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1 Introduction

Notation:

Lp for the Lebesgue spaces,

|E| the Lebesgue measure of a meas. set E ⊂ RN,

BR(x) an open ball centered at x with radius R.
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Motivation:

• a question how strong are assumptions about the max-
imal function, varying from the finiteness of the maximal
function at a single point to Lr integrability, 0 < r < 1
• questions about the range of the maximal operator under

minimal necessary hypothesis about the space on which it
acts.

The presented material is mostly a joint work with
A. Fiorenza (Univ. di Napoli).
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For f ∈ L1
loc(R

N), N ≥ 1; we consider the (global, centered)
maximal function

M f (x) = sup
R>0

1
|BR(x)|

∫
BR(x)

| f (y)| dy, x ∈ RN.

Let
D = { f ∈ L1

loc(R
N); M f 6≡ ∞},

be the domain of the maximal operator.

D is a linear subspace of L1
loc(R

N) (see Theorem 2.2 be-
low).
Note that L1

loc(R
N) 6⊂ D: it suffices to consider, for instance,

the function x 7→ ‖x‖ in RN.
Agreement: We shall work only with non-negative functions.
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2 The domain

2.1 Theorem (Wiener 1939). If f ∈ L1(RN), then M f < ∞ a.e.
in RN.

Plainly L∞(RN) ⊂ D. Hence L1(RN) + L∞(RN) ⊂ D.
Therefore the Lebesgue, Orlicz, and Lorentz spaces are sub-
sets of D.
D is effectively larger than L1(RN) + L∞(RN), but it does
not contain any space of the type

L1
loc(R

N) ∩ (Lr(RN) + L∞(RN)), where 0 < r < 1.
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2.2 Theorem. Let f ∈ L1
loc(R

N). Then f ∈ D is equivalent to
any of the following conditions:

(i) there exists x0 ∈ RN such that M f (x0) < ∞;
(ii) there exists x0 ∈ RN such that

lim sup
R→∞

1
|BR(x0)|

∫
BR(x0)

f (y) dy < ∞

(iii) there exists K > 0 such that

lim sup
R→∞

1
|BR(x0)|

∫
BR(x0)

f (y) dy = K < ∞

for every x0 ∈ RN;
(iv) M f (x) < ∞ a.e. in RN.
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Two examples follow, showing that

L1
loc(R

N) ∩ Lr(RN) 6⊂ D 6⊂ L1(RN) + L∞(RN)

if 0 < r < 1. The functions f here live on sets of finite mea-
sure, therefore their level set { f (x) > α}, α ≥ 0, have finite
measure.

2.3 Example. Let An = {n − 1 < |x| < n}, n ∈ N and let
Fn be any measurable subset of An such that |Fn| = 2−n.

Put f =
∞
∑

n=1
anχFn where an = 2n. Then f ∈ L1

loc(R
N), f /∈

L1(RN) + L∞(RN). At the same time f ∈ D. Further, we
have f ∈ Lr(RN) for all 0 < r < 1.

8



2.4 Example. Let us put an =
(

2(r+1)/2r
)n

with some fixed

0 < r < 1 in the previous example. Then f ∈ L1
loc(R

N) ∩
Lr(RN), f /∈ D. We observe that f /∈ L1(RN).

2.5 Example. Functions in D can be very bad: for instance,
the measure of every level set can be infinite, hence these
functions cannot be rearranged. An example: Put

f (t) =
∞

∑
n=1

nχ(n3,n3+1)(t), t ∈ R1.

Then f ∈ L1
loc(R

1) and f ∈ D, every level set of M f is infi-
nite, too. (Note in passing that f /∈ BMO(R1).

9



3 The range

Well known is:
• if f ∈ D, then M f is measurable lower semicontinuous

function;
• f ≤ M f and if N > 2 an equality can hold without f being

a constant
• M : L1(RN)→ L1,∞(RN) is bounded;
• M : Lp(RN)→ Lp(RN), 1 < p ≤ ∞, is bounded.
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An example showing that if f ∈ L1(RN), then generally we
have not M f ∈ L1

loc(R
N):

3.1 Example. If f ∈ D, then it may happen that M f /∈
L1

loc(R
N). Put f (x) = χ(0,1/2)(x)/(x log2 x), x ∈ R1 a.e.;

then f ∈ D, M f /∈ L1
loc(R

N), M f ∈ L1(log L)−1((0, 1/2)).

