Hardy's Inequality and Curvature

Des Evans Cardiff University Hardy's inequality:

$$\int_{\Omega} |\nabla f(\mathbf{x})|^p d\mathbf{x} \ge c(n, p, \Omega) \int_{\Omega} \frac{|f(\mathbf{x})|^p}{\delta(\mathbf{x})^p} d\mathbf{x}, \quad f \in C_0^{\infty}(\Omega), \tag{1}$$

where Ω is a domain (an open connected set) in \mathbb{R}^n , $n \ge 2$, 1 , and

$$\delta(\mathbf{x}) := \operatorname{dist}(\mathbf{x}, \mathbb{R}^n \setminus \Omega) = \inf\{|\mathbf{x} - \mathbf{y}|, \ \mathbf{y} \in \mathbb{R}^n \setminus \Omega\}.$$

• For a convex domain Ω in \mathbb{R}^n , $n \ge 2$, the optimal constant in (1) is

$$c(n, p, \Omega) = \left(\frac{p-1}{p}\right)^p.$$
(2)

• Brézis and Marcus (1997), Ω convex, p = 2,

$$\int_{\Omega} |\nabla f(\mathbf{x})|^2 d\mathbf{x} \ge \frac{1}{4} \int_{\Omega} \frac{|f(\mathbf{x})|^2}{\delta(\mathbf{x})^2} d\mathbf{x} + \lambda(\Omega) \int_{\Omega} |f(\mathbf{x})|^2 d\mathbf{x}, \qquad (3)$$

where

$$\lambda(\Omega) \ge \frac{1}{4 \mathrm{diam}(\Omega)^2}.$$

Non-convex domains:

- a sharp constant in (1) is not known in general;
- (Ancona, 1986) for a planar simply connected domain:

$$c(2,2,\Omega) \ge \frac{1}{16};\tag{4}$$

- Laptev-Sobolev: "degrees of convexity";
- Annular regions: Avkhadiev-Laptev 2009.

Objective:

$$\int_{\Omega} |\nabla f(\mathbf{x})|^p d\mathbf{x} \ge c(n, p, \Omega) \int_{\Omega} \left\{ 1 + a(\delta, \partial\Omega)(\mathbf{x}) \right\} \frac{|f(\mathbf{x})|^p}{\delta(\mathbf{x})^p} d\mathbf{x}, \quad (5)$$

where $a(\delta,\partial\Omega)$ depends on δ and geometric properties of the boundary $\partial\Omega$ of Ω .

Skeleton $\mathcal{S}(\Omega)$ and ridge $\mathcal{R}(\Omega)$ of Ω

 $\mathcal{S}(\Omega) := \{ \mathbf{x} \in \Omega : \text{card } N(\mathbf{x}) > 1 \}$

where $N(\mathbf{x}) := {\mathbf{y} \in \partial \Omega : |\mathbf{y} - \mathbf{x}| = \delta(\mathbf{x})}$, the set of *near points* of \mathbf{x} on $\partial \Omega$.

• If $\mathbf{x} \in \Omega$ and $\mathbf{y} \in N(\mathbf{x})$ then $N(\mathbf{y} + t|\mathbf{x} - \mathbf{y}|) = \{y\}$ for all $t \in (0, \lambda)$, where $\lambda := \sup\{t \in (0, \infty) : \mathbf{y} \in N(\mathbf{y} + t|\mathbf{y} - \mathbf{y}|)\}$

$$\lambda := \sup\{t \in (0,\infty) : \mathbf{y} \in N(\mathbf{y} + t|\mathbf{x} - \mathbf{y}|)\}.$$

$$\mathcal{R}(\Omega) := \{ p(\mathbf{x}) : \mathbf{x} \in \Omega \}$$

where $p(\mathbf{x}) := \mathbf{y} + \lambda |\mathbf{x} - \mathbf{y}|$ is called the *ridge point* of $\mathbf{x} \in \Omega$.

- (E/H, 1987): δ is differentiable at **x** if and only if $\mathbf{x} \notin \mathcal{S}(\Omega)$. In $\Omega \setminus \mathcal{S}(\Omega)$, $\nabla \delta$ is continuous and $\nabla \delta(\mathbf{x}) = (\mathbf{y} \mathbf{x})/|\mathbf{y} \mathbf{x}|$, where $N(\mathbf{x}) = \{\mathbf{y}\}$.
- $\mathcal{S}(\Omega)$ is of measure zero
- (D.H.Fremlin, 1997):

$$\mathcal{S}(\Omega) \subseteq \mathcal{R}(\Omega) \subseteq \overline{\mathcal{S}(\Omega)}$$

We shall assume that $\mathcal{R}(\Omega)$ is closed relative to Ω and so $\mathcal{R}(\Omega) = \mathcal{S}(\Omega)$

• if $\partial \Omega \in C^2$, then $\delta \in C^2$ on $\Omega \setminus \mathcal{R}(\Omega)$ ((Lewis/J.Li/Y.Li, 2011)

Lemma 1 (BEL 2011, Gilbarg/Trudinger, Appendix) Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, with C^2 boundary, and set $\delta(\mathbf{x}) := \operatorname{dist}(\mathbf{x}, \partial \Omega)$. Then $\delta \in C^2(\Omega \setminus \mathcal{R}(\Omega))$ and

$$\Delta_{\mathbf{x}}\delta(\mathbf{x}) = \sum_{i=1}^{n-1} \left(\frac{\kappa_i}{1+\delta\kappa_i}\right) \tag{6}$$

where the κ_i are the principal curvatures of $\partial\Omega$ at the near point $N(\mathbf{x})$ of \mathbf{x} . The equation (6) holds for all $\mathbf{x} \in \Omega \setminus \mathcal{R}(\Omega)$.

