Hardy's Inequality and Curvature

Des Evans
Cardiff University

Hardy's inequality:

$$
\begin{equation*}
\int_{\Omega}|\nabla f(\mathbf{x})|^{p} d \mathbf{x} \geq c(n, p, \Omega) \int_{\Omega} \frac{|f(\mathbf{x})|^{p}}{\delta(\mathbf{x})^{p}} d \mathbf{x}, \quad f \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

where Ω is a domain (an open connected set) in $\mathbb{R}^{n}, n \geq 2,1<p<\infty$, and

$$
\delta(\mathbf{x}):=\operatorname{dist}\left(\mathbf{x}, \mathbb{R}^{\mathbf{n}} \backslash \Omega\right)=\inf \left\{|\mathbf{x}-\mathbf{y}|, \mathbf{y} \in \mathbb{R}^{\mathrm{n}} \backslash \Omega\right\}
$$

- For a convex domain Ω in $\mathbb{R}^{n}, n \geq 2$, the optimal constant in (1) is

$$
\begin{equation*}
c(n, p, \Omega)=\left(\frac{p-1}{p}\right)^{p} . \tag{2}
\end{equation*}
$$

- Brézis and Marcus (1997), Ω convex, $p=2$,

$$
\begin{equation*}
\int_{\Omega}|\nabla f(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{1}{4} \int_{\Omega} \frac{|f(\mathbf{x})|^{2}}{\delta(\mathbf{x})^{2}} d \mathbf{x}+\lambda(\Omega) \int_{\Omega}|f(\mathbf{x})|^{2} d \mathbf{x} \tag{3}
\end{equation*}
$$

where

$$
\lambda(\Omega) \geq \frac{1}{4 \operatorname{diam}(\Omega)^{2}}
$$

Non-convex domains:

- a sharp constant in (1) is not known in general;
- (Ancona, 1986) for a planar simply connected domain:

$$
\begin{equation*}
c(2,2, \Omega) \geq \frac{1}{16} \tag{4}
\end{equation*}
$$

- Laptev-Sobolev: "degrees of convexity";
- Annular regions: Avkhadiev-Laptev 2009.

Objective:

$$
\begin{equation*}
\int_{\Omega}|\nabla f(\mathbf{x})|^{p} d \mathbf{x} \geq c(n, p, \Omega) \int_{\Omega}\{1+a(\delta, \partial \Omega)(\mathbf{x})\} \frac{|f(\mathbf{x})|^{p}}{\delta(\mathbf{x})^{p}} d \mathbf{x} \tag{5}
\end{equation*}
$$

where $a(\delta, \partial \Omega)$ depends on δ and geometric properties of the boundary $\partial \Omega$ of Ω.

Skeleton $\mathcal{S}(\Omega)$ and ridge $\mathcal{R}(\Omega)$ of Ω

$$
\mathcal{S}(\Omega):=\{\mathbf{x} \in \Omega: \operatorname{card} N(\mathbf{x})>1\}
$$

where $N(\mathbf{x}):=\{\mathbf{y} \in \partial \Omega:|\mathbf{y}-\mathbf{x}|=\delta(\mathbf{x})\}$, the set of near points of \mathbf{x} on $\partial \Omega$.

- If $\mathbf{x} \in \Omega$ and $\mathbf{y} \in N(\mathbf{x})$ then $N(\mathbf{y}+t|\mathbf{x}-\mathbf{y}|)=\{y\}$ for all $t \in(0, \lambda)$, where

$$
\lambda:=\sup \{t \in(0, \infty): \mathbf{y} \in N(\mathbf{y}+t|\mathbf{x}-\mathbf{y}|)\} .
$$

$$
\mathcal{R}(\Omega):=\{p(\mathbf{x}): \mathbf{x} \in \Omega\}
$$

where $p(\mathbf{x}):=\mathbf{y}+\lambda|\mathbf{x}-\mathbf{y}|$ is called the ridge point of $\mathbf{x} \in \Omega$.