Example 2.5 shows that if f ∈ D, then the measure of every
level set of M f can be infinite, considering a function f hav-
ing the same property. Such a phenomenon may occur even
if the measure of every level set of f is finite, namely, when
f /∈ L1(RN) + L∞(RN, as in the Example 2.3) (the example
with the concentric balls).
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Two spaces near L1

Let us recall the Kolmogorov inequality:

‖M f ‖r
Lr(A) ≤

c(N)|A|1−r

1− r
‖ f ‖r

L1(RN), (3.1)

true for every f ∈ L1(RN), r ∈]0, 1[, A ⊂ RN, |A| < ∞.

Hence M f ∈ Lr(A) with 0 < r < 1, f ∈ L1(RN), |A| < ∞.

An extrapolation on the left hand side of (3.1) offers two rea-
sonable candidates.
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A characterization of logarithmic Lebesgue spaces, consid-
ered for p ≥ 1 by Edmunds and Triebel, yields:∫ ε0

0
εσ−1‖M f ‖L1−ε(A) dε ≤ c(N, |A|, ε0, σ)‖ f ‖L1(RN), (3.2)

where ε0 ∈ (0, 1) is arbitrary, σ > 1 is a parameter. The
left hand side term of (3.2) is equivalent to the quasinorm in
the (generalized) Orlicz space L1(log L)−σ(A). (Alternatively
the abstract extrapolation Σ-method due to Milman can be
employed.)
We have

3.2 Theorem. If f ∈ L1(RN), then

M f ∈
⋂

σ>1
L1(log L)−σ(A) for every A ⊂ RN, |A| < ∞.
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3.3 Example. This is optimal in the scale of logarithmic
Lebesgue spaces: Put

f (x) =
1

x| log x| log2 | log x|
χ(0,a)(x), x ∈ R1,

where a = exp(− exp(1)). Then f ∈ L1(RN) and M f /∈
L1(log L)−1(]0, a[)

The second approach based on (3.1): A bound for the quasi-
norm of M f in L1)(A), the grand L1 space (Iwaniec and
Sbordone, Greco):

‖M f ‖L1)(A) ≤ c(N, |A|)‖ f ‖L1(RN),
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where the quasinorm in L1)(A) is given by

‖g‖L1)(A) = sup
0<ε<1

(
ε

1
|A|

∫
A

|g(y)|1−ε dy
)1/(1−ε)

.

3.4 Proposition. If f ∈ L1(RN), then it is M f ∈ L1)(A) for
every A ⊂ RN of finite measure.

The latter approach is better in terms of inclusions of func-
tions spaces since

L1(log L)−1(A) ⊂ L1)(A) ⊂
⋂

σ>1
L1(log L)−σ(A)

for every A of finite measure (Capone, Fiorenza).
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3.5 Theorem. Assume that f ∈ L1
loc(R

N) and let ϕ : [0, ∞[→
[0, ∞[, ϕ strictly increasing, ϕ(∞) = ∞, lim

t→∞
ϕ(t)/ts = 0 for

some 0 < s < 1. Then the following statements are equivalent:

(i) f ∈ L1(RN) + L∞(RN);

(ii) there is α > 0 such that f ∈ L1({ f > α});
(iii) there is α > 0 such that |{M f > α}| < ∞;
(iv) there is α > 0 and 0 < r < 1 such that M f ∈ Lr({M f >

α});
(v) there is α > 0 such that

M f ∈ Lr({M f > α}) for all 0 < r < 1;
(vi) there is 0 < r < 1 such that

M f ∈ Lr(RN) + L∞(RN);
16



(vii) M f ∈ ⋂
0<r<1

Lr(RN) + L∞(RN);

(viii) ϕ(M f ) ∈ L1(RN) + L∞(RN);
(ix) there is α > 0 such that |{M f > α}| < ∞ and M f ∈

L1)({M f > α}) + L∞(RN);
(x) there is α > 0 such that |{M f > α}| < ∞ and

M f ∈
⋂

σ>1
L1(log L)−σ({M f > α}) + L∞(RN).
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3.6 Remark. The condition (ii) in Theorem 3.5 says that f is
integrable over a special set of a finite measure. Examples 2.3
and 2.4 show that this cannot be replaced by integrability of
f over any set of finite measure. Furthermore, the condition
(iii) in Theorem 3.5 implies that all level sets of the maximal
functions in the examples recalled are of infinite measure.