- The terms $[\kappa_i/(1 + \delta\kappa_i)](\mathbf{y})$, $N(\mathbf{x}) = \{\mathbf{y}\}$, $i = 1, 2, \dots, n-1$, in (6), are the principal curvatures of the level surface of δ through \mathbf{x} at \mathbf{x} ; $\frac{1}{n-1}\sum_{i=1}^{n-1} [\kappa_i/(1 + \delta\kappa_i)](\mathbf{y})$ is the mean curvature of this level surface at \mathbf{x} .
- If Ω is convex, then $S(\bar{\Omega}^c) = R(\bar{\Omega}^c) = \emptyset$.
- If Ω is a convex domain with a C^2 -boundary, then

$$\Delta \delta(\mathbf{x}) \geq 0 \text{ for all } \mathbf{x} \in \overline{\Omega}^{c}, \delta(\mathbf{x}) = \operatorname{dist}(\mathbf{x}, \Omega),$$
(7)
$$\Delta \delta(\mathbf{x}) \leq 0 \text{ for all } \mathbf{x} \in \Omega \setminus \mathcal{R}(\Omega).$$
(8)

• If Ω is convex and $\partial \Omega \in C^2$, then for all i and with $N(\mathbf{x}) = {\mathbf{y}}$,

$$1 + \delta(\mathbf{x})\kappa_i(\mathbf{y}) \geq 1, \text{ for all } \mathbf{x} \in \overline{\Omega}^c, \ \delta(\mathbf{x}) = \text{dist}(\mathbf{x}, \Omega)$$
(9)
$$1 + \delta(\mathbf{x})\kappa_i(\mathbf{y}) > 0, \text{ for all } \mathbf{x} \in \Omega \setminus \mathcal{R}(\Omega).$$
(10)

• If Ω is convex and $\partial \Omega \in C^2$ then $\mathbf{x} \in \mathcal{R}(\Omega) \setminus \mathcal{S}(\Omega)$ if and only if for $N(\mathbf{x}) = {\mathbf{y}}$, and some i,

 $1 + \delta(\mathbf{x})\kappa_i(\mathbf{y}) = 0.$

In this case $\mathcal{R}(\Omega)$ has Lebesgue measure zero.

Theorem 1 If $\partial \Omega \in C^2$, then for all $f \in \mathbb{C}_0^{\infty}(\Omega \setminus \mathcal{R}(\Omega))$

$$\int_{\Omega} |\nabla \delta \cdot \nabla f|^p d\mathbf{x} \ge \left(\frac{p-1}{p}\right)^p \int_{\Omega} \left\{ 1 - \frac{p\delta\tilde{\kappa}}{p-1} \right\} \frac{|f|^p}{\delta^p} d\mathbf{x}$$
(11)

where $\tilde{\kappa} := \sum_{i=1}^{n-1} \frac{\kappa_i}{1+\delta\kappa_i}$. If Ω is convex, then $\tilde{\kappa} \leq 0$. If $\mathcal{R}(\Omega)$ is "reasonably regular" then (11) holds for all $f \in C_0^{\infty}(\Omega)$.

Theorem 2 When Ω is a ball B_R , $\delta(\mathbf{x}) = R - |\mathbf{x}|$, $\kappa_i(\mathbf{x}) = -1/R$, $i = 1, 2, \dots, n-1$, $\Delta\delta(\mathbf{x}) = -(n-1)/|\mathbf{x}|$, $\mathcal{R}(B_R) = \{0\}$ and for all $f \in C_0^{\infty}(\Omega)$,

$$\int_{B_R} |\nabla f(\mathbf{x})|^2 d\mathbf{x} \ge \frac{1}{4} \int_{B_R} \left\{ \frac{(n-2)^2}{|\mathbf{x}|^2} + \frac{1}{\delta(\mathbf{x})^2} + \frac{2}{|\mathbf{x}|\delta(\mathbf{x})} \right\} |f(\mathbf{x})|^2 d\mathbf{x}$$
(12)

