Optimal extensions for operators on Banach function spaces

Olvido Delgado
Universidad de Sevilla

2nd International Workshop on Interpolation Theory,
Function Spaces and Related Topics
Santiago de Compostela, July 22, 2011
$X \xrightarrow{T} E$
$X \xrightarrow{T} E$

- E Banach space
$X \xrightarrow{T} E$
- E Banach space
- X Banach function space (B.f.s.)

Problem

$X \xrightarrow{T} E$

- E Banach space
- X Banach function space (B.f.s.)
B.f.s.: Banach space $X \subset L^{0}(\Omega, \Sigma, \mu)$ such that

$$
g \in L^{0}, f \in X \text { and }|g| \leq|f| \Rightarrow g \in X \text { and }\|g\|_{X} \leq\|f\|_{X}
$$

$X \xrightarrow{T} E$

- E Banach space
- X Banach function space (B.f.s.)

Problem

$X \xrightarrow{T} E$

- E Banach space
- X Banach function space (B.f.s.)
- T linear operator satisfying a property $(*)$

Problem

$X \xrightarrow{T} E$

- E Banach space
- X Banach function space (B.f.s.)
- T linear operator satisfying a property $(*)$
? Are there a B.f.s. Y and a linear operator S such that

with S satisfying the same property $(*)$

Problem

$X \xrightarrow{T} E$

- E Banach space
- X Banach function space (B.f.s.)
- T linear operator satisfying a property $(*)$
? Are there a B.f.s. Y and a linear operator S such that

with S satisfying the same property $(*)$
If that is the case,

?
Which is the largest of such B.f.s.' Y

Vector measure associated to T

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

Vector measure associated to T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit (i.e. } g>0 \mu \text {-a.e.) } \\
E \text { Banach space }
\end{array}\right.
$$

Vector measure associated to T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\}$

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\}$
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\}=\Sigma$ iff $L^{\infty}(\mu) \subset X(\mu)$
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \quad \delta$-ring
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \delta$-ring (closed under countable intersections)
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \quad \delta$-ring
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Suppose T is order-w continuous, i.e.

$$
0 \leq f_{n} \uparrow f \text { in the order of } X(\mu) \Rightarrow T f_{n} \rightarrow T f \text { weakly in } E
$$

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \quad \delta$-ring
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Suppose T is order-w continuous, i.e.

$$
0 \leq f_{n} \uparrow f \text { in the order of } X(\mu) \Rightarrow T f_{n} \rightarrow T f \text { weakly in } E
$$

Then, $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ is a vector measure

Vector measure associated to T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

$$
\nu_{T}: A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
$$

- $\mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \quad \delta$-ring
- $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ well defined and finitely additive

Suppose T is order-w continuous, i.e.

$$
0 \leq f_{n} \uparrow f \text { in the order of } X(\mu) \Rightarrow T f_{n} \rightarrow T f \text { weakly in } E
$$

Then, $\nu_{T}: \mathcal{R}_{X} \rightarrow E$ is a vector measure, i.e.
$\left(A_{n}\right) \subset \mathcal{R}_{X}$ disjoint sequence with $\cup A_{n} \in \mathcal{R}_{X} \Rightarrow \nu_{T}\left(\cup A_{n}\right)=\sum \nu_{T}\left(A_{n}\right)$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach space }\end{cases}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$$
\varphi=\sum_{j=1}^{n} \alpha_{j} \chi_{A_{j}} \Rightarrow \int_{A} \varphi d \nu=\sum_{j=1}^{n} \alpha_{j} \nu\left(A_{j} \cap A\right)
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$
$L_{w}^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable satisfying only condition (i) $\}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$
$L_{w}^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable satisfying only condition (i) $\}$
A set $A \in \mathcal{R}^{l o c}$ is ν-null if $\nu(B)=0$ for all $B \in \mathcal{R} \cap 2^{A}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$
$L_{w}^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable satisfying only condition (i) $\}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$
$L_{w}^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable satisfying only condition (i) $\}$
$L^{1}(\nu) \subset L_{w}^{1}(\nu)$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$
$\mathcal{R}^{\text {loc }}=\{\mathbf{A} \subset \boldsymbol{\Omega}: \mathbf{A} \cap \mathbf{B} \in \mathcal{R}$ for all $\mathbf{B} \in \mathcal{R}\} \quad \sigma$-algebra
A measurable function $f: \Omega \rightarrow \mathbb{R}$ is integrable with respect to ν if
(i) $\int|f| d\left|e^{*} \nu\right|<\infty$ for all $e^{*} \in E^{*}$
(ii) for each $A \in \mathcal{R}^{l o c}$, there exists $\int_{A} f d \nu \in E$ such that

$$
e^{*}\left(\int_{A} f d \nu\right)=\int_{A} f d e^{*} \nu \text { for all } e^{*} \in E^{*}
$$

