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J. M. Calabuig, O. D., M. A. Juan & E. A. Sánchez Pérez, Banach lattice
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properties of L1
w of a vector measure on a δ-ring, preprint.



Extension of Iν to L1
w(ν)

ν : R → E positive vector measure
{
R δ-ring on Ω
E Banach lattice

Proposition. If E has the net-Fatou property , then

L1(ν) E-Iν

?
i

[L1(ν)]
F

��
�
��
�*

Iν

?
i

L1
w(ν)

N

Îν
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Îν
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