- (E/H, 1987): δ is differentiable at \mathbf{x} if and only if $\mathbf{x} \notin \mathcal{S}(\Omega)$. In $\Omega \backslash$ $\mathcal{S}(\Omega), \nabla \delta$ is continuous and $\nabla \delta(\mathbf{x})=(\mathbf{y}-\mathbf{x}) /|\mathbf{y}-\mathbf{x}|$, where $N(\mathbf{x})=$ $\{\mathbf{y}\}$.
- $\mathcal{S}(\Omega)$ is of measure zero
- (D.H.Fremlin, 1997):

$$
\mathcal{S}(\Omega) \subseteq \mathcal{R}(\Omega) \subseteq \overline{\mathcal{S}(\Omega)}
$$

We shall assume that $\mathcal{R}(\Omega)$ is closed relative to Ω and so $\mathcal{R}(\Omega)=\overline{\mathcal{S}(\Omega)}$

- if $\partial \Omega \in C^{2}$, then $\delta \in C^{2}$ on $\Omega \backslash \mathcal{R}(\Omega)((L e w i s / J . L i / Y . L i, ~ 2011)$

Lemma 1 (BEL 2011, Gilbarg/Trudinger, Appendix) Let Ω be a domain in \mathbb{R}^{n}, $n \geq 2$, with C^{2} boundary, and set $\delta(\mathbf{x}):=\operatorname{dist}(\mathbf{x}, \partial \Omega)$. Then $\delta \in C^{2}(\Omega \backslash$ $\mathcal{R}(\Omega)$) and

$$
\begin{equation*}
\Delta_{\mathbf{x}} \delta(\mathbf{x})=\sum_{i=1}^{n-1}\left(\frac{\kappa_{i}}{1+\delta \kappa_{i}}\right) \tag{6}
\end{equation*}
$$

where the κ_{i} are the principal curvatures of $\partial \Omega$ at the near point $N(\mathbf{x})$ of \mathbf{x}. The equation (6) holds for all $\mathrm{x} \in \Omega \backslash \mathcal{R}(\Omega)$.

- The terms $\left[\kappa_{i} /\left(1+\delta \kappa_{i}\right)\right](\mathbf{y}), N(\mathbf{x})=\{\mathbf{y}\}, i=1,2, \cdots, n-1$, in (6), are the principal curvatures of the level surface of δ through \mathbf{x} at \mathbf{x}; $\frac{1}{n-1} \sum_{i=1}^{n-1}\left[\kappa_{i} /\left(1+\delta \kappa_{i}\right)\right](\mathbf{y})$ is the mean curvature of this level surface at x .
- If Ω is convex, then $S\left(\bar{\Omega}^{c}\right)=R\left(\bar{\Omega}^{c}\right)=\emptyset$.
- If Ω is a convex domain with a C^{2}-boundary, then

$$
\begin{align*}
& \Delta \delta(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in \bar{\Omega}^{\mathrm{c}}, \delta(\mathbf{x})=\operatorname{dist}(\mathbf{x}, \Omega) \tag{7}\\
& \Delta \delta(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in \Omega \backslash \mathcal{R}(\Omega) \tag{8}
\end{align*}
$$

- If Ω is convex and $\partial \Omega \in C^{2}$, then for all i and with $N(\mathbf{x})=\{\mathbf{y}\}$,

$$
\begin{align*}
& 1+\delta(\mathbf{x}) \kappa_{i}(\mathbf{y}) \geq 1, \text { for all } \mathbf{x} \in \bar{\Omega}^{\mathrm{c}}, \delta(\mathbf{x})=\operatorname{dist}(\mathbf{x}, \Omega) \tag{9}\\
& 1+\delta(\mathbf{x}) \kappa_{i}(\mathbf{y})>0, \text { for all } \mathbf{x} \in \Omega \backslash \mathcal{R}(\Omega) \tag{10}
\end{align*}
$$

- If Ω is convex and $\partial \Omega \in C^{2}$ then $\mathbf{x} \in \mathcal{R}(\Omega) \backslash \mathcal{S}(\Omega)$ if and only if for $N(\mathbf{x})=\{\mathbf{y}\}$, and some i,

$$
1+\delta(\mathbf{x}) \kappa_{i}(\mathbf{y})=0
$$

In this case $\mathcal{R}(\Omega)$ has Lebesgue measure zero.