$L^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ integrable with respect to $\nu\}$
$L_{w}^{1}(\nu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable satisfying only condition (i) $\}$
$L^{1}(\nu)=L_{w}^{1}(\nu)$ if $E \not \supset$ any copy of c_{0}

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach space }\end{cases}$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are Banach spaces with norm

$$
\|f\|_{\nu}=\sup _{e^{*} \in B_{E^{*}}} \int|f| d\left|e^{*} \nu\right|
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{cases}$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are B.f.s.' for a measure $\lambda: \mathcal{R}^{l o c} \rightarrow[0, \infty]_{n} \lambda \approx \nu$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach space }\end{cases}$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are B.f.s.' for a measure $\lambda: \mathcal{R}^{l o c} \rightarrow[0, \infty]_{n} \lambda \approx \nu$
- $L^{1}(\nu)$ is order continuous, i.e.

$$
f_{n}, f \in L^{1}(\nu)_{n} 0 \leq f_{n} \uparrow f \nu \text {-a.e. } \Rightarrow f_{n} \rightarrow f \text { in norm of } L^{1}(\nu)
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are B.f.s.' for a measure $\lambda: \mathcal{R}^{l o c} \rightarrow[0, \infty]_{n} \lambda \approx \nu$
- $L^{1}(\nu)$ is order continuous, i.e.

$$
f_{n}, f \in L^{1}(\nu)_{n} 0 \leq f_{n} \uparrow f \nu \text {-a.e. } \Rightarrow f_{n} \rightarrow f \text { in norm of } L^{1}(\nu)
$$

- The \mathcal{R}-simple functions are dense in $L^{1}(\nu)$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are B.f.s.' for a measure $\lambda: \mathcal{R}^{l o c} \rightarrow[0, \infty]_{„} \lambda \approx \nu$
- $L^{1}(\nu)$ is order continuous, i.e.

$$
f_{n}, f \in L^{1}(\nu)_{n} 0 \leq f_{n} \uparrow f \nu \text {-a.e. } \Rightarrow f_{n} \rightarrow f \text { in norm of } L^{1}(\nu)
$$

- The \mathcal{R}-simple functions are dense in $L^{1}(\nu)$
- $L_{w}^{1}(\nu)$ has the Fatou property, i.e.

$$
\left.\begin{array}{c}
\left(f_{n}\right) \subset L_{w}^{1}(\nu)_{"} 0 \leq f_{n} \uparrow \nu \text {-a.e. } \\
\text { and } \sup _{n}\left\|f_{n}\right\|_{\nu}<\infty
\end{array}\right\} \Rightarrow \begin{gathered}
f=\sup _{n} f_{n} \in L_{w}^{1}(\nu) \\
\text { and }\left\|f_{n}\right\|_{\nu} \uparrow\|f\|_{\nu}
\end{gathered}
$$

Integration with respect to a vector measure

$\nu: \mathcal{R} \rightarrow E$ vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach space }\end{array}\right.$

- $L^{1}(\nu)$ and $L_{w}^{1}(\nu)$ are B.f.s.' for a measure $\lambda: \mathcal{R}^{l o c} \rightarrow[0, \infty]_{„} \lambda \approx \nu$
- $L^{1}(\nu)$ is order continuous, i.e.

$$
f_{n}, f \in L^{1}(\nu)_{„} 0 \leq f_{n} \uparrow f \nu \text {-a.e. } \Rightarrow f_{n} \rightarrow f \text { in norm of } L^{1}(\nu)
$$

- The \mathcal{R}-simple functions are dense in $L^{1}(\nu)$
- $L_{w}^{1}(\nu)$ has the Fatou property, i.e.

$$
\left.\begin{array}{c}
\left(f_{n}\right) \subset L_{w}^{1}(\nu)_{"}, 0 \leq f_{n} \uparrow \nu \text {-a.e. } \\
\text { and } \sup _{n}\left\|f_{n}\right\|_{\nu}<\infty
\end{array}\right\} \Rightarrow \begin{gathered}
f=\sup _{n} f_{n} \in L_{w}^{1}(\nu) \\
\text { and }\left\|f_{n}\right\|_{\nu} \uparrow\|f\|_{\nu}
\end{gathered}
$$

- The integration operator $I_{\nu}: L^{1}(\nu) \rightarrow E$, given by $I_{\nu}(f)=\int f d \nu$, is continuous with $\left\|I_{\nu}\right\| \leq 1$.