3.7 Corollary. If f ∈ L1−ε(RN) ∩ L1
loc(R

N) for some ε ∈ (0, 1)
and M f ∈ Lr({M f > α}) for some 0 < r < 1, then in view of
Theorem 3.5 we have f ∈ L1(RN).
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4 A survey of what can happen

For completeness let us recall the well-known variant of
Stein’s L log L theorem:

4.1 Theorem. Let f ∈ L1
loc(R

N) and σ ≥ 1. Then the following
statements are equivalent:

(i) f [log(1 + f )]σ ∈ L1(RN) + L∞(RN);
(ii) there exists α > 0 such that f [log(1 + f )]σ ∈ L1({ f > α});

(iii) there exists α > 0 such that M f ∈ L1(log L)σ−1({ f > α});
(iv) M f ∈ L1(log L)σ−1(RN) + L∞(RN).
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condition on f or M f what can happen

f ∈ L1
loc(R

N) f /∈ D (Ex. 2.4)
↓

f ∈ D |{ f > β}| = ∞, β ≥ 0 (Ex. 2.5)
↓

∃α > 0 : |{ f > α}| < ∞ |{M f > β}| = ∞, β ≥ 0 (Ex. 2.3)
↓

∃α > 0 : |{M f > α}| < ∞ M f /∈ L1

log L({ f > β}), β ≥ 0 (Ex. 3.3)

↓
∃α > 0 : M f ∈ L1

log L({ f > α}) M f /∈ L1({ f > β}), β ≥ 0 (Ex. 3.1)

↓
∃α > 0 : M f ∈ L1({ f > α})



5 More general setup

(X, d, µ) a quasi-metric measure space with complete mea-
sure µ. By M we denote the set of all µ-measurable func-
tions defined on X.

v, w are weight functions given on X i.e. measurable al-
most everywhere finite, locally integrable functions. For µ-
measurable sets E we define the measures

vµ(E) =
∫
E

v(x) dµ and wµ(E) =
∫
E

w(x) dµ.
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Analogous claims can be established for a variety of oper-
ators, which satisfy two-weight inequality of the Kolmogorov
type: For an arbitrary µ-measurable E ⊂ X with finite mea-
sure and s, 0 < s < 1, there holds∫
E

|(T f )(x)|sv(x) dµ ≤ c2
(vµE)1−s

1− s

∫
X

ϕ(| f |)(x)w(x) dµ

s

,

(5.1)
with a constant c2 independent of f , E and s.
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Modified maximal function
Let

M̃ f (x) = sup
r>0

1
µB(x, N0r)

∫
B(x,r)

| f (y)| dµ

where N0 = a1(1+ 2a0) and the constants a0 and a1 are from
the definition of a quasi-metric:
there exists a constant a0 such that d(x, y) ≤ a0d(y, x) for all
x, y in X;
there exists a constant a1 such that

d(x, y) ≤ a1(d(x, z) + d(z, y))

for all x, y, z ∈ X.
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Assume that there exists a constant c such that for all balls
in X

1
µB

∫
B

v dµ ≤ c ess inf
x∈B

w(x). (5.2)

Then the previous claims can be recovered.
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Calderón-Zygmund singular integrals with non-doubling
measures
The function k : Rn ×Rn\{(x, y) ∈ Rn ×Rn : x = y} → C
is the m-dimensional Calderón-Zygmund kernel if there exist
c > 0 and η, with 0 < η ≤ 1, such that

|k(x, y)| ≤ c
|x− y|m , x, y ∈ Rn, x 6= y,

and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ c|x− x′|η
|x− y|m+η

if
|x− x′| ≤ |x− y|

2
.
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Given a Borel measure µ on Rn and f ∈ L1
loc(R

n, µ), we
define

Tµ(x) :=
∫

k(x, y) f (y) dµ(y), x ∈ Rn \ supp( f dµ),

the m-dimensional Calderón-Zygmund operator (CZSIO)
with the kernel k. Because of possible problems with con-
vergence if x ∈ supp( f dµ) we consider the ε-truncated op-
erators Tε, ε > 0:

