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FIRST SOME DETAILS ABOUT ELIRAN’S WORK.

Let X0, X1 be Banach lattices of measurable functions on some
measure space (Ω,Σ, µ).
They automatically form a Banach couple. Suppose they are also a
Calderón couple.
Can we manufacture a new Calderón couple from (X0,X1)?
Recall, for every Banach lattice X and every p ∈ [1,∞), the
p-convexification of X is the space X (p) of all measurable
functions f : Ω→ R such that |f |p ∈ X . It is also a Banach lattice,
normed by ‖f ‖X (p) = ‖|f |p‖1/pX .
Example: Of course

(
L1)(p)

= Lp.
Conjecture: If (X0,X1) is a Calderón couple of Banach lattices,
then so is

(
X (p)

0 ,X (p)
1

)
.



Conjecture: If (X0,X1) is a Calderón couple of Banach lattices,
then so is

(
X (p)

0 ,X (p)
1

)
.

Theorem (Eliran Avni): If (X0,X1) is a positive Calderón couple of
Banach lattices, then so is

(
X (p)

0 ,X (p)
1

)
.

(Preliminary version for sequence spaces.)
Definition: A couple of Banach lattices (X0,X1) is a positive
Calderón couple if, for every non negative f , g ∈ X0 + X1 such that

K (t, g ; X0,X1) ≤ K (t, f ; X0,X1) for all t > 0 ,

there exists a bounded positive linear positive operator
T : (X0,X1)→ (X0,X1) such that Tf = g .



In view of Eliran’s result, and the result about another new
Calderón couple which Evgeniy presented in his very attractive talk
yesterday, let me show you the building where we create all these
Calderón couples.

Let me also recall our very recent conference in that building,
celebrating Evgeniy’s research and teaching over a 50 year period. I
would like to think of this conference as also being, in some way, a
kind of continuation of that celebration.





You saw and heard Evgeniy in action yesterday. Here he is, similarly
inspiring his students at the Technion just a few weeks ago.



And here he is at the very beginning of that career whose 50th
anniversary was recently marked.



Remark: Yesterday when Evgeniy mentioned the useful role of
ultrasymmetric spaces in various problems that he and other
mathematicians are considering, he modestly omitted to mention
that those spaces are his creation.

Now to my next topic:
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A rather general Arzelà-Ascoli-Schauder theorem.
The following theorem contains the classical theorems of
Arzelà-Ascoli and of Schauder. It can be considered as a special
case of considerably more abstract results presented in a paper by
Robert G. Bartle;; and which have their roots in earlier work of R.
S. Phillips, Šmulian and Kakutani.
A very nice and simple and different proof of it has been given by
Eliahu Levy.
This theorem is the tool for “dualizing” in my proof that
(∗, ∗) I (Lattice Couple with Fatou property or order continuity).



Theorem 1. Let A and B be two sets and let h : A× B → C be a
function with the properties that

sup
a∈A
|h(a, b)| <∞ for each fixed b ∈ B , and

sup
b∈B
|h(a, b)| <∞ for each fixed a ∈ A.

Define dA(a1, a2) := supb∈B |h(a1, b)− h(a2, b)| for each pair of
elements a1 and a2 in A.
Define dB(b1, b2) = supa∈A |h(a, b1)− h(a, b2)| for each pair of
elements b1 and b2 in B .
Then

(A, dA) and (B, dB) are semimetric spaces

(Well, that’s obvious.)
and

(A, dA) is totally bounded if and only if (B, dB) is totally bounded.

.



By using the ideas of Eliahu Levy’s proof we can get a quantitative
version of the previous theorem.
For each ε > 0 let NA(ε) be the minimum number of dA balls of
radius ε required to cover A, and let NB(ε) be the minimum
number of dB balls of radius ε required to cover B . We can find
estimates connecting these two quantities.
If NA(ε) <∞ then NB(ρ) <∞ for each ρ > 2ε, and we can
obtain an upper bound for NB(ρ) depending only on ρ and the
quantity supa∈A,b∈B |h(a, b)| := C .
In fact

NB(2ε+ δ) ≤
(

C
δ

)NA(ε)

.

