


2nd International Workshop on Interpolation Theory, Function Spaces and Related
Topics, SANTIAGO DE COMPOSTELA, Spain 2011.

Estimates for covering numbers in

Schauder’s theorem about adjoints of
compact operators .

Michael Cwikel
Technion — Israel Institute of Technology, Haifa

http://www.math.technion.ac.il/ mcwikel/ compact



2nd International Workshop on Interpolation Theory, Function Spaces and Related
Topics, SANTIAGO DE COMPOSTELA, Spain 2011.

Estimates for covering numbers in

Schauder’s theorem about adjoints of
compact operators .

Michael Cwikel
Technion — Israel Institute of Technology, Haifa

http://www.math.technion.ac.il/ mcwikel/compact



2nd International Workshop on Interpolation Theory, Function Spaces and Related
Topics, SANTIAGO DE COMPOSTELA, Spain 2011..

Estimates for covering numbers in

Schauder’s theorem about adjoints of
compact operators .

Michael Cwikel
Technion — Israel Institute of Technology, Haifa

http://www.math.technion.ac.il/ mcwikel/bmo
Joint work with Eliahu Levy

BUT | WILL ALSO REPORT HERE ON TWO OTHER RECENT
RESEARCH PROJECTS



2nd International Workshop on Interpolation Theory, Function Spaces and Related
Topics, SANTIAGO DE COMPOSTELA, Spain 2011..

Interpolation of cocompact
imbeddings.

Michael Cwikel
Technion — Israel Institute of Technology, Haifa

http://www.math.technion.ac.il/ “mcwikel

Joint work with Kyril Tintarev



2nd International Workshop on Interpolation Theory, Function Spaces and Related
Topics, SANTIAGO DE COMPOSTELA, Spain 2011..

CALDERON COUPLES OF
p-CONVEXIFIED

BANACH LATTICES

Eliran Avni

Technion — Israel Institute of Technology, Haifa

arXiv:1107.3238



FIRST SOME DETAILS ABOUT ELIRAN'S WORK.

Let Xp, X1 be Banach lattices of measurable functions on some

measure space (Q, X, u).

They automatically form a Banach couple. Suppose they are also a

Calderén couple.

Can we manufacture a new Calderén couple from (Xp, X1)?

Recall, for every Banach lattice X and every p € [1,00), the

p-convexification of X is the space X(P) of all measurable

functions f : Q — R such that |f|P € X. It is also a Banach lattice,
1

normed by [|fx = IIIf17]1X”.

Example: Of course (Ll)(p) = LP.

Conjecture: If (Xo, X1) is a Calderén couple of Banach lattices,

then so is (Xép),Xl(p)).



Conjecture: If (Xp, X1) is a Calderén couple of Banach lattices,
then so is <Xép),X1(p) .

Theorem (Eliran Avni): If (Xp, X1) is a positive Calderén couple of
Banach lattices, then so is (Xép),Xl(p)).

(Preliminary version for sequence spaces.)
Definition: A couple of Banach lattices (Xo, X1) is a positive
Calderdn couple if, for every non negative f, g € Xg + X1 such that

K(t,g; Xo, X1) < K(t, f; Xo, X1) for all t >0,

there exists a bounded positive linear positive operator
T : (Xo, X1) — (Xo, X1) such that Tf = g.



In view of Eliran’s result, and the result about another new
Calderon couple which Evgeniy presented in his very attractive talk
yesterday, let me show you the building where we create all these
Calderon couples.

Let me also recall our very recent conference in that building,
celebrating Evgeniy's research and teaching over a 50 year period. |
would like to think of this conference as also being, in some way, a
kind of continuation of that celebration.



mg Center for Mathematical Sciences

Functional Analysis

A conference in honour of Evgeniy Pustylnik

We will meet at the Technion to mark and celebrate 50 years
of Evgeniy's inspiring research and teaching.

The main events will be on Thursday May 19, 2011,

with some additional activities on May 18 and 20.

