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The purpose of this talk

We shall present some recent results on uniform non ℓn1-ness

for ψ-direct sums of Banach spaces and especially for the ℓ1- and

ℓ∞-sums.

Some applications will be mentioned concerning super-reflexivity

and FPP.



1. Preliminary definitions and facts

X: a real Banach space with dimX ≥ 2.

BX: the closed unit ball of X

SX: the unit sphere of X



Definition 1.1

X is called strictly convex (SC) provided

x, y ∈ SX , x ̸= y =⇒
∥∥∥∥x+ y
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Definition 1.2

X is called uniformly convex (UC)

provided for any ϵ (0 < ϵ < 2) there exists δ (0 < δ < 1) such

that

x, y ∈ SX , ∥x− y∥ ≥ ϵ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ
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Definition 1.3 (James, 1964)

X is called uniformly non-square (UNS)

provided there exists δ (0 < δ < 1) such that

x, y ∈ SX ,
∥∥∥∥x− y2

∥∥∥∥ ≥ 1− δ ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ

Or equivalently, provided ∃ ϵ > 0 and δ > 0 such that

x, y ∈ SX , ∥x− y∥ ≥ ϵ ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ



UNS vs UC

X: UC ⇐⇒ ∀ ε ∃ δ s.t. ∥x− y∥ ≥ ϵ, x, y ∈ SX ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1−δ

X: UNS ⇐⇒ ∃ ε, δ s.t. ∥x− y∥ ≥ ϵ, x, y ∈ SX ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1−δ

x

y

In the above formulation of UNS we cannot let ϵ > 0 tend to
0. That is, we have the same conclusion as UC for all x, y ∈ SX
which are ”apart from each other to some extent”.
Thus UC implies UNS.



UNS vs SC

There is no implications between UNS and SC.

(We shall see this in the examples below.)



Example 1.1

(i) Let 1 < p <∞. Then Lp, ℓp are UC, and hence SC.

(ii) L1, L∞, ℓ1, ℓ∞, c0 are not SC (not UC).

Example 1.2 Consider the following norms on C[0,1].

(i) ∥f∥∞ = max{|f(t)| : 0 ≤ t ≤ 1}: not SC

(ii) ∥f∥2 =

{∫ 1

0
|f(t)|2 dt

}1/2

: SC (UC).

(iii) ∥f∥0 := ∥f∥∞+ ∥f∥2 is SC, but not UNS and hene not UC.

Example 1.3 Let 1 < λ <
√
2.

Let X2,λ := (ℓ2, ∥ · ∥λ), where

∥(ξn)∥λ = max{∥(ξn)∥2, λ∥(ξn)∥∞}

Then X2,λ is UNS, but not SC.



Connection to approximation problems

Theorem A (Approximation to a finite dimensional subspace)� �
Let F be a finite dimensional subspace of X.

Then for any x ∈ X there exists y0 ∈ F such that

∥x− y0∥ ≤ ∥x− y∥ for all y ∈ F.

(y0 is called a best approximation of x in F .)

If X is strictly convex, we have a unique best approximation!� �



Theorem B (Approximation to a closed convex subset)� �
Let X be uniformly convex.

Let K be a nonempty closed convex subset of X.

Then for any x ∈ X there exists a unique y0 ∈ K such that

∥x− y0∥ ≤ ∥x− y∥ for all y ∈ K

� �



Connection to the fixed point property (FPP)

Theorem C (J.Garćıa-Falset et al., 2006)� �
If X is uniformly non-square, X has FPP for nonexpansive

mappings.

� �



Connection to reflexivity

定理D (James, 1964)� �
Uniformly non-square spaces are reflexive.

� �

Thus

X: UC =⇒ X: UNS =⇒ X: reflexive



Example 1.4 Consider the space

X2,λ = (ℓ2, ∥ · ∥λ), 1 < λ <
√
2,

where ∥(ξn)∥λ = max{∥(ξn)∥2, λ∥(ξn)∥∞}.