Tµ,ε f (x) :=
∫

|x−y|>ε

k(x, y) f (y) dµ(y), x ∈ Rn,

and their uniform estimates with respect to ε > 0 in respec-
tive function spaces.
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6 The local maximal function

The symbol Ω will now stand for an open bounded subset of
RN, functions in Ω will be assumed to be measurable and
non-negative.
The local maximal function of f is defined by

MΩ f (x) = sup
Q3x
Q⊂Ω

Q cube

1
|Q|

∫
Q

f (y) dy, x ∈ Ω,

where edges of cubes Q are parallel with coordinate axes.
Generally MΩ preserves only some of the properties of M.
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First consider Ω = Q0, cube in RN.
Put

f̄ =

{
f in Q0,
0 in RN \Q0,

then MQ0
f = (MRN f̄ )|Q0

.

Hence: MQ0
f < ∞ a.e. in Q0 iff f ∈ L1(Q0). For f ∈ L1(Q0)

we have MQ0
f ∈ L1,∞(Q0), MQ0

f ∈ L1)(Q0), MQ0
f ∈⋂

σ>1
L1(log L)−σ(Q0). In particular, M f ∈ ⋂

0<r<1
Lr(Q0).

Further, MQ0
f need not be in L1,loc(Q0) (one of previous

examples).
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The range of MQ0
when f is “better” than L1(Q0): MQ0

f ∈
L1(Q0) and f belongs to the Orlicz space LA(Q0), where

inf
t>0

tA′(t)
A(t)

> 1, iff MQ0
belongs to the same space. By the

Stein’s L log L theorem, f ∈ L log L(Q0) iff MQ0
f ∈ L1(Q0).

If Ω is a general domain, then MΩ is different from
(MRN f̄ )

∣∣
Ω. In general MΩ f ≤ (MRN f̄ )

∣∣
Ω and these func-

tions need not be equivalent.

An example follows.
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6.1 Example. Let N = 2, Ω = {z = (x, y); |z− 1| < 1}, and
let f = 1 in Ω ∩ {y > 2/

√
5} and 0 otherwise in Ω. Then

(MΩ f )|Ω∩{y≤0} = 0 while (MRN f̄ )
∣∣
Ω∩{y≤0} > 0.
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Hence: f̄ ∈ D is sufficient for f ∈ DΩ. Nevertheless, next
example shows that this assumption is too strong.
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6.2 Example. Consider the situation illustrated by the upper
part, that is, let N = 2 and consider a sequence of open cubes
Q1, Q2, . . .. Let Ω be the triangle domain whose boundary
is contained in the positive axe x, the line y = kx, and
the line containing the right vertical side of Q1. Denote by
Q1/2, Q2/2, . . ., concentric cubes with sidelength equal to
the half of the sides of Q1, Q2, . . .. Let (ai), be any sequence
of positive real numbers such that

∞

∑
i=1

ai|Qi| = ∞

and put

f =
∞

∑
i=1

aiχQi/2.
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Then f is supported in a compact set and f /∈ L1(Ω). If we fix
x ∈ Ω, then every cube Q such that Q 3 x, Q ⊂ Ω, intersect
at most two of the cubes Qi, thus MΩ is finite a.e.

Hence: f need not be integrable over every compact subset
of its support in order to have MΩ f < ∞ a.e. in Ω. Of course
f must be integrable over cubes contained in Ω, this is, how-
ever, not sufficient for MΩ f < ∞ a.e. in Ω. Indeed, f can
be integrable over cubes in Ω, and still MΩ need not be a.e.
finite—an example follows.
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6.3 Example. Consider Ω1 as Ω from Example 6.2 united
with a rectangle pasted from below to Ω, with the left ver-
tical side on the axe y and the upper horizontal side on the
axe x. Put

f =
∞

∑
i=1

i
|Qi|

χQi/2.