Theorem 1 If $\partial \Omega \in C^{2}$, then for all $f \in \mathbb{C}_{0}^{\infty}(\Omega \backslash \mathcal{R}(\Omega))$

$$
\begin{equation*}
\int_{\Omega}|\nabla \delta \cdot \nabla f|^{p} d \mathbf{x} \geq\left(\frac{p-1}{p}\right)^{p} \int_{\Omega}\left\{1-\frac{p \delta \tilde{\kappa}}{p-1}\right\} \frac{|f|^{p}}{\delta^{p}} d \mathbf{x} \tag{11}
\end{equation*}
$$

where $\tilde{\kappa}:=\sum_{i=1}^{n-1} \frac{\kappa_{i}}{1+\delta \kappa_{i}}$. If Ω is convex, then $\tilde{\kappa} \leq 0$. If $\mathcal{R}(\Omega)$ is "reasonably regular" then (11) holds for all $f \in C_{0}^{\infty}(\Omega)$.

Theorem 2 When Ω is a ball $B_{R}, \delta(\mathbf{x})=R-|\mathbf{x}|, \kappa_{i}(\mathbf{x})=-1 / R, i=$ $1,2, \cdots, n-1, \Delta \delta(\mathbf{x})=-(n-1) /|\mathbf{x}|, \mathcal{R}\left(B_{R}\right)=\{0\}$ and for all $f \in$ $C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{B_{R}}|\nabla f(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{1}{4} \int_{B_{R}}\left\{\frac{(n-2)^{2}}{|\mathbf{x}|^{2}}+\frac{1}{\delta(\mathbf{x})^{2}}+\frac{2}{|\mathbf{x}| \delta(\mathbf{x})}\right\}|f(\mathbf{x})|^{2} d \mathbf{x} \tag{12}
\end{equation*}
$$

Theorem 3 Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be convex with a C^{2} boundary. Then for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash \bar{\Omega}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n} \backslash \bar{\Omega}}|\nabla f(\mathbf{x})|^{p} d \mathbf{x} \geq\left(\frac{p-1}{p}\right)^{p} \int_{\mathbb{R}^{n} \backslash \bar{\Omega}}\left\{1-\frac{p \tilde{\kappa} \delta}{p-1}\right\} \frac{|f(\mathbf{x})|^{p}}{\delta(\mathbf{x})^{p}} d \mathbf{x}, \tag{13}
\end{equation*}
$$

where $\tilde{\kappa}=\sum_{i=1}^{n-1} \frac{\kappa_{i}}{1+\delta \kappa_{i}} \geq 0$.
Theorem 4 Let Ω be a convex domain in \mathbb{R}^{n} with a C^{2} boundary. Then for all $f \in \mathbb{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash \bar{\Omega}\right)$,

$$
\int_{\mathbb{R}^{n} \backslash \bar{\Omega}} \delta^{p}|\nabla \delta \cdot \nabla f|^{p} d \mathbf{x} \geq \frac{1}{p^{p}} \int_{\mathbb{R}^{n} \backslash \bar{\Omega}}[1+p \tilde{\kappa} \delta]|f|^{p} d \mathbf{x}
$$

where $\tilde{\kappa}=\sum_{i=1}^{n-1} \frac{\kappa_{i}}{1+\delta \kappa_{i}} \geq 0$.