If A is an absolutely convex subset of a linear space V over the
reals and if the semimetric dA is given by dA(a1, a2) = p(a1 − a2)
for some seminorm p on V , then

NB(2ε+ δ) ≤
(
2εNA(ε)

δ

)NA(ε)

.

















































Now we get to the third and final topic of my talk.
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Before describing my results with Kyril it seems important to give
you an overview of the general topic of co-compactness.
Here is a motivating example:



An important Sobolev embedding

Let D1,p(RN) or Ẇ 1,p(RN) for N > p denote the space which is
the completion of C∞0 in the norm

‖u‖ =

(ˆ
RN
|∇u|pdx

) 1
p

.

Consider this Sobolev embedding on RN :

(∗) D1,2(RN) = Ẇ 1,2
(
RN
)
⊂ L2?

(RN)

where 2? = 2N
N−2 and N > 2 .

(The square of the norm in D1,2(RN) is the quadratic form of the
Laplacian, measures kinetic energy in quantum mechanics, or the
energy of an electric field in electrodynamics, or thermodynamic
energy etc.)
Is there an optimal function for this embedding?



Consider this Sobolev embedding on RN :

(∗) D1,2(RN) = Ẇ 1,2
(
RN
)
⊂ L2?

(RN)

where 2? = 2N
N−2 and N > 2 .

(The square of the norm in D1,2(RN) is the quadratic form of the
Laplacian, measures kinetic energy in quantum mechanics, or the
energy of an electric field in electrodynamics, or thermodynamic
energy etc.)
Is there an optimal function for this embedding?

Help!! The embedding (*) is not compact !!

But there are ways to overcome that.



The standard bubble (or instanton)
If there is a minimizer for this variational problem (on RN with
N > 2)

SN = inf´
|u|2?dx=1

ˆ
RN
|∇u|2dx

then it will also be the optimal function that we are looking for.
The constant SN is positive, since the space D1,2(RN), is
continuously imbedded into L2?

(RN).
A solution of the Euler-Lagrange equation for the minimizer was
found in 1931 by Bliss. It is w(x) = CN

(1+|x |2)
N−2

2
with a suitable

normalization constant CN (the “standard bubble”). But the
question if the problem has a minimizer (w does not have to be
one) remained open. The main technical difficulties for answering
this are that,
(i) while the gradient norm is weakly lower semicontinuous, the
functional

´
|u|2?

dx is not weakly continuous anywhere, and
(ii) the embedding D1,2(RN) ↪→ L2?

(RN) is not compact.
In 1976 G. Talenti proved existence of minimizers for this problem.



Existence of minimizers
Tools for a (streamlined) proof of Talenti’s existence result:
1) A standard (Pólya-Szegő) rearrangement argument that reduces
the problem to the radial subspace D1,2

rad(RN).
2) The Brezis-Lieb lemma: Whenever uk → u weakly in Lp and
also pointwise a.e., then

(BL)

ˆ
|uk |p =

ˆ
|u|p +

ˆ
|uk − u|p + o(1) .

3) The following property: “CO-COMPACTNESS OF
EMBEDDING”:
Let uk ∈ D1,2

rad(RN). If for every sequence {jk}k∈N ⊂ Z, the
sequence

{
2

N−2
2 jkuk(2jkx)

}
k∈N

weakly converges to zero, then

{uk}k∈N converges to zero in L2?
norm.

In other words: Weak convergence of uk alone does not suffice for
the L2?

-convergence. (The embedding D1,2
rad(RN) ↪→ L2?

is not
compact).
But weak convergence of the sequence under arbitrary rescalings,
uk(x)→ 2

N−2
2 jkuk(2jkx) does suffice.



The existence proof

Let {uk}k∈N be a minimizing sequence. Without loss of generality
assume that it is weakly convergent to some u 6= 0.
Indeed, for any sequence jk ∈ Z, the sequence{
2

N−2
2 jkuk(2jkx)

}
k∈N

is also a minimizing sequence. However, if

any such sequence converges weakly to zero, then uk → 0 in L2?

and thus it is not a minimizing sequence.
Let
´
|u|2?

= t ∈ (0, 1]. Then, by the Brezis-Lieb lemma,´
|uk − u|2?

= 1− t + o(1). At the same time,
SN =

´
|∇uk |2 + o(1) =

´
|∇u|2 +

´
|∇(u − uk)|2 + o(1) ≤

SNt2/2?
+ SN(1− t)2/2?