Extension for T

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. with a weak unit } \\ E \text { Banach space }\end{array}\right.$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \quad A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$[f] \in L^{0}(\mu) \rightarrow[f] \in L^{0}\left(\nu_{T}\right)$ is well defined as $\mathcal{R}_{X}^{l o c}=\Sigma$ and $\nu_{T} \ll \mu$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \quad A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$[f] \in L^{0}(\mu) \rightarrow[f] \in L^{0}\left(\nu_{T}\right)$ is well defined as $\mathcal{R}_{X}^{l o c}=\Sigma$ and $\nu_{T} \ll \mu$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Remark.

- $T=I_{\nu_{T}} \circ[i]$ is continuous

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Remark.

- $T=I_{\nu_{T}} \circ[i]$ is continuous

$$
\text { order-w continuous } \Longrightarrow \text { continuous }
$$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Remark.

- $T=I_{\nu_{T}} \circ[i]$ is continuous

$$
\begin{gathered}
\text { order-w continuous } \Longrightarrow \text { continuous } \\
\text { If } X \text { is order } \\
\text { continuous }
\end{gathered}
$$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Remark.

- $T=I_{\nu_{T}} \circ[i]$ is continuous
- $I_{\nu_{T}}$ is order-w continuous

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

The extension is optimal in the sense:

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

The extension is optimal in the sense:
If $Z(\xi)$ is a B.f.s.n $\xi \ll \mu$ and

with S order-w continuous

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

The extension is optimal in the sense:

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& \longrightarrow \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$L^{1}\left(\nu_{T}\right)$ is the largest B.f.s. to which T can be "extended" as an order-w continuous operator still with values in E

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$L^{1}\left(\nu_{T}\right)$ is the largest B.f.s. to which T can be "extended" as an order-w continuous operator still with values in E

In particular, $L^{1}\left(\nu_{T}\right)$ is the largest order continuous B.f.s. to which T can be "extended" as a continuous operator still with values in E

Extension for T

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. with a weak unit } \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$L^{1}\left(\nu_{T}\right)$ is the largest B.f.s. to which T can be "extended" as an order-w continuous operator still with values in E

In particular, $L^{1}\left(\nu_{T}\right)$ is the largest order continuous B.f.s. to which T can be "extended" as a continuous operator still with values in E

For μ finite and $L^{\infty}(\mu) \subset X$:
围 G. P. Curbera \& W. J. Ricker, Optimal domains for kernel operators via interpolation, Math. Nachr. 244 (2002), 47-63.

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous
Then

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous
Then

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous
Then

- $L^{p}[0, \infty) \varsubsetneqq L^{1}\left(\nu_{T}\right)$

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous
Then

- $L^{p}[0, \infty) \varsubsetneqq L^{1}\left(\nu_{T}\right)$
- $L^{1}\left(\nu_{T}\right)=\left\{f \in L^{0}[0, \infty): x \rightarrow \frac{1}{x} \int_{0}^{x}|f(y)| d y \in L^{p}[0, \infty)\right\}$

Example

$T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ the Hardy operator $(1<p<\infty)$, i.e.

$$
T f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y
$$

T continuous $+L^{p}[0, \infty)$ order continuous $\Rightarrow T$ order-w continuous
Then

- $L^{p}[0, \infty) \varsubsetneqq L^{1}\left(\nu_{T}\right)$
- $L^{1}\left(\nu_{T}\right)=\left\{f \in L^{0}[0, \infty): x \rightarrow \frac{1}{x} \int_{0}^{x}|f(y)| d y \in L^{p}[0, \infty)\right\}$
- $I_{\nu_{T}}(f)(x)=\frac{1}{x} \int_{0}^{x} f(y) d y$ for all $f \in L^{1}\left(\nu_{T}\right)$

Further extension for T

T order-w continuous

- The Hardy operator $T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ has no further extension

Further extension for T

T order-w continuous

- The Hardy operator $T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ has no further extension

$$
E \not \supset \text { any copy of } c_{0} \Rightarrow L^{1}(\nu)=L_{w}^{1}(\nu)
$$

Further extension for T

T order-w continuous

- The Hardy operator $T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ has no further extension