List of speakers:

Jonathan Srazy, University of Haifa
el Benidrest Tackhrmiom



You saw and heard Evgeniy in action yesterday. Here he is, similarly
inspiring his students at the Technion just a few weeks ago.




And here he is at the very beginning of that career whose 50th
anniversary was recently marked.




Remark: Yesterday when Evgeniy mentioned the useful role of
ultrasymmetric spaces in various problems that he and other
mathematicians are considering, he modestly omitted to mention
that those spaces are his creation.

Now to my next topic:
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A rather general Arzela-Ascoli-Schauder theorem.

The following theorem contains the classical theorems of
Arzela-Ascoli and of Schauder. It can be considered as a special
case of considerably more abstract results presented in a paper by
Robert G. Bartle;; and which have their roots in earlier work of R.
S. Phillips, Smulian and Kakutani.

A very nice and simple and different proof of it has been given by
Eliahu Levy.

This theorem is the tool for “dualizing” in my proof that

(x, ) » (Lattice Couple with Fatou property or order continuity).



Theorem 1. Let A and B betwo setsand let h: Ax B— C bea
function with the properties that

sup |h(a, b)| < oo for each fixed b € B, and
acA

sup |h(a, b)| < oo for each fixed a € A.

beB
Define da(a1, a2) := suppep |h(a1, b) — h(az, b)| for each pair of
elements a; and a» in A.
Define dg(b1, bp) = sup,ca |h(a, b1) — h(a, b2)| for each pair of
elements b; and b in B.
Then

(A, da) and (B, dg) are semimetric spaces

(Well, that's obvious.)
and

(A, da) is totally bounded if and only if (B, dg) is totally bounded.



By using the ideas of Eliahu Levy's proof we can get a quantitative
version of the previous theorem.

For each € > 0 let Na(e€) be the minimum number of da balls of
radius € required to cover A, and let Ng(€) be the minimum
number of dg balls of radius € required to cover B. We can find

estimates connecting these two quantities.

If Na(e) < oo then Np(p) < oo for each p > 2¢, and we can
obtain an upper bound for Ng(p) depending only on p and the
quantity sup,ca peg |h(a, b)| == C.

In fact
C Na(e)

If Ais an absolutely convex subset of a linear space V' over the
reals and if the semimetric da is given by da(a1, a2) = p(a1 — a2)
for some seminorm p on V, then

NA(E)
ey < (2140)



ESTIMATES FOR COVERING NUMBERS IN SCHAUDER’S
THEOREM ABOUT ADJOINTS OF COMPACT OPERATORS
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Theorem 1. Let A and B be two sets and let h : A x B — C be a function with
the properties that

(0.1) sup |h(a, b)| < oo for each fired b € B, and
asA
(0.2) sup |hi(a, b)| < oo for cach fived a € A.
beB

Define da(ay, az) == supycg |h(a1, b) — hias, b)| for each pair of elements a1 and ay
in A.

Define dp(by.ba) = sup,c 4 |A(a. by) — h{a.b2)| for each pair of elements by and by
in B.

Then {obviously!)
(0.3) (A,da) and (B,dg) are semimetric spaces
and (not so obviously)

(0.4) (A, da) is totally bounded if and only if (B,dg) is totally bounded.



Two slightly different covering numbers
Let (E,d) be a semimetric space.
For each € > 0, the intrinsic covering number Ng(¢) is the least positive integer
n for which there exists a finite subset F' C E of cardinality n such that

(0.5) mind(x,y) < e for each x € E,
yeF

i.e., Ng(€) is the smallest n such that F is contained in some union of n closed balls
of radius € with centres in £
(Relevant for applications to (quantitative!) Schauder’s theorem.)
For each subset & of E we define the diameter of G to (of coursel) be the quantity

diam(G) = sup d(x,y).

T,yeGG

For each each ¢ > 0 we define the diameter covering number N2 (c) to be the
smallest positive integer n for which there exist n subsets £y, Fo, ..., Iy of I,
each having diameter not exceeding 2¢ and for which E C U;l:l E;.