+ o(1).
This inequality holds only if t = 1, which implies that u is a
minimizer.



Definition of co-compact embedding
What will it mean to say that the Banach space A is co-compactly
embedded into the Banach space B?
First we need to choose a suitable group G of isometries of A.
(In the previous example G was the a discrete subgroup of the
group of normalized dilations.)
Then we have to define the notion of G -weak convergence in A.
DEFINITION: The sequence {un}n∈N is G -weakly convergent to 0
if gnun converges weakly to 0 for EVERY choice of gn ∈ G .
DEFINITION: Suppose A ⊂ B continuously. Then this embedding
is G -cocompact if every G -weakly convergent sequence in A is
norm convergent in B .
EXAMPLE: If G = {normalized dilations} then the embedding
D1,2(RN) ⊂ L2?

(RN) is G -cocompact.

Terry Tao has introduced the notion of “intermediate metric”,
closely related to G -weak convergence, and discusses this and
“concentration compactness” (essentially co-compactness) in his
blog.
http://terrytao.wordpress.com/2008/11/05/concentration-
compactness-and-the-profile-decomposition/







Some more examples: Known cocompact embeddings

I Every compact embedding is G -cocompact for the group
G = {Id} and therefore also for any larger group.

I The embedding `2(Z) ↪→ `∞(Z) is G -cocompact when G is
the group of shifts by Z.

I C (R) is G -cocompactly embedded into itself when G is the
group of shifts by R. (Easy exercise.)

I Any Hilbert space H is G -cocompactly embedded into itself if
G is the group of all unitary operators on H.

All of the above are easy exercises.
Now to hard analysis.....



Some more “serious” cocompact embeddings
I The subcritical Sobolev embeddings

W k,p(RN) ↪→ Lq(RN), N > kp, p < q < p? =
pN

N − kp
,

are cocompact with respect to shifts by ZN . (Essentially, this
was proved already by Lieb in 1982 for k = 1). This property,
(cf. Talenti’s result above) is used in variational problems
involving semilinear elliptic equations.

I The critical Sobolev imbedding Dk,p(RN) ↪→ Lp?
(RN) is

G -cocompact where G is the product group of shifts by RN

and (discrete) normalised dilations. (Normalized dilations are
the maps ht defined for each fixed t > 0 by
htu(x) = t

N−kp
p u(tx).)

I Sobolev imbeddings involving the Laplace-Beltrami operator
on a complete Riemannian manifold M are cocompact with
respect to isometries of the manifold, if M is cocompact (in
the “classical” sense of an infinite egg carton.)



A cocompactness result of Terence Tao

Terence Tao, A pseudoconformal compactification of the nonlinear
Schrödinger equation and applications.
New York J. Math. 15 (2009) 265–282.
The Strichartz embedding (related to the time dependent
Schrödinger equation for a free particle)

‖e it∆u‖Lq(RN+1) ≤ C‖u‖L2(RN), q =
2N + 2

N
,

is G -cocompact where G is a product of operator groups of
normalized dilations, space shifts, “time shifts”
(û(ξ) 7→ e iτ |ξ|2 û(ξ), τ ∈ R), and Fourier variable shifts”.



The terminology cocompactness was not used in the original
formulation of these results. They were obtained and studied within
the framework of “concentration compactness”, a collection of
methods for dealing with problems arising in PDE where the
relevant embedding is not compact.



Profile decomposition

In presence of a cocompact imbedding, the defect of compactness
(difference between the sequence and its limit) admits a rather rigid
structure, often called a profile decomposition.
In a very particular special case this was shown by Struwe in 1984.
(“Global compactness”).
Subsequently, descriptions of profile decompositions for bounded
sequences in Sobolev spaces were given by P.-L. Lions, 1987
(subcritical case), and by Solimini, 1995 (critical case).
In general Hilbert space H a profile decomposition theorem was
produced by Schindler and Tintarev, 2002.
One can think of the investigations of profile decompositions as an
attempt to capture some of the features of the Banach-Alaoglu
theorem in a more general setting.
Now I shall briefly describe some features of my paper with Kyril.
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Muchas Gracias.

Thank you for your attention

רבה. תודה

דאנק. גרוייסע א
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