Further extension for T

T order-w continuous

- The Hardy operator $T: L^{p}[0, \infty) \rightarrow L^{p}[0, \infty)$ has no further extension
- If $\bar{I}_{\nu_{T}}$ exists: $\bar{I}_{\nu_{T}}$ order-w continuous $\Leftrightarrow L^{1}(\nu)=L_{w}^{1}(\nu)$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach lattice }\end{cases}$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite,

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, i.e.

$$
\begin{gathered}
A \in \mathcal{R}^{l o c} "\|\nu\|(A)<\infty \\
\|\nu\|(A)=\sup _{e^{*} \in B_{E^{*}}}\left|e^{*} \nu\right|(A)
\end{gathered} \Rightarrow \quad A=\left(\cup_{n} A_{n}\right) \cup N \text { with }, ~\left(A_{n}\right) \subset \mathcal{R} \text { and } N \in \mathcal{R}^{\text {loc }} \nu \text {-null }
$$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite,

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), 0 \leq f_{n} \uparrow f$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), \quad 0 \leq f_{n} \uparrow f$.

$$
\nu \text { locally } \sigma \text {-finite } \Leftrightarrow L^{1}(\nu) \text { is order dense in } L_{w}^{1}(\nu)
$$

回 J. M. Calabuig, O. D., M. A. Juan \& E. A. Sánchez Pérez, Banach lattice properties of L_{w}^{1} of a vector measure on a δ-ring, preprint.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), 0 \leq f_{n} \uparrow f$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), \quad 0 \leq f_{n} \uparrow f$. Then, $0 \leq I_{\nu}\left(f_{n}\right) \uparrow$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), 0 \leq f_{n} \uparrow f$. Then, $0 \leq I_{\nu}\left(f_{n}\right) \uparrow$ and

$$
\sup _{n}\left\|I_{\nu}\left(f_{n}\right)\right\|_{E} \leq \sup _{n}\left\|f_{n}\right\|_{\nu} \leq\|f\|_{\nu}<\infty,
$$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), 0 \leq f_{n} \uparrow f$. Then, $0 \leq I_{\nu}\left(f_{n}\right) \uparrow$ and

$$
\sup _{n}\left\|I_{\nu}\left(f_{n}\right)\right\|_{E} \leq \sup _{n}\left\|f_{n}\right\|_{\nu} \leq\|f\|_{\nu}<\infty,
$$

so $\exists \bar{I}_{\nu}(f)=\sup _{n} I_{\nu}\left(f_{n}\right) \in E$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{n}\right) \subset L^{1}(\nu), \quad 0 \leq f_{n} \uparrow f$. Then, $0 \leq I_{\nu}\left(f_{n}\right) \uparrow$ and

$$
\sup _{n}\left\|I_{\nu}\left(f_{n}\right)\right\|_{E} \leq \sup _{n}\left\|f_{n}\right\|_{\nu} \leq\|f\|_{\nu}<\infty
$$

so $\exists \bar{I}_{\nu}(f)=\sup _{n} I_{\nu}\left(f_{n}\right) \in E$.
If $f \in L_{w}^{1}(\nu)$, then $\bar{I}_{\nu}(f)=\bar{I}_{\nu}\left(f^{+}\right)-\bar{I}_{\nu}\left(f^{-}\right)$where $f=f^{+}-f^{-}$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Remark. \bar{I}_{ν} is positive

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the Fatou property and ν is locally σ-finite, then

Remark. \bar{I}_{ν} is positive and order-order continuous, i.e.
$0 \leq f_{n} \uparrow f$ in the order of $L_{w}^{1}(\nu) \Rightarrow \bar{I}_{\nu}\left(f_{n}\right) \uparrow \bar{I}_{\nu}(f)$ in the order of E

Further extension for T

Theorem. If $X(\mu)$ is an order continuous B.f.s. with a weak unit, E is a Banach lattice with the Fatou property and $T: X(\mu) \rightarrow E$ is a positive linear operator, then

Further extension for T

Theorem. If $X(\mu)$ is an order continuous B.f.s. with a weak unit, E is a Banach lattice with the Fatou property and $T: X(\mu) \rightarrow E$ is a positive linear operator, then

Further extension for T

Theorem. If $X(\mu)$ is an order continuous B.f.s. with a weak unit, E is a Banach lattice with the Fatou property and $T: X(\mu) \rightarrow E$ is a positive linear operator, then

The extension is optimal in the sense:
If $Z(\xi)$ is a B.f.s.,n $\xi \ll \mu$ and

with S positive and order-order continuous

Further extension for T

Theorem. If $X(\mu)$ is an order continuous B.f.s. with a weak unit, E is a Banach lattice with the Fatou property and $T: X(\mu) \rightarrow E$ is a positive linear operator, then

The extension is optimal in the sense:
If $Z(\xi)$ is a B.f.s.,n $\xi \ll \mu$ and

with S positive and order-order continuous

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

where $\psi:[0, \infty) \rightarrow[0, \infty), \psi>0$ a.e. and $\frac{1}{\psi} \in L^{\infty}[0, \infty)$.