By the triangle inequality

Ng(2¢) < N2 (e) < Ngle) for all € = 0,
Both of these inequalities can be strict. We can even sometimes have Ng(2¢) = 1
when N2 (¢) = oc.
Various results here are obtained in terms of the covering numbers Nﬁi’; . (€) for
n=1and n = 2, where B~ is the closed euclidean unit ball of R"™.
For n =1, i.e., where By, is the closed interval [—1,1], it is a trivial to show that

‘N[él.l](E) = Np1(e) = E-‘ .

(Standard notation: For each t € R we let [t] denote the smallest integer which
dominates ¢. This is the “ceiling function™.)

But, analogously, for n = 2, what is the minimal number of disks of radius ¢ needed
to cover the unit disk??? “Hexagonal packing” seems? to be the best strategy for
finding this???
























Theorem 2. Let A and B be two sets and let h : A x B — C be a function with
the properties stated in Theorem 1. Let dy and dg be the semimetrics defined on
A and B respectively, as in Theorem 1.

Suppose that the intrinsic covering number Na(€) is finite for some € > 0. Then
(i) The quantity C' = sup, o, yop |1(a. b)| is also finite.

(ii) The diameter covering number N5 (p) is finite for each p > .

(EXAMPLES SHOW THAT THIS CANNOT BE WEAKENED TO p > ¢.)

(iii) Furthermore,

/30 2N 4 (€)
(0.6) Ng(c+d) < (’V 5 ‘D for each 8 >0,
and, if h is real valued, the following stronger estimate also holds.
o Nale)
(0.7) NEg(e+44d) < ([—J) for each 6 > 0.
i

(EXAMPLES SHOW THAT THIS ESTIMATE IS BEST POSSIBLE.)
(iv) By syminetry, the roles of A and B can be interchanged and so exactly analogous
estimates hold for N§ (e +8) in terms of Np(e).



((Note that in this theorem we do not make any “compactness” or
“total boundedness” assumptions about (A,d,4) or (B.dg). ))



Here is the obvious simplest way that we can apply Theorem 2.
A quantitative version of Schauder’s theorem:



Let X and Y be Banach spaces and let Bx and By be the closed unit balls of X
and Y respectively.

Let T: X — Y be a bounded linear operator with adjoint 7% : Y* — X,

Take A = Bx and B = By« and choose h({a,b) = b(Ta) = (T*b) (a).

So dy(ay.az) = |Tay —Tas|ly and dp(by, ba) = ||T*hy — T by|| .



Let X and ¥ be Banach spaces and let Bx and By - be the closed unit balls of X
and Y respectively.
Let T: X — Y be a bounded linear operator with adjoint 7% : Y* — X,
Take A = Bx and B = By« and choose h({a,b) = b(Ta) = (T*b) (a).
So dy(ay.az) = |Tay —Tas|ly and dg(by, ba) = || T*hy — T ba|| .
What are N4(¢) and N5 (¢) ete. in this context?



Let X and Y be Banach spaces and let Bx and By - be the closed unit balls of X
and Y respectively.
Let T: X — Y be a bounded linear operator with adjoint 7% : Y* — X,
Take A = Bx and B = By« and choose h{a,b) = b(Ta) = (T*b) (a).
So dy(ay.az) = |Tay —Tas|ly and dg(by.ba) = ||T*by — Tba|| -

What are N4(¢) and N5 (¢) ete. in this context?
For each € > 0 let Ny(¢) denote the least number of closed balls in ¥ of radius €
with centres in T (By) which are required to cover the set T (Bx), and let N2 (e)
denote the least number of subsets of ¥ each with Y-norm diameter not exceeding
2¢ which are required to cover T (Bx).
Analogously, let Nyp.(€) denote the least number of closed balls in X™* of radius
e with centres in 7% (By+) which are required to cover the set T* (By«) and let
NA, (€) denote the least number of subsets of X* each with X *-norm diameter not
exceeding 2¢ which are required to cover T* (By).