Then:

(i) If 1 < λ <
√
2,

X2,λ is UNS, but not SC，whence not UC.

(ii) If λ =
√
2,

X2,
√
2 is reflexive, but not UNS.



Connection to super-reflexivity

Theorem E� �
The following are equivalent.

(i) X is super-reflexive

(ii) X admits an equivalent UC norm (Enflo, 1972)

(iii) X admits an equivalent UNS norm (James, 1972)

� �



2. Uniformly non-ℓn1 spaces



X: UNS ⇐⇒ ∃δ > 0 s.t.

∥x∥ = ∥y∥ = 1,
∥∥∥∥x− y2

∥∥∥∥ ≥ 1− δ =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ

min{∥x− y∥, ∥x+ y∥ ≤ 2(1− δ)

————————————————————————-

X: UNS ⇐⇒ ∃δ > 0 s.t. ∀ x, y ∈ SX

min{∥x+ y∥, ∥x− y∥} ≤ 2(1− δ)



Definition 2.1� �
X is called uniformly non-ℓn1

provided there exists ϵ (0 < ϵ < 1) such that

∀x1, · · · , xn ∈ SX
∃θ = (θj) (an n-tuple of signs) for which∥∥∥∥∥∥

n∑
j=1

θjxj

∥∥∥∥∥∥ ≤ n(1− ϵ).
� �
If n = 2, uniform non-ℓ21-ness coincides with UNS-ness.

If n = 3, uniform non-ℓ31 spaces are called uniformly non-
octahedral.

If n = 1, the formal definition is possible, but no Banach space
is uniformly non-ℓ11.



Proposition A� �
X: uniformly non-ℓn1 =⇒ X: uniformly non-ℓn+1

1� �

Example 2.1

The space ℓn1 is uniformly non-ℓn+1
1 , but not uniformly non-ℓn1.



Why we discuss the uniform non ℓn1-ness:

(i) X: UNS (uniformly non ℓ21) =⇒ X: reflexive

X: uniformly non ℓ31 =⇒ X: reflexive ?

This is not true ! (James [6])

(ii) X: UNS =⇒ X: FPP (2006)

X: uniformly non ℓ31 =⇒ X: FPP ?

This is not known !



3. ψ-direct sums of Banach spaces



Absolute norms on C2

Definition 3.1 Let ∥ · ∥ be a norm on C2.

(i) ∥ · ∥: absolute ⇐⇒ ∥(z, w)∥ = ∥(|z|, |w|)∥ (∀z, w ∈ C)

(ii) ∥ · ∥: normalized ⇐⇒ ∥(1,0)∥ = ∥(0,1)∥ = 1

Na := {all absolute normalized norms on C2}



Example 3.1 ℓp-norms (1 ≤ p ≤ ∞):

∥(z, w)∥p =


(|z|p+ |w|p)1/p if 1 ≤ p <∞,

max(|z|, |w|) if p =∞.

Lemma A (Bonsall-Duncan, LN in 1973)� �
For all ∥ · ∥ ∈ Na

∥ · ∥∞ ≤ ∥ · ∥ ≤ ∥ · ∥1

� �



Lemma B1 (B-D)� �
For any ∥ · ∥ ∈ Na let

ψ(t) = ∥(1− t, t)∥ (0 ≤ t ≤ 1) (1)

Then ψ(t) is convex (continuous) on [0,1], ψ(0) = ψ(1) = 1,

max{1− t, t} ≤ ψ(t) ≤ 1
(2)

� �

Ψ:={all convex functions on [0,1] satisfying (2)}



To see the converse the following observation indicates

how one should construct a norm in Na

from a given convex function ψ ∈ Ψ:

—————————————————

For a given ∥ · ∥ ∈ Na let

ψ(t) = ∥(1− t, t)∥ (0 ≤ t ≤ 1).