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

where $\psi:[0, \infty) \rightarrow[0, \infty), \quad \psi>0$ a.e. and $\frac{1}{\psi} \in L^{\infty}[0, \infty)$. Then

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

where $\psi:[0, \infty) \rightarrow[0, \infty), \quad \psi>0$ a.e. and $\frac{1}{\psi} \in L^{\infty}[0, \infty)$. Then

- $L_{w}^{1}\left(\nu_{T}\right)=\left\{f \in L^{0}[0, \infty): \sup _{x \geq 0} \frac{1}{\psi(x)} \int_{0}^{x}|f(y)| d y<\infty\right\}$

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

where $\psi:[0, \infty) \rightarrow[0, \infty), \quad \psi>0$ a.e. and $\frac{1}{\psi} \in L^{\infty}[0, \infty)$. Then

$$
L^{1}[0, \infty) \xrightarrow{T} L^{\infty}[0, \infty)
$$

- $L_{w}^{1}\left(\nu_{T}\right)=\left\{f \in L^{0}[0, \infty): \sup _{x \geq 0} \frac{1}{\psi(x)} \int_{0}^{x}|f(y)| d y<\infty\right\}$
- $\bar{I}_{\nu_{T}}(f)(x)=\frac{1}{x} \int_{0}^{x} f(y) d y$ for all $f \in L_{w}^{1}\left(\nu_{T}\right)$

Example

$T: L^{1}[0, \infty) \rightarrow L^{\infty}[0, \infty)$ given by

$$
T f(x)=\frac{1}{\psi(x)} \int_{0}^{x} f(y) d y
$$

where $\psi:[0, \infty) \rightarrow[0, \infty), \quad \psi>0$ a.e. and $\frac{1}{\psi} \in L^{\infty}[0, \infty)$. Then

$$
L^{1}[0, \infty) \xrightarrow{T} L^{\infty}[0, \infty)
$$

- $L_{w}^{1}\left(\nu_{T}\right)=\left\{f \in L^{0}[0, \infty): \sup _{x \geq 0} \frac{1}{\psi(x)} \int_{0}^{x}|f(y)| d y<\infty\right\}$
- $\bar{I}_{\nu_{T}}(f)(x)=\frac{1}{x} \int_{0}^{x} f(y) d y$ for all $f \in L_{w}^{1}\left(\nu_{T}\right)$
- $\psi(x)=x+1, e^{x}, \ldots \Rightarrow L^{1}[0, \infty) \varsubsetneqq L^{1}\left(\nu_{T}\right) \varsubsetneqq L_{w}^{1}\left(\nu_{T}\right)$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \Sigma) \text { measurable space } \\
X(\mu) \text { B.f.s. } \\
E \text { Banach space }
\end{array}\right.
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s. } \\
E \text { Banach space }
\end{array}\right.
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

$$
\mathcal{R}_{X}^{l o c}=\mathcal{P}(\Omega)
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

The extension is optimal in the sense:

Discrete case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \mathcal{P}(\Omega)) \\ X(\mu) \text { B.f....n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\ E \text { Banach space }\end{array}\right.$
Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

The extension is optimal in the sense:

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

$$
\begin{aligned}
& \mathcal{R}_{X}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} \\
& \nu_{T}: \mathcal{R}_{X} \longrightarrow E \\
& A \longrightarrow \nu_{T}(A)=T\left(\chi_{A}\right)
\end{aligned}
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach space }
\end{array}\right.
$$

Theorem. If T is order-w continuous then

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach lattice }\end{cases}$

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$, i.e. the minimal B.f.s. (related to ν) with the Fatou property containing $L^{1}(\nu)$.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.
Remark.

- $\left[L^{1}(\nu)\right]_{F} \subset L_{w}^{1}(\nu)$

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.
Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.
Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.
- $\left[L^{1}(\nu)\right]_{F}=\left\{f \in L_{w}^{1}(\nu): \operatorname{Supp}(f)=\left(\cup A_{n}\right) \cup N_{n} A_{n} \in \mathcal{R}, N \nu\right.$-null $\}$.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.

Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.
- $\left[L^{1}(\nu)\right]_{F}=\left\{f \in L_{w}^{1}(\nu): \operatorname{Supp}(f)=\left(\cup A_{n}\right) \cup N_{n} A_{n} \in \mathcal{R}, N \nu\right.$-null $\}$.
- $L^{1}(\nu)$ is order dense in $\left[L^{1}(\nu)\right]_{F}$.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.

Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.
- $\left[L^{1}(\nu)\right]_{F}=\left\{f \in L_{w}^{1}(\nu): \operatorname{Supp}(f)=\left(\cup A_{n}\right) \cup N_{n} A_{n} \in \mathcal{R}, N \nu\right.$-null $\}$.
- $L^{1}(\nu)$ is order dense in $\left[L^{1}(\nu)\right]_{F}$.
(1) J. M. Calabuig, O. D., M. A. Juan \& E. A. Sánchez Pérez, Banach lattice properties of L_{w}^{1} of a vector measure on a δ-ring, preprint.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \\ E \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.

Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.
- $\left[L^{1}(\nu)\right]_{F}=\left\{f \in L_{w}^{1}(\nu): \operatorname{Supp}(f)=\left(\cup A_{n}\right) \cup N_{n} A_{n} \in \mathcal{R}, N \nu\right.$-null $\}$.
- $L^{1}(\nu)$ is order dense in $\left[L^{1}(\nu)\right]_{F}$.

Extension of I_{ν}

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the Fatou property then

where $\left[L^{1}(\nu)\right]_{F}$ is the Fatou completion of $L^{1}(\nu)$.

Remark.

- $\left[L^{1}(\nu)\right]_{F}=L_{w}^{1}(\nu)$ if and only if ν is locally σ-finite.
- $\left[L^{1}(\nu)\right]_{F}=\left\{f \in L_{w}^{1}(\nu): \operatorname{Supp}(f)=\left(\cup A_{n}\right) \cup N_{„} A_{n} \in \mathcal{R}, N \nu\right.$-null $\}$.
- $L^{1}(\nu)$ is order dense in $\left[L^{1}(\nu)\right]_{F}$.
- \bar{I}_{ν} is positive and order-order continuous.

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s. } n \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s. } n \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Theorem. $X(\mu)$ order continuous, E with the Fatou property, T positive. Then

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s., } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Theorem. $X(\mu)$ order continuous, E with the Fatou property, T positive. Then

Discrete case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \mathcal{P}(\Omega)) \\ X(\mu) \text { B.f.s. } n \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\ E \text { Banach lattice }\end{array}\right.$
Theorem. $X(\mu)$ order continuous, E with the Fatou property, T positive. Then

The extension is optimal in the sense:
$Z(\xi)$ B.f.s. with $Z(\xi)_{a}$ order dense ${ }_{n} \xi \ll \mu$ and

with S positive and order-order continuous

$$
\begin{aligned}
& \Rightarrow \quad {[i]: Z(\xi) \rightarrow\left[L^{1}\left(\nu_{T}\right)\right]_{F} } \\
& \quad \text { and } S=\bar{I}_{\nu_{T}} \text { on } Z(\xi)
\end{aligned}
$$

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s., } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Theorem. $X(\mu)$ order continuous, E with the Fatou property, T positive. Then

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s. } n \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Theorem. $X(\mu)$ order continuous, E with the Fatou property, T positive. Then

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach lattice }\end{cases}$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the net-Fatou property

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & \text { Banach lattice }\end{cases}$
Proposition. If E has the net-Fatou property, i.e.

$$
\left.\begin{array}{c}
\left(x_{\tau}\right) \subset E_{\#} 0 \leq x_{\tau} \uparrow \\
\text { and } \sup _{\tau}\left\|x_{\tau}\right\|_{E}<\infty
\end{array}\right\} \Rightarrow \begin{gathered}
\text { there exists } x=\sup _{\tau} x_{\tau} \text { in } E \\
\text { and }\|x\|_{E}=\sup _{\tau}\left\|x_{\tau}\right\|_{E}
\end{gathered}
$$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu){ }_{n}, 0 \leq f_{\tau} \uparrow f$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu), \quad 0 \leq f_{\tau} \uparrow f$.