Corollary 3. Suppose that Nz (€) is finite for some particular € > 0. Then N2 (p)
is finite for all p > € and the estimate

— 2N7(e)
. i V2|T|lx_y
(0.8) Np(e+48) < U%D

holds for all 5 > 0.
If X and Y are real Banach spaces, then this estimate can be sharpened to

(0.9) NA(e46) < U”T“%W )NT(EJ .

FEurthermore, if Nr-(¢) is finite for some e > 0, then N2 (p) is finite for all p > ¢
and the quantity N2 (e45) can be estimated in terms of Nr-(€) via formulae exactly
analogous to (0.8) and (0.9), where T and T* are interchanged.



Apparently other results will give much better estimates than (0.8) and (0.9).

But here is a slightly more subtle variant of Corollary 3 for which, in some cases,
our estimates are best possible.

With the perspective of Theorem 2 we can see that it may be just as appropriate
and just as easy to work with the covering numbers of certain “significant” subsets
of T (Bx) and of T* (By-), instead of working with the covering numbers of these
sets themselves.

We will obtain new versions of the estimates (0.8) and (0.9) for N2 (e + §), which
are stronger in the sense that the number Ny (e€) is replaced by a smaller, in some
cases very much smaller number, which is the covering nmumber of a suitable subset
K of T (Bx).

Similarly the estimates for N2 (e 4 ), which were stated implicitly in Corollary
3, can be replaced by stronger results where Np-«(ec) is replaced by the covering
number of a suitable subset K'* of T* (By+).



Corollary 4. Let X, Y, T, N2(¢), and N2, () all be as specified in the statement
of Corellary 3.

Let K be a “norming” subset of T(Bx), i.e., a subset with the property that

(0.10) sup{|[{u,y}| 1w e K} =sup{|{u,y}| 1w € T(Bx)} for eachy Y™,
Analogously, let K™ be a subset of T (By+) with the property that

(0.11)  sup{[{z.v)|:v e K"} =sup{|[{z.v)| : v € T*(By+)} for each x € X .
For each € > 0 let N[IV. €] be the least number of closed balls in' Y of radius e with
centres in K which are required to cover the set K.

Analogously, let N[K*, €| denote the least number of closed balls in X* of radius ¢
with centres in K* which are required to cover the set K™,



Suppose that N[K, €] is finite for some particular ¢ > 0,
Then N2 (p) is finite for all p > € and the estimate

= 2N [K €]
ATA . V2|Tx_y
(0.12) Np(e+4d) < ([f .

holds for all & > 0.
If X and Y are real Banach spaces then this estimate can be sharpened to

N[# ]
(0.13) NA.(e46) < G”T“%D . (BEST POSSIBLE)
i



Analogously,
Suppose that N[K*. €] is finite for some particular € > (.
Then N2 (p) is finite for all p > € and the estimate

BT IN[K " ]
(0.14) NA(e+0) < GMD

0

holds for all & > 0.
If X and Y are real Banach spaces then this estimate can be sharpened to

1Tl x—y

NK* ]
: D ..(BEST POSSIBLE!)
i

(0.15)  NPA(e+0) < U



Obviously Corollary 3 is nothing more than a special case of Corollary 4 since of
course the sets K =T (By) and I* = T* (By+) satisfy (0.10) and (0.11).

But it seems better and clearer to have begun this discussion by stating that special
case separately.



Here is a natural example of a choice of K which satisfies (0.10) and for which
N[K €] is very significantly smaller than Ny (e).

Fix n € N, Let X and Y both be R equipped with the ¢* norm, and let T be the
identity operator on R™.

Let K be the subset of By which consists of the n points ¢; for j = 1.2.....n, where
1 =1(1,0,0,....,0), e2 = (0,1,0,0,.....0), ..., &, = (0,0.....,0,1).

Of course Np(e) is arbitrarily large for small values of e. But N[K, €] = n for all ¢
in the range 0 < ¢ < 1,

Of course in (0.10) we take {-,-} to be the usual inner product on R™, and so X*
and Y* are both R" equipped with the £*° norm.

Clearly (0.10) holds here since, for each y € R™, both sides of (0.10) equal ||y,
This example can be used to show that the estimate (0.13)

N[K €]
cny ([Mims])™
(

is best possible for certain values of the numbers € and 4, and in fact for infinitely
many such values, which can be taken arbitrarily small.