Theorem 3 Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be convex with a C^2 boundary. Then for all $f \in C_0^{\infty}(\mathbb{R}^n \setminus \overline{\Omega})$,

$$\int_{\mathbb{R}^n \setminus \bar{\Omega}} |\nabla f(\mathbf{x})|^p d\mathbf{x} \ge \left(\frac{p-1}{p}\right)^p \int_{\mathbb{R}^n \setminus \bar{\Omega}} \left\{ 1 - \frac{p\tilde{\kappa}\delta}{p-1} \right\} \frac{|f(\mathbf{x})|^p}{\delta(\mathbf{x})^p} d\mathbf{x}, \quad (13)$$
where $\tilde{\kappa} = \sum_{i=1}^{n-1} \frac{\kappa_i}{1+\delta\kappa_i} \ge 0.$

Theorem 4 Let Ω be a convex domain in \mathbb{R}^n with a C^2 boundary. Then for all $f \in \mathbb{C}_0^{\infty}(\mathbb{R}^n \setminus \overline{\Omega})$,

$$\int_{\mathbb{R}^n \setminus \bar{\Omega}} \delta^p |\nabla \delta \cdot \nabla f|^p d\mathbf{x} \ge \frac{1}{p^p} \int_{\mathbb{R}^n \setminus \bar{\Omega}} [1 + p\tilde{\kappa}\delta] |f|^p d\mathbf{x},$$

where $\tilde{\kappa} = \sum_{i=1}^{n-1} \frac{\kappa_i}{1 + \delta \kappa_i} \ge 0.$

Non-convex domains: Torus

Example 1 Let $\Omega \subset \mathbb{R}^3$ be the interior of a ring torus with minor radius r and major radius R > 2r. Then $\Delta \delta < 0$ in $\Omega \setminus \mathcal{R}(\Omega)$ and

$$\int_{\Omega} |\nabla \delta \cdot \nabla f|^{p} d\mathbf{x} \geq \left(\frac{p-1}{p}\right)^{p} \int_{\Omega} \frac{|f|^{p}}{\delta^{p}} d\mathbf{x} + \left(\frac{p-1}{p}\right)^{p-1} \int_{\Omega} \left(\frac{1}{(r-\delta)} - \frac{1}{\sqrt{x_{1}^{2} + x_{2}^{2}}}\right) \frac{|f|^{p}}{\delta^{p-1}} d\mathbf{x}$$

$$(14)$$

for all $f \in \mathbb{C}_0^{\infty}(\Omega)$, where $\mathbf{x} \in \Omega$ has co-ordinates (x_1, x_2, x_3) , and the last integrand is positive.

Doubly connected domains

A domain $\Omega \subset \mathbb{R}^2 \equiv \mathbb{C}$ is *doubly connected* if its boundary is a disjoint union of 2 simple curves. If it has a smooth boundary then it can be mapped conformally onto an annulus $\Omega_{\rho,R} = B_R \setminus \overline{B_\rho} = \{z \in \mathbb{C} : \rho < |z| < R\}$, for some ρ, R .

Lemma 2 Let $\Omega_1 \subset \Omega_2 \subset \mathbb{C}$ and $B_\rho \subset B_R \subset \mathbb{C}$, $0 < \rho < R$, where B_r is the disc of radius r centered at the origin. Let

$$F:\Omega_2\setminus\overline{\Omega}_1\to B_R\setminus\overline{B_\rho}$$

be analytic and univalent. Then for $\mathbf{z} = x_1 + ix_2$, $\mathbf{x} = (x_1, x_2) \in \Omega_2 \setminus \overline{\Omega}_1$,

$$\mathfrak{F}(\mathbf{z}) := -\frac{|F'(\mathbf{z})|^2}{|F(\mathbf{z})|^2} + |F'(\mathbf{z})|^2 \left\{ \frac{1}{|F(\mathbf{z})| - \rho} + \frac{1}{R - |F(\mathbf{z})|} \right\}^2 \tag{15}$$

is invariant under scaling, rotation, and inversion. Hence, \mathfrak{F} does not depend on the choice of the mapping F, but only on the geometry of $\Omega_2 \setminus \overline{\Omega}_1$.

Theorem 4 For $\Omega := \Omega_2 \setminus \overline{\Omega}_1 \subset \mathbb{R}^2$,

$$\int_{\Omega} |\nabla u(\mathbf{x})|^2 d\mathbf{x} \ge \frac{1}{4} \int_{\Omega} \mathfrak{F}(\mathbf{x}) |u(\mathbf{x})|^2 d\mathbf{x}.$$

Example 2 Let $\Phi(z) = (z-1)(z+1)$ and

$$\Omega = \{ z : \rho^2 < |\Phi(z)| < R^2 \}$$

for $0 < \rho < R.$ The function $F(z) = \sqrt{\Phi(z)}$ is analytic and univalent in Ω and

$$F: \Omega \to \Omega_{\rho,R}$$

A calculation gives

$$\begin{split} \mathfrak{F}(z) &= -\frac{|z|^2}{|z^2 - 1|^2} \\ &+ \frac{|z|^2}{|z^2 - 1|} \frac{(R - \rho)^2}{(\sqrt{|z|^2 - 1} - \rho)^2 (R - \sqrt{|z|^2 - 1})^2}. \end{split}$$