Then for all (z, w) ̸= (0,0)

∥(z, w)∥ = (|z|+ |w|)
∥∥∥∥∥
(

|z|
|z|+ |w|

,
|w|

|z|+ |w|

)∥∥∥∥∥
= (|z|+ |w|)ψ

(
|w|

|z|+ |w|

)



Lemma B2 (B-D)� �
For any ψ ∈ Ψ define

∥(z, w)∥ψ =



(|z|+ |w|)ψ
(
|w|

|z|+ |w|

)

if (z, w) ̸= (0,0),

0 if (z, w) = (0,0).

(3)

Then ∥ · ∥ψ ∈ Na and

ψ(t) = ∥(1− t, t)∥ψ (0 ≤ t ≤ 1) (1′)

� �

By Lemmas B1 and B2

Na and Ψ are in 1-1 correspondence with the equation (1’):

∥ · ∥ = ∥ · ∥ψ ←→ ψ



Example 3.2

The convex function corresponding to the ℓp-norm is given by

ψp(t) := ∥(1− t, t)∥p

=


{(1− t)p+ tp}1/p if 1 ≤ p <∞,

max{1− t, t} if p =∞



Example 3.4 (Lorentz ℓp,q norm). Let 1 ≤ q ≤ p ≤ ∞ and let

∥(z, w)∥p,q :=


{
z∗q +2(q/p)−1w∗q

}1/q
if q <∞,

max{z∗,21/pw∗} if q =∞,

where {z∗, w∗} is the non-increasing rearrangement of {|z|, |w|},
that is, z∗ ≥ w∗.

Then ∥ · ∥p,q ∈ Na and the corresponding function (q <∞) is

ψp,q(t) := ∥(1− t, t)∥p,q

=


{(1− t)q +2q/p−1tq}1/q if 0 ≤ t ≤ 1

2,

{tq +2q/p−1(1− t)q}1/q if 1
2 ≤ t ≤ 1.

If p = q, this norm coincides with the ℓp-norm.



ψ-Direct Sums of Banach Spaces

Definition 3.2 (Takahashi-Kato-Saito, JIA, 2002)� �
The ψ-direct sum X ⊕ψ Y of Banach spaces X and Y

is the direct sum X ⊕ Y equipped with the norm:

∥(x, y)∥ψ := ∥(∥x∥, ∥y∥)∥ψ

� �

Proposition 1.

X,Y : Banach spaces ⇒ X ⊕ψ Y is a Banach space.



Example 3.5 (ℓp-sum).

The ℓp-sum X⊕pY := (X⊕Y, ∥·∥p) is the ψp-direct sum X⊕ψpY .

Example 3.6 (ℓp,q-sum).

Let 1 ≤ q ≤ p ≤ ∞.

The ℓp,q-sum X ⊕p,q Y := (X ⊕ Y, ∥ · ∥p,q) is the ψp,q-direct sum

X ⊕ψp,q Y



Theorem 3.1 (Takahashi-Kato-Saito 2002; Saito-Kato 2003)� �
(i) X ⊕ψ Y : SC

⇐⇒ X, Y are SC and ψ is strictly convex.

(ii) X ⊕ψ Y : UC

⇐⇒ X, Y are UC and ψ is strictly convex.

� �



Theorem 3.2 (Kato-Saito-Tamura, MIA, 2004)� �
X ⊕ψ Y : UNS ⇐⇒ X, Y are UNS and ψ ̸= ψ1, ψ∞.

� �



Corollary 3.1

Let 1 ≤ q ≤ p ≤ ∞ and neither p = q = 1 nor p = q =∞.

Then

(i) X ⊕p,q Y : SC ⇐⇒ X,Y : SC

(ii) X ⊕p,q Y : UC ⇐⇒ X,Y : UC

(iii) X ⊕p,q Y : UNS ⇐⇒ X,Y : UNS

The same is true for the ℓp-sum X ⊕p Y, 1 < p <∞,

as the case p = q.



Recall

Theorem 3.2

X ⊕ψ Y : UNS ⇐⇒ X, Y : UNS and ψ ̸= ψ1, ψ∞.