Now we get to the third and final topic of my talk.
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Before describing my results with Kyril it seems important to give
you an overview of the general topic of co-compactness.

Here is a motivating example:



An important Sobolev embedding

Let DLP(RN) or WHP(RN) for N > p denote the space which is
the completion of C§® in the norm

ull = ( / Wu|f’dx> :
RN

Consider this Sobolev embedding on RV:

(+) DL2(RN) = W12 (RN> c L2 (RM)

where 2*:% and N > 2.

(The square of the norm in DY2(RN) is the quadratic form of the
Laplacian, measures kinetic energy in quantum mechanics, or the
energy of an electric field in electrodynamics, or thermodynamic
energy etc.)

Is there an optimal function for this embedding?



Consider this Sobolev embedding on R":

(+) DL2RN) = W12 (RN> c L2 (RV)

where 2*:,6—’_\/2 and N > 2.

(The square of the norm in D¥?(RN) is the quadratic form of the
Laplacian, measures kinetic energy in quantum mechanics, or the
energy of an electric field in electrodynamics, or thermodynamic
energy etc.)

Is there an optimal function for this embedding?

Help!! The embedding (*) is not compact !

But there are ways to overcome that.



The standard bubble (or instanton)

If there is a minimizer for this variational problem (on RV with
N > 2)

Sy = inf / |V ul?dx

JluPP" dx=1 /RN

then it will also be the optimal function that we are looking for.
The constant Sy is positive, since the space D2(RN), is
continuously imbedded into L2"(RN).
A solution of the Euler-Lagrange equation for the minimizer was

found in 1931 by Bliss. It is w(x) = — S with a suitable
1+[x[2) "2~

normalization constant Cy (the “standard bubble”). But the
question if the problem has a minimizer (w does not have to be
one) remained open. The main technical difficulties for answering
this are that,

(i) while the gradient norm is weakly lower semicontinuous, the
functional [ |u[>"dx is not weakly continuous anywhere, and

(ii) the embedding DY2(RN) < [2"(RN) is not compact.

In 1976 G. Talenti proved existence of minimizers for this problem.



Existence of minimizers
Tools for a (streamlined) proof of Talenti's existence result:
1) A standard (P6lya-Szegs) rearrangement argument that reduces
the problem to the radial subspace D:;ﬁ(RN).
2) The Brezis-Lieb lemma: Whenever vy — u weakly in LP and
also pointwise a.e., then

(BL) /\ukv’:/\u|P+/yuk—uyP+o(1).

3) The following property: “CO-COMPACTNESS OF
EMBEDDING":
Let uy € Difi(RN). If for every sequence {ji }ken C Z, the

N-2; ;
sequence {2 z Jk uk(2ka)}k N weakly converges to zero, then
€

{uk}en converges to zero in L2” norm.

In other words: Weak convergence of uy alone does not suffice for
the L -convergence. (The embedding Dg;i(]RN) < [?"is not
compact).

But weak convergence of the sequence under arbitrary rescalings,
ur(x) — 237k u(2xx) does suffice.



The existence proof

Let {u},cn be @ minimizing sequence. Without loss of generality
assume that it is weakly convergent to some u # 0.
Indeed, for any sequence ji € Z, the sequence

N-2; ; . . .
{2 2 Jkuk(2ka)} is also a minimizing sequence. However, if
keN

any such sequence converges weakly to zero, then ux — 0 in L%
and thus it is not a minimizing sequence.

Let [|u[?* =t € (0,1]. Then, by the Brezis-Lieb lemma,

[|ug — ul?* =1—t+o(1). At the same time,

Sw = [ IVakl2 + 0(1) = [ [Vul + [ [V(u— w2 + o(1) <
5/\/1’2/2* + S/\/(]. — t)2/2* + O(l).

This inequality holds only if t = 1, which implies that v is a
minimizer.  [J



Definition of co-compact embedding

What will it mean to say that the Banach space A is co-compactly
embedded into the Banach space B?