$$
L^{1}(\nu) \text { is net-order dense in } L_{w}^{1}(\nu)
$$

© J. M. Calabuig, O. D., M. A. Juan \& E. A. Sánchez Pérez, Banach lattice properties of L_{w}^{1} of a vector measure on a δ-ring, preprint.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu){ }_{n}, 0 \leq f_{\tau} \uparrow f$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu), 0 \leq f_{\tau} \uparrow f$.
Then, $0 \leq I_{\nu}\left(f_{\tau}\right) \uparrow$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu), \quad 0 \leq f_{\tau} \uparrow f$.
Then, $0 \leq I_{\nu}\left(f_{\tau}\right) \uparrow$ and $\sup _{\tau}\left\|I_{\nu}\left(f_{\tau}\right)\right\|_{E} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{\nu} \leq\|f\|_{\nu}<\infty$

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu), 0 \leq f_{\tau} \uparrow f$.
Then, $0 \leq I_{\nu}\left(f_{\tau}\right) \uparrow$ and $\sup _{\tau}\left\|I_{\nu}\left(f_{\tau}\right)\right\|_{E} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{\nu} \leq\|f\|_{\nu}<\infty$, so
$\exists \widehat{I}_{\nu}(f)=\sup _{\tau} I_{\nu}\left(f_{\tau}\right) \in E$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Proof. For each $0 \leq f \in L_{w}^{1}(\nu)$ there exists $\left(f_{\tau}\right) \subset L^{1}(\nu), 0 \leq f_{\tau} \uparrow f$. Then, $0 \leq I_{\nu}\left(f_{\tau}\right) \uparrow$ and $\sup _{\tau}\left\|I_{\nu}\left(f_{\tau}\right)\right\|_{E} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{\nu} \leq\|f\|_{\nu}<\infty$, so $\exists \widehat{I}_{\nu}(f)=\sup _{\tau} I_{\nu}\left(f_{\tau}\right) \in E$.

If $f \in L_{w}^{1}(\nu)$, then $\widehat{I}_{\nu}(f)=\widehat{I}_{\nu}\left(f^{+}\right)-\widehat{I}_{\nu}\left(f^{-}\right)$where $f=f^{+}-f^{-}$.

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\begin{cases}\mathcal{R} & \delta \text {-ring on } \Omega \\ E & B a n a c h ~ l a t t i c e ~\end{cases}$
Proposition. If E has the net-Fatou property, then

Remark. \widehat{I}_{ν} is positive

Extension of I_{ν} to $L_{w}^{1}(\nu)$

$\nu: \mathcal{R} \rightarrow E$ positive vector measure $\left\{\begin{array}{l}\mathcal{R} \delta \text {-ring on } \Omega \\ E \text { Banach lattice }\end{array}\right.$
Proposition. If E has the net-Fatou property, then

Remark. \widehat{I}_{ν} is positive and net-order-order continuous, i.e.
$0 \leq f_{\tau} \uparrow f$ in the order of $L_{w}^{1}(\nu) \Rightarrow \widehat{I}_{\nu}\left(f_{\tau}\right) \uparrow \widehat{I}_{\nu}(f)$ in the order of E

Discrete case

$$
T: X(\mu) \rightarrow E \text { linear }\left\{\begin{array}{l}
(\Omega, \mathcal{P}(\Omega)) \\
X(\mu) \text { B.f.s. } n \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\
E \text { Banach lattice }
\end{array}\right.
$$

Theorem. $X(\mu)$ order continuous, E with the net-Fatou property, T positive,

Discrete case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \mathcal{P}(\Omega)) \\ X(\mu) \text { B.f.s.n } \chi_{\{\omega\}} \in X(\mu) \text { and } T\left(\chi_{\{\omega\}}\right) \neq 0 \\ E \text { Banach lattice }\end{array}\right.$
Theorem. $X(\mu)$ order continuous, E with the net-Fatou property, T positive,

If $Z(\xi)$ is a B.f.s..n $\xi \ll \mu$ and

$$
\begin{array}{ll}
\Rightarrow & {[i]: Z(\xi) \rightarrow L_{w}^{1}\left(\nu_{T}\right)} \\
& \text { and } S=\widehat{I}_{\nu_{T}} \text { on } Z(\xi)
\end{array}
$$

with S positive and net-order-order continuous

Example

I uncountable, $K: I \times I \rightarrow[0, \infty){ }_{n} \quad K(\cdot, j) \neq 0 \quad \forall j \in I$ and $\|K\|_{\infty}<\infty$.

$$
\begin{aligned}
T: \ell^{1}(I) & \longrightarrow \ell^{\infty}(I) \\
x=\left(x_{j}\right)_{j \in I} & \longrightarrow T f(x)=\left(\sum_{j \in I} x_{j} K(i, j)\right)_{i \in I}
\end{aligned}
$$