Let Q
′

1 be the translation of Q1 having the left upper corner
on the origin, and Q

′′

1 6= Q
′

1 be any fixed translation of Q1,
contained in Ω1, such that the left upper corner of Q

′′

1 stays
on the line y = kx and such that the set E = Q

′

1 ∩ Q
′′

1 has
positive measure. Then for every Qi, i sufficiently large, there
exists a translation of Q1 containing E ∪ Qi, therefore, if x ∈
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E, since MΩ f (x) ≥ 1
|Q1|

∫
Qi

f (y) dy = i
4|Q1|, we have MΩ f =

∞ in E. Hence MΩ f is not finite a.e. while f is integrable over
every cube contained in Ω.

The point is: a sequence of cubes with averages of f blowing
up.
6.4 Theorem. Let f ∈ L1(Q) for all Q ⊂ Ω. Then the following
statements are equivalent:

(i) MΩ f < ∞ a.e. in Ω;

(ii) sup
|Q|>ε
Q cube
Q⊂Ω

1
|Q|

∫
Q

f (y) dy < ∞ for all ε > 0.
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6.5 Remark. If Ω = Q0, then (ii) is equivalent to f ∈ L1(Q0).

The range of the local maximal function

If f ∈ DΩ, then plainly MΩ is lower semicontinuous and
f ≤ MΩ f a.e. in Ω. On the other hand, in contrast to the
behaviour of MRN and MQ0

, it is not generally true that
MΩ f ∈ Lr(Ω).

Consider Example 6.2 with ai = i exp(1/|Qi|2). Then∫
Ω

f r dx =
∞

∑
i=1

|Qi|
4

ir exp
(

r
|Qi|2

)
= ∞, 0 < r < 1,

therefore MΩ f /∈ Lr(Ω). But if Ω is a cube Q0, then MQ0
f ∈

Lr(Q0) for all 0 < r < 1.
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Also if Ω is a cube Q0, then in contrast to the behaviour of
MRN we have BMO(Q0) ⊂ DQ0

(generally not true).
In spite of this we have
6.6 Theorem. Let f ∈ L1(Ω). Then MΩ f ∈ L1)(Ω), therefore,
MΩ f ∈ ⋂

σ>1
L1(log L)−σ(Ω)

6.7 Remark. If Ω is a cube Q0 and MQ0
f ∈ L1(log L)−1(Q0),

then the L1 norm of f can be estimated as follows:∫
Q0

f (x) dx ≤ 2N+1
∫

Q0

MQ0
f (x)

log
(

e +
MQ0 f (x)
|MQ0 f (x)|Q0

) dx,

where |MQ0
f (x)|Q0

= 1
|Q0|

∫
Q0

MQ0
f (x) dx.
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A historical comment

In 1910 F. Riesz proved the following characterization of Lp

spaces on a cube: Let 1 < p < ∞. Then f belongs to Lp(Q)
iff there exists C > 0 such that for any decomposition {Qi}
of Q into cubes Qi, i.e. Q =

⋃
i Qi one has(

∑
i

1
|Qi|p−1

(∫
Qi

| f (y) dy|
)p)1/p

≤ C. (6.1)

After easy manipulation with (6.1) (passing to dyadic cubes if
necessary) we see that MQ f (x) ≤ ‖ f ‖p for p ≤ 2. Note that
the left hand side of (6.1) is equivalent to ‖ f ‖p.
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Hence for cubes and p ≤ 2 the maximal theorem was in fact
known before WWI. Maybe it is discussed somewhere in the
literature.

A loosely related problem: Plainly, one can replace decom-
positions {Qi} above (into cubes) by decompositions into
measurable subsets of Q, say {Ai}. It is well known that
f ∈ Lp,∞ iff there exists C′ such that

sup
A⊂Q

1
|A|1−1/p

∫
A
| f (y)| dy ≤ C′. (6.2)

Relation (6.2) can be clearly replaced by

sup
{Ai}

sup
Ai

1
|Ai|1−1/p

∫
Ai

| f (y)| dy ≤ C′, (6.3)
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that is, by sup of the expression in (6.2) taken over all decom-
positions {Ai}.
Real interpolation of Lp and Lp,∞ leads to appropriate
Lorentz space Lp,q.
The question is about an interpolation formula which might
be perhaps derived from (6.1) with Ai instead of Qi and (6.3).
Would this be a formula for a quasinorm in Lp,q without use
of rearrangements? Note that decompositions into cubes or
have been treated in the literature (various clones of Morrey-
Campanato spaces etc.)
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