First we need to choose a suitable group G of isometries of A.

(In the previous example G was the a discrete subgroup of the
group of normalized dilations.)

Then we have to define the notion of G-weak convergence in A.
DEFINITION: The sequence {u,} oy is G-weakly convergent to 0
if g u, converges weakly to 0 for EVERY choice of g, € G.
DEFINITION: Suppose A C B continuously. Then this embedding
is G-cocompact if every G-weakly convergent sequence in A is
norm convergent in B.

EXAMPLE: If G = {normalized dilations} then the embedding

DL2(RN) ¢ L2"(RN) is G-cocompact.

Terry Tao has introduced the notion of “intermediate metric”,
closely related to G-weak convergence, and discusses this and
“concentration compactness” (essentially co-compactness) in his
blog.
http://terrytao.wordpress.com/2008/11/05/concentration-
compactness-and-the-profile-decomposition/
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Some more examples: Known cocompact embeddings

» Every compact embedding is G-cocompact for the group
G = {Id} and therefore also for any larger group.

» The embedding ¢2(Z) < ¢°°(Z) is G-cocompact when G is
the group of shifts by Z.

» C(R) is G-cocompactly embedded into itself when G is the
group of shifts by R. (Easy exercise.)

» Any Hilbert space H is G-cocompactly embedded into itself if
G is the group of all unitary operators on H.

All of the above are easy exercises.
Now to hard analysis.....



Some more “serious’ cocompact embeddings

» The subcritical Sobolev embeddings
pN

WkP(RNY — LYRN), N > k =T
(R™) <= LYRT), N> kp, p<qg<p N ko’

are cocompact with respect to shifts by ZN. (Essentially, this
was proved already by Lieb in 1982 for k = 1). This property,
(cf. Talenti's result above) is used in variational problems
involving semilinear elliptic equations.

> The critical Sobolev imbedding D*P(RN) — LP"(RN) is
G-cocompact where G is the product group of shifts by RV
and (discrete) normalised dilations. (Normalized dilations are
the maps h; defined for each fixed t > 0 by
heu(x) =t 7 u(tx).)

» Sobolev imbeddings involving the Laplace-Beltrami operator
on a complete Riemannian manifold M are cocompact with
respect to isometries of the manifold, if M is cocompact (in
the “classical” sense of an infinite egg carton.)



A cocompactness result of Terence Tao

Terence Tao, A pseudoconformal compactification of the nonlinear
Schrédinger equation and applications.

New York J. Math. 15 (2009) 265-282.

The Strichartz embedding (related to the time dependent
Schrédinger equation for a free particle)

2N +2
N )
is G-cocompact where G is a product of operator groups of

normalized dilations, space shifts, “time shifts”
(0(€) — e™EPa(¢), 7 € R), and Fourier variable shifts”.

it
le"Cull Lagrneny < Clull2emy, g =



The terminology cocompactness was not used in the original
formulation of these results. They were obtained and studied within
the framework of “concentration compactness”, a collection of
methods for dealing with problems arising in PDE where the
relevant embedding is not compact.



Profile decomposition

In presence of a cocompact imbedding, the defect of compactness
(difference between the sequence and its limit) admits a rather rigid
structure, often called a profile decomposition.

In a very particular special case this was shown by Struwe in 1984.
(“Global compactness”).

Subsequently, descriptions of profile decompositions for bounded
sequences in Sobolev spaces were given by P.-L. Lions, 1987
(subcritical case), and by Solimini, 1995 (critical case).

In general Hilbert space H a profile decomposition theorem was
produced by Schindler and Tintarev, 2002.

One can think of the investigations of profile decompositions as an
attempt to capture some of the features of the Banach-Alaoglu
theorem in a more general setting.

Now | shall briefly describe some features of my paper with Kyril.
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Our main theorem deals with persistence of cocompactness for interpo-
lated spaces. 1t can be considered as a sort of counterpart to results about
persistence of compactness for operators mapping between “real method”
or “complex method” interpolation spaces, in particular obtained by Alberto
Calderdn and by Arne Persson, in which hypotheses having a partial analogy
with the hypotheses of our main theorem are imposed.