Non-convex domains: Torus

Example 1 Let $\Omega \subset \mathbb{R}^{3}$ be the interior of a ring torus with minor radius r and major radius $R>2 r$. Then $\Delta \delta<0$ in $\Omega \backslash \mathcal{R}(\Omega)$ and

$$
\begin{align*}
\int_{\Omega}|\nabla \delta \cdot \nabla f|^{p} d \mathbf{x} & \geq\left(\frac{p-1}{p}\right)^{p} \int_{\Omega} \frac{|f|^{p}}{\delta^{p}} d \mathbf{x} \\
& +\left(\frac{p-1}{p}\right)^{p-1} \int_{\Omega}\left(\frac{1}{(r-\delta)}-\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right) \frac{|f|^{p}}{\delta^{p-1}} d \mathbf{x} \tag{14}
\end{align*}
$$

for all $f \in \mathbb{C}_{0}^{\infty}(\Omega)$, where $\mathbf{x} \in \Omega$ has co-ordinates $\left(x_{1}, x_{2}, x_{3}\right)$, and the last integrand is positive.

Doubly connected domains

A domain $\Omega \subset \mathbb{R}^{2} \equiv \mathbb{C}$ is doubly connected if its boundary is a disjoint union of 2 simple curves. If it has a smooth boundary then it can be mapped conformally onto an annulus $\Omega_{\rho, R}=B_{R} \backslash \overline{B_{\rho}}=\{z \in \mathbb{C}: \rho<|z|<R\}$, for some ρ, R.
Lemma 2 Let $\Omega_{1} \subset \Omega_{2} \subset \mathbb{C}$ and $B_{\rho} \subset B_{R} \subset \mathbb{C}, 0<\rho<R$, where B_{r} is the disc of radius r centered at the origin. Let

$$
F: \Omega_{2} \backslash \bar{\Omega}_{1} \rightarrow B_{R} \backslash \overline{B_{\rho}}
$$

be analytic and univalent. Then for $\mathbf{z}=x_{1}+i x_{2}, \mathbf{x}=\left(x_{1}, x_{2}\right) \in \Omega_{2} \backslash \bar{\Omega}_{1}$,

$$
\begin{equation*}
\mathfrak{F}(\mathbf{z}):=-\frac{\left|F^{\prime}(\mathbf{z})\right|^{2}}{|F(\mathbf{z})|^{2}}+\left|F^{\prime}(\mathbf{z})\right|^{2}\left\{\frac{1}{|F(\mathbf{z})|-\rho}+\frac{1}{R-|F(\mathbf{z})|}\right\}^{2} \tag{15}
\end{equation*}
$$

is invariant under scaling, rotation, and inversion. Hence, \mathfrak{F} does not depend on the choice of the mapping F, but only on the geometry of $\Omega_{2} \backslash \bar{\Omega}_{1}$.

Theorem 4 For $\Omega:=\Omega_{2} \backslash \bar{\Omega}_{1} \subset \mathbb{R}^{2}$,

$$
\int_{\Omega}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{1}{4} \int_{\Omega} \mathfrak{F}(\mathbf{x})|u(\mathbf{x})|^{2} d \mathbf{x}
$$

Example 2 Let $\Phi(z)=(z-1)(z+1)$ and

$$
\Omega=\left\{z: \rho^{2}<|\Phi(z)|<R^{2}\right\}
$$

for $0<\rho<R$. The function $F(z)=\sqrt{\Phi(z)}$ is analytic and univalent in Ω and

$$
F: \Omega \rightarrow \Omega_{\rho, R}
$$

A calculation gives

$$
\begin{aligned}
\mathfrak{F}(z) & =-\frac{|z|^{2}}{\left|z^{2}-1\right|^{2}} \\
& +\frac{|z|^{2}}{\left|z^{2}-1\right|} \frac{(R-\rho)^{2}}{\left(\sqrt{|z|^{2}-1}-\rho\right)^{2}\left(R-\sqrt{|z|^{2}-1}\right)^{2}}
\end{aligned}
$$