This is extended to the uniform non-ℓn1-ness.



Theorem 3.3 (Kato-Saito-Tamura, JNCA, 2010)� �

Assume that neither X nor Y is uniformly non-ℓn−11 .

Then the following are equivalent.

(i) X ⊕ψ Y is uniformly non-ℓn1.

(ii) X and Y are uniformly non-ℓn1 and ψ ̸= ψ1, ψ∞.

� �

Remark 3.1

We cannot remove the condition,

neither X nor Y is uniformly non-ℓn−11 for (i) ⇒ (ii).



Theorem 3.2 implies that

X ⊕1 Y and X ⊕∞ Y cannot be UNS for all X and Y .

(Also recall that ℓ21 and ℓ2∞ are not UNS.)

Theorem 3.3 indicates that

if either X or Y is uniformly non-ℓn−11 ,

X ⊕1 Y and X ⊕∞ Y can be uniformly non-ℓn1 (n ≥ 3).

Our next concern is these extreme cases !



4. ℓ1- and ℓ∞-sums



ℓ1-sum

Theorem 4.1 (Kato-Tamura, Comment. Math. 2007; cf.JNCA)� �
The following are equivalent.

(i) X ⊕1 Y is uniformly non-ℓ31.

(ii) X and Y are uniformly non-square.

� �



Theorem 4.1 (ibidem)� �
The following are equivalent.

(i) X ⊕1 Y is uniformly non-ℓ31.

(ii) X and Y are uniformly non-square.

� �

Theorem 4.2 (ibidem)� �
The following are equivalent.

(i) X ⊕1 Y is uniformly non-ℓn1.

(ii) There exist n1, n2 ∈ N with n1 + n2 = n− 1 such that

X is uniformly non-ℓn1+1
1 and

Y is uniformly non-ℓn2+1
1 .� �



Corollary 4.1 (ibidem)� �
Let X ⊕1 Y be uniformly non-ℓn1.

Then both of X and Y are uniformly non-ℓn−11 .

� �



ℓ∞-sum

Recall the ℓ1-sum case (Theorem 4.1):

X, Y : UNS ⇐⇒ X ⊕1 Y : uniformly non-ℓ31

Theorem 4.3 (ibidem.)� �
X, Y : UNS =⇒ X ⊕∞ Y : uniformly non-ℓ31

The converse is not true !
� �

For three Banach spaces we obtain the next result,

which is interesting in contrast with the above ℓ1-sum case.



Theorem 4,4 (Kato-Tamura, Comment. Math., 2009; cf.JNCA)� �
For three Banach spaces X, Y and Z

the following are equivalent.

(i) (X ⊕ Y ⊕ Z)∞ is uniformly non-ℓ31.

(ii) X, Y and Z are UNS.

� �



5. More satisfactory results on ℓ1- and ℓ∞-sums



Theorem 5.1 (Kato-Tamura, Comment Math., 2007)� �
The following are equivalent.

(i) (X1 ⊕ · · · ⊕Xm)1 is uniformly non-ℓn1.

(ii) There exist m positive integers n1, . . . , nm
with n1 + n2 + · · ·+ nm = n− 1 such that

Xi is uniformly non-ℓni+1
1 for all 1 ≤ i ≤ m.

� �



Recall that

(X1 ⊕ · · · ⊕Xm)1 is not uniformly non-ℓm1 .

For the uniform non-ℓm+1
1 -ness we have the following.

Theorem 5.2 (Kato-Tamura, CM, 2007)� �
The following are equivalent.

(i) (X1 ⊕ · · · ⊕Xm)1 is uniformly non-ℓm+1
1 .

(ii) X1, . . . , Xm are uniformly non-square.� �

This extends Theorem 4.1:

X ⊕1 Y is uniformly non-ℓ31 ⇐⇒ X and Y are UNS.



Theorem 5.3 (Kato-Tamura, Comment. Math., 2009)� �
Let n ≥ 2. The following are equivalent.