Remark 0.1. Note however that the compactness results of Calderén and
Persson were subsequently found to also hold without these kinds of hy-
potheses and /or under other alternative hypotheses. An analogous complete
removal of additional conditions in the case of cocompactness would mean
that persistence of cocompactness under interpolation holds for all choices
of the group ', which remains an open question. A negative answer to it
would not surprise us.



As examples of applications of our main theorem, we prove the cocom-
pactness of classical Peetre imbeddings of inhomogeneous Sobolev spaces
with fractional indices of smoothness into L¥spaces, relative to the group
G = Dgw of shifts v +— u(- — y). Analogous results for imbeddings of Besov
spaces are also given.



1. STATEMENTS OF THE MAIN RESULTS

In all that follows, whenever we deal with Banach spaces, whose elements
are functions u : BRY — C and whose norms are translation invariant, we
will always choose the group & in our defintions of G-weak convergence and
G-cocompactness to be the set of lattice shifts. In other words, we take

G =Dgn = {-qy}yEZN where gyu = u(- —y) . (1.1)

Whenever we deal here with a Banach couple (Ap, A1) we will always

associate a group G to that couple, and the elements g of G will always be
assumed to be linear operators g :Ag + A3 — Ap + Ay, such that

g(A;) T Aj and g: A; — A; is an isometry for j =0.1. (1.2)

Lemma. Let (Ag, A1) be a Banach couple and let G be a group of linear
maps g @ Ag + Ay — Ag + Ay satisfying (1.2). Then each g € G s also an
isometry on Ao+ A1. Moreover, for every p € [1,o0), 8 € (0,1), the restric-
tion of g to (Ao, A1)ep, respectively [Aa, Ai]e, is an isometry on (Ao, A1)op,
respectively [An. Aila.



Proof. This follows immediately from the basic interpolation properties of
the spaces (Ap. A1)y, and [Ag, A1], and A + A; applied for the operators
g and g1, (|

We now introduce a definition of an operator family whose properties
(i) and (ii) below are reminiscent of various conditions imposed to obtain
interpolation of compactness by Alberto Calderén and by Arne Persson.
As we shall see below, the standard mollifiers in Sobolev spaces, equipped
with lattice shifts, are an example of a family of operators M, satisfying the
definition.



Definition 1.1. Let (Ap, A1) be a Banach couples with A; continuously
imbedded in Ay and let G be a group of linear operators g : Ay + 47 —
Ap + Ay which satisfies (1.2). Let Ajbe continuously imbedded into some
Banach space B;. A family of bounded operators { M; }¢(0,1) from Ap to Ay
is said to be a family of G-covariant mollifiers (relative to a space By) if it
satisfies the following conditions:

i For j = 0,1, the norm of M; as a continuous map from A; into itself is
P J
bounded independently of £ € (0.1). i.e., sup ||Mila;—a, < o0.
te(0,1)

(ii)  The function o(t) := ||I — M;||a,— B, satisfies tlil%(r(?‘) =0.

(iii) For each ¢ € GG, and t € (0.1), there exists an element hy, € D
such that ¢gAM, = Mh,, .



Our main result is expressed in terms of general Banach couples.

Theorem 1.2. Let (Ag, A1) and (By. B1) be Banach couples with A; con-
tinuously imbedded in B; for j = 0,1. Suppose, further, that Ay is continu-
ously imbedded in Ag. Let G be a group of linear operators g : By + B; —
By + By which satisfies (1.2) with respect to both of the couples (Ag. Aq)
and (By, By). Assume that there exvists a family of G-covariant mollifiers
{M; : Ao — Aite(o1). (See Definition 1.1.) If, furthermore, Ay is G-
cocompactly tmbedded into By, then, for every & € (0,1) and q € [1, ], the
space (Ao, A1)o,q is G-cocompactly imbedded into (Bo, B1)e,q and the space
[Ag, A1]e is G-cocompactly imbedded into [By, Bys.