Example

I uncountable, $K: I \times I \rightarrow[0, \infty){ }_{n} \quad K(\cdot, j) \neq 0 \quad \forall j \in I$ and $\|K\|_{\infty}<\infty$.

$$
\begin{aligned}
T: \ell^{1}(I) & \longrightarrow \ell^{\infty}(I) \\
x=\left(x_{j}\right)_{j \in I} & \longrightarrow T f(x)=\left(\sum_{j \in I} x_{j} K(i, j)\right)_{i \in I}
\end{aligned}
$$

Then

Example

I uncountable, $K: I \times I \rightarrow[0, \infty), \quad K(\cdot, j) \neq 0 \forall j \in I$ and $\|K\|_{\infty}<\infty$.

$$
\begin{aligned}
T: \ell^{1}(I) & \longrightarrow \ell^{\infty}(I) \\
x=\left(x_{j}\right)_{j \in I} & \longrightarrow T f(x)=\left(\sum_{j \in I} x_{j} K(i, j)\right)_{i \in I}
\end{aligned}
$$

Then

- $L_{w}^{1}\left(\nu_{T}\right)=\left\{f: I \rightarrow \mathbb{R}_{n} \sup _{i \in I} \sum_{j \in I}|f(j)| K(i, j)<\infty\right\}$

Example

I uncountable, $K: I \times I \rightarrow[0, \infty), \quad K(\cdot, j) \neq 0 \forall j \in I$ and $\|K\|_{\infty}<\infty$.

$$
\begin{aligned}
T: \ell^{1}(I) & \longrightarrow \ell^{\infty}(I) \\
x=\left(x_{j}\right)_{j \in I} & \longrightarrow T f(x)=\left(\sum_{j \in I} x_{j} K(i, j)\right)_{i \in I}
\end{aligned}
$$

Then

- $L_{w}^{1}\left(\nu_{T}\right)=\left\{f: I \rightarrow \mathbb{R}_{n} \sup _{i \in I} \sum_{j \in I}|f(j)| K(i, j)<\infty\right\}$
- $\widehat{I}_{\nu_{T}}(f)=\sum_{j \in I} f(j) K(\cdot, j)$ for all $f \in L_{w}^{1}\left(\nu_{T}\right)$

General case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. } \\ E \text { Banach space }\end{array}\right.$

General case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s., } \mathcal{R}_{X}^{\text {loc }}=\Sigma \\ E \text { Banach space }\end{array}\right.$

General case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s., } \mathcal{R}_{X}^{\text {loc }}=\Sigma \\ E \text { Banach space }\end{array}\right.$
Theorem. If T is order-w continuous then

General case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s., } \mathcal{R}_{X}^{\text {loc }}=\Sigma \\ E \text { Banach space }\end{array}\right.$
Theorem. If T is order-w continuous then

If $Z(\xi)$ is a B.f.s., $\xi \ll \mu$ and

with S order-w continuous such that

$$
\sup _{B \in \mathcal{R}_{X} \cap \mathcal{P}(A)}\left|e^{*} S\left(\chi_{B}\right)\right|=0 \Rightarrow e^{*} S\left(\chi_{A}\right)=0
$$ for every $e^{*} \in E^{*}$ and $A \in \Sigma$ with $\chi_{A} \in Z(\xi)$)

$$
\begin{gathered}
{[i]: Z(\xi) \rightarrow L^{1}\left(\nu_{T}\right)} \\
\text { and } S=I_{\nu_{T}} \text { on } Z(\xi)
\end{gathered}
$$

General case

$T: X(\mu) \rightarrow E$ linear $\left\{\begin{array}{l}(\Omega, \Sigma) \text { measurable space } \\ X(\mu) \text { B.f.s. } \mathcal{R}_{X}^{\text {loc }}=\Sigma \\ E \text { Banach space }\end{array}\right.$
Theorem. If T is order-w continuous then

If $Z(\xi)$ is a B.f.s., $\quad \xi \ll \mu$ and

with S order-w continuous such that

$$
\sup _{B \in \mathcal{R}_{X} \cap \mathcal{P}(A)}\left|e^{*} S\left(\chi_{B}\right)\right|=0 \Rightarrow e^{*} S\left(\chi_{A}\right)=0
$$

$$
\text { for every } e^{*} \in E^{*} \text { and } A \in \Sigma \text { with } \chi_{A} \in Z(\xi) \text {) }
$$

围
J. M. Calabuig, O. D. \& E. A. Sánchez Pérez, Factorizing operators on Banach function spaces through spaces of multiplication operators, J. Math. Anal. Appl. 364 (2010), 88-103.