(i) (X1 ⊕ · · · ⊕X2n−1)∞ is uniformly non-ℓn+1
1 .

(ii) (X1⊕ · · · ⊕Xm)∞ is uniformly non-ℓn+1
1 for all m ≤ 2n− 1.

(iii) X1, . . . , X2n−1 are uniformly non-square.

� �



6. Some Appications



Super-reflexivity

Definition 6.1 (James, 1972)

X is called super-reflexive

def⇐⇒
[
Y : finitely representable in X ⇒ Y : reflexive

]

A Banach space Y is said to be finitely representable in X

def⇐⇒
∀ ϵ > 0

∀ F : finite dimensional subspace of Y

∃ E: a finite dimensional subspace of X with dimF = dimE

such that

d(F,E) := inf{∥T∥∥T−1∥ : T is an isomorphism of F onto E} < 1+ϵ.



Uniformly non-square spaces are super-reflexive (James, 1972),

while uniformly non-ℓ31 spaces are not always reflexive (James, 1974).

Theorem 6.1 (K-Tam, CM, 2009)� �
Let X be uniformly non-ℓ31.

If X is isometric to

(i) an ℓ1-sum of 2 Banach spaces, or

(ii) an ℓ∞-sum of 3 Banach spaces,

then X is super-reflexive.

� �

Indeed, if X⊕1 Y is uniformly non-ℓ31, X and Y are UNS, whence

super-reflexive. Therefore X ⊕1 Y is super-reflexive.



Fixed Point Property (FPP)

Definition 6.2

X has the FPP for nonexpansive mappings

def⇐⇒
∀ C: nonempty closed bounded convex subset of X,

every nonexpansive mapping T : C → C has a fixed point.

(T is nonexpansive ⇐⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C).



Theorem F (Garćıa-Falset et al., JFA, 2006)� �
X: UNS ⇒ X: FPP

� �

It’s natural to ask

whether all uniformly non-octahedral spaces have FPP.

We have the following.



Theorem 6.2 (Kato-Tamura, CM, 2009)� �

Let X be uniformly non-octahedral (non-ℓ31).

If X is isometric to an ℓ∞-sum of 3 Banach spaces,

then X has FPP.
� �

Indeed, Garćıa-Falset et al. (JFA, 2006) showed that

X : UNS =⇒ R(1, X) < 2 =⇒ X : FPP

If (X1 ⊕X2 ⊕X3)∞ is uniformly non-ℓ31, all X1, X2, X3 are UNS

by Theorem 4.4. Hence R(1, Xi) < 2. On the other hand, we

can show

R(1, (X1 ⊕X2 ⊕X3)∞) = max
1≤i≤3

R(1, Xi)

Therefore we have R(1, (X1⊕X2⊕X3)∞) < 2, which implies that

(X1 ⊕X2 ⊕X3)∞ has FPP.



In the same way we have the following.

Theorem 6.3 (Kato-Tamura, CM, 2009)� �

Let X be uniformly non-ℓn+1
1 .

If X is isometric to an ℓ∞-sum of 2n − 1 Banach spaces,

then X has FPP.
� �



The constant R(1, X) by Doḿınguez Benavides (1994):

R(1, X) = sup
{
lim inf
n→∞ ∥xn+ x∥

}
,

where the supremum is taken over all x ∈ BX and all weakly null

sequences {xn} in BX such that limn,m→∞;n̸=m ∥xn − xm∥ ≤ 1.



Theorem 6.4 (Kato-Tamura, CM, 2007)� �

Let X = (X1 ⊕ · · · ⊕Xm)1 be uniformly non-ℓm+1
1 .

Then X1, · · · , Xm have FPP.

� �

Indeed,

if X = (X1 ⊕ · · · ⊕Xm)1 is uniformly non-ℓm+1
1 ,

all X1, . . . , Xm are UNS by Theorem 5.2,

and hence have FPP.