We shall apply Theorem 1.2 to obtain cocompactness of interpolated
imbeddings between certain function spaces. Our point of departure for
doing this is the following cocompactness property of Sobolev imbeddings.
It can be immediately shown to be an equivalent reformulation of Lemma 6
on p. 447 of Lieb’s paper [19] and also of Lemma L.1 on p. 231 of P.-L. Lion’s
paper [21].

Theorem 1.3. Suppose that p € (1,c). The Sobolev imbedding of WP (RY)
into LYRN), p < q < p*, where p* = ‘{,"fp for N > p and p* = co otherwise,
is Dgn -cocompact.




In the following elementary application of Theorem 1.2, we shall extend
this property to the Sobolev imbedding of the spaces W P(RY) for all a €
(0.0c). We recall one of the equivalent definitions of the space WP(RY),
namely as the space of all functions f : RY — R in L”(RY) whose Fourier
transforms f are such that (1+ \E|2)°/2f(£) is also the Fourier transform of
a function in LP(RV). This definition is valid for all real values of o > 0,
including non integer values.

We recall the Sobolev—Peetre imbedding theorem, which states that the
continuous inclusion W*?(RV) ¢ LI(R") holds whenever « is positive and
1< p<q<p!, where the critical exponent p! is defined by

PN N .
b= Neap .-’\v >ap (1.3)
o0 , N <ap

When o = 1 the prevalent notation is to write p* instead of pj (as we did
just above in Theorem 1.3).



Theorem 1.4. Suppose that o € (0, 00) and p € (1,00). The Sobolev Peetre
imbedding of W™P(RY) into LY(RN) is Dyy-cocompact whenever p < q <
pl.. Moreover, the imbedding WoTVP(RY)  WTI(RN) is Dgw-cocompact
for every v > 0.

We now state our third result, which is obtained by applying Theorem
1.2 to couples of Sobolev spaces, for which the real interpolation method
yields Besov spaces. (Relevant definitions are recalled in Appendix A.) The
continuity of the imbeddings considered in this theorem is due to Jawerth
[17].
Theorem 1.5. Suppose that 0 < 3 < o < oo and 1 < pg < p1 < o0 and
q e [1, =] If g‘—; - % < a— 3, then the continuous imbedding of B*o4(RN)
into B*Pr(RY) is Dy -cocompact,
Corollary 1.6. Let o, 3, pg, p1 and N be as in Theorem 1.5. Then the
imbedding of BP9 (RN into BAPra(RYN) is Dgn-cocompact whenever
I1<g=q <o

This corollary follows immediately from Proposition ?7. We take X; =

Baresto Xo = phrudo gnd X3 = BPPo%, By Theorem 1.5, X; is Dgw-
n £ |



0oin <

This corollary follows immediately from Proposition ?77. We take X} =
Bxrosto Xy = BAruao and Xy = BAP1®, By Theorem 1.5, X7 is Dgw-
cocompactly imbedded into X5. The continuous imbedding Xy © X follows
from (5.16) and (5.7).

Theorem 1.7. Let s >0, 1 < p < o0, p < qp < q < pl. Then the imbedding
of B5P (RN into LYRY) is Dy -cocompact.

2. THE PROOF OF THEOREM 1.2

We consider the case of real interpolation. The proof for the complex case
is completely analogous.
In view of the continuous imbedding (AO-AL)g_q C Ag+ Ay = Ag, it

follows that, for each fixed t, the operator A/; is bounded from (Ag, A1) 0.9

into Aj. Suppose that “0in (Ao. Ap)a,q- Let {gp}iey be an arbitrary
sequence in . Then

geMug = Mihg, s (2.1)
by property (iii). Since h, su, — Oin (Ag, A1), ,, we deduce that Mg, sup —
0 in A, for each fixed ¢t € (0,1). The cocompactness of the imbedding
A; C© By and (2.1) now imply that

lim | Miuellp, =0. ‘(2.2\



Muchas Gracias.

Thank you for your attention

.M NTIN

JAAINRT VO"MA X
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