dx ≤ C

∫ t

0

sp(x) w(x) dx. Rp(·)

(c) p|supp w ≡ p0 a.e. and then w ∈ Rp0 .

Modular and norm inequalities



Preliminaries
Modular strong type inequalities
Modular weak type inequalities

Weighted norm inequalities

Modular weak type inequalities

Let us define the class Wp(·) consisting of all weights satisfying the weak
modular inequality and Rp(·) the class consisting of all weights verifying
the restricted weak modular inequality.

REMARK. Looking at the proof of the previous theorem, we conclude
that condition ϕp(·),w(0+) = 0 implies, without any restriction in the
exponent, that for w satisfying Rp(·), the exponent p(·) must be constant.

THEOREM.

If a weight is w ∈ Wp(·) and the exponent p(·) satisfies that p− > 1 then
w ∈ Bp(·).
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COROLLARY.

If w ∈ Wp(·), the exponent p(·) verifies that p− > 1 and ϕp(·)(0+) = 0
then p(·) ≡ p0 and w ∈ Bp0 .

The previous corollary together with the previous remark led us to
conclude that for exponents such that ϕp(·)(0+) = 0, if there weights
satisfying Wp(·) then necessarily p(·) ≡ p0 and then,

If p0 ≤ 1, w ∈ Rp0

If p0 > 1, w ∈ Bp0 .

It is false that the weak modular inequality holds exclusively for constant
exponents without the hypothesis ϕp(·),w(0+) = 0.
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EXAMPLE.
Let us consider the exponent p(x) restricted to the interval (0, 1]:

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p+ for x ∈ A :=
∞⋃
k=0

(
1

22k+1
,
1

22k

]

p− for x ∈ B :=

∞⋃
k=1

(
1

22k
,

1

22k−1

]
,

where 1 ≤ p− < p+ < +∞, and the weight w(x) = χ(0,1)(x). for f a
decreasing function, the corresponding weak type inequality holds

sup
0<r<1

∫ r

0

(Sf(r))p(x) dx ≤ C

∫ 1

0

(f(x))p(x) dx.
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The following proposition proves the connection between conditions
Rp(·) and Bp(·):

PROPOSITION.

Let w ∈ Rp(·) then, for δ > 0, w ∈ Bp(·)+δ.
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C.J. Neugebauer (2009), defines the Bp(·) class as∫ +∞

r

( r

x

)p(x)

w(x) dx ≤ C

∫ r

0

w(x) dx. (5)

Let 1 ≤ p(x) ≤ p+ < ∞ and p(x) INCREASING, then, w belongs to the
Bp(·) class given by (5) if and only if the modular inequality (1) holds for
each f nondecreasing such that f(0+) ≤ 1. Moreover, these two
conditions are both equivalents to the following: for every 0 < γ ≤ 1
there exists 1 ≤ cγ < ∞ such that

‖Sf‖p(x),σw ≤ cγ ‖f‖p(x),σw
for every f decreasing with f(0+) ≤ 1, and all 0 < σ < ∞ for which
‖f‖p(x),σw ≥ γ.
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In contrast with Neugebauer’s result, we have proved, in the case of very
simple non-constant exponents that can be INCREASING or
DECREASING, a characterization of the weights for which a norm
inequality holds for the Hardy operator with no restrictions on the class
of non-decreasing functions.

PROPOSITION.

Let p(x) = 2p0χ(0,1)(x) + p0χ(1,+∞)(x), 1 < p0 < +∞, the norm
inequality

‖Sf‖p(x),w ≤ C‖f‖p(x),w, (6)

with C > 0, independent of f decreasing, holds if and only if:

i) wχ(0,1) ∈ B2p0 .

ii)

∫ +∞

r

( r

x

)p0

w(x) dx ≤ C

∫ r

0

w(x) dx,

for some C > 0 and all r > 1.
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‖f‖p0

p(·),w 

∫ +∞

1

fp0(x)w(x)dx +

√(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

f2p0(x)w(x)dx.
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We have to prove

(∫ +∞

1

(Sf)p0(x)w(x)dx

)2

≤
(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

f2p0(x)w(x)dx.

(7)
and∫ 1

0

(Sf)2p0(x)w(x)dx ≤
(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

f2p0(x)w(x)dx.

(8)
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Since if f is decreasing, (8) is equivalent to

∫ 1

0

(Sf)2p0(x)w(x)dx ≤
∫ 1

0

f2p0(x)w(x)dx

that it turns out to be equivalent to wχ(0,1) ∈ B2p0 .
On the other hand, writing explicitly Sf in (7), that is equivalent to

(∫ 1

0

f(x)dx

)2p0 (∫ +∞

1

w(x)

xp0
dx

)2

≤
(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

f2p0 (x)w(x)dx,

(9)
and

(∫ +∞

1

(∫ x

1

f(s)ds

)p0 w(x)

xp0
dx

)2

≤
(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

f2p0(x)w(x)dx.

(10)
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Since f is non-increasing, if we assume
∫ +∞
1

w(x)
xp0

dx < +∞, inequality
(9) can be expressed as an inclusion between Lorentz spaces
Λ2p0(wχ(0,1)) ↪→ Λ1(χ(0,1)) which is satisfied if wχ(0,1) ∈ B2p0 (Sawyer
(1990)).

Finally, to ensure that (10) holds it is equivalent to restrict the inequality
to a decreasing function f with f(x) ≡ 1, 0 < x ≤ 1, i.e.

(∫ +∞

1

(∫ x

1

f(s)ds

)p0 w(x)

xp0
dx

)2

≤
(∫ +∞

1

fp0(x)w(x)dx

)2

+

∫ 1

0

w(x)dx.

(11)
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Applying the inequality to χ(0,r) with r > 1 the following necessary
condition is obtained to ensure (11)

∫ +∞

r

( r

x

)p0

w(x) dx ≤
∫ r

0

w(x) dx, with r > 1.

The proof ends checking that this condition is also enough.
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