# 

Miroslav Krbec (Prague)

2nd International Workshop on Interpolation Theory, Function Spaces and Related Topics

Santiago de Compostela, July 18 - 22, 2011

**Plan of the talk** 

| 1 | Introduction                | 3  |
|---|-----------------------------|----|
| 2 | The domain                  | 6  |
| 3 | The range                   | 10 |
| 4 | A survey of what can happen | 19 |
| 5 | More general setup          | 21 |
| 6 | The local maximal function  | 27 |

## **1** Introduction

# Notation:

 $L^p$  for the Lebesgue spaces,

|E| the Lebesgue measure of a meas. set  $E \subset \mathbb{R}^N$ ,

 $B_R(x)$  an open ball centered at x with radius R.

# Motivation:

- a question how strong are assumptions about the maximal function, varying from the finiteness of the maximal function at a single point to  $L_r$  integrability, 0 < r < 1
- questions about the range of the maximal operator under minimal necessary hypothesis about the space on which it acts.

The presented material is mostly a joint work with A. Fiorenza (Univ. di Napoli).

For  $f \in L^1_{loc}(\mathbb{R}^N)$ ,  $N \ge 1$ ; we consider the (global, centered) maximal function

$$Mf(x) = \sup_{R>0} \frac{1}{|B_R(x)|} \int_{B_R(x)} |f(y)| \, dy, \qquad x \in \mathbb{R}^N.$$

Let

$$\mathbb{D} = \{ f \in L^1_{\mathsf{loc}}(\mathbb{R}^N); Mf \neq \infty \},\$$

be the domain of the maximal operator.

 $\mathbb D$  is a linear subspace of  $L^1_{\rm loc}(\mathbb R^N)$  (see Theorem 2.2 below).

Note that  $L^1_{\text{loc}}(\mathbb{R}^N) \not\subset \mathbb{D}$ : it suffices to consider, for instance, the function  $x \mapsto ||x||$  in  $\mathbb{R}^N$ .

Agreement: We shall work only with non-negative functions.

## 2 The domain

**2.1 Theorem** (Wiener 1939). *If*  $f \in L^1(\mathbb{R}^N)$ , then  $Mf < \infty$  a.e. in  $\mathbb{R}^N$ .

Plainly  $L^{\infty}(\mathbb{R}^N) \subset \mathbb{D}$ . Hence  $L^1(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N) \subset \mathbb{D}$ . Therefore the Lebesgue, Orlicz, and Lorentz spaces are subsets of  $\mathbb{D}$ .

 $\mathbb{D}$  is effectively larger than  $L^1(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N)$ , but it does not contain any space of the type

$$L^1_{\mathsf{loc}}(\mathbb{R}^N) \cap (L^r(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N)), \text{ where } 0 < r < 1.$$

**2.2 Theorem.** Let  $f \in L^1_{loc}(\mathbb{R}^N)$ . Then  $f \in \mathbb{D}$  is equivalent to any of the following conditions:

(i) there exists  $x_0 \in \mathbb{R}^N$  such that  $Mf(x_0) < \infty$ ; (ii) there exists  $x_0 \in \mathbb{R}^N$  such that

$$\limsup_{R \to \infty} \frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} f(y) \, dy < \infty$$

(iii) there exists K > 0 such that

$$\limsup_{R \to \infty} \frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} f(y) \, dy = K < \infty$$

for every  $x_0 \in \mathbb{R}^N$ ; (iv)  $Mf(x) < \infty$  a.e. in  $\mathbb{R}^N$ . Two examples follow, showing that

 $L^{1}_{\text{loc}}(\mathbb{R}^{N}) \cap L^{r}(\mathbb{R}^{N}) \not\subset \mathbb{D} \not\subset L^{1}(\mathbb{R}^{N}) + L^{\infty}(\mathbb{R}^{N})$ if 0 < r < 1. The functions f here live on sets of finite measure, therefore their level set  $\{f(x) > \alpha\}, \alpha \ge 0$ , have finite measure.

**2.3 Example.** Let  $A_n = \{n - 1 < |x| < n\}, n \in \mathbb{N}$  and let  $F_n$  be any measurable subset of  $A_n$  such that  $|F_n| = 2^{-n}$ . Put  $f = \sum_{n=1}^{\infty} a_n \chi_{F_n}$  where  $a_n = 2^n$ . Then  $f \in L^1_{\text{loc}}(\mathbb{R}^N), f \notin L^1(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N)$ . At the same time  $f \in \mathbb{D}$ . Further, we have  $f \in L^r(\mathbb{R}^N)$  for all 0 < r < 1. **2.4 Example.** Let us put  $a_n = (2^{(r+1)/2r})^n$  with some fixed 0 < r < 1 in the previous example. Then  $f \in L^1_{loc}(\mathbb{R}^N) \cap L^r(\mathbb{R}^N)$ ,  $f \notin \mathbb{D}$ . We observe that  $f \notin L^1(\mathbb{R}^N)$ .

**2.5 Example.** Functions in  $\mathbb{D}$  can be very bad: for instance, the measure of every level set can be infinite, hence these functions cannot be rearranged. An example: Put

$$f(t) = \sum_{n=1}^{\infty} n \chi_{(n^3, n^3+1)}(t), \quad t \in \mathbb{R}^1.$$

Then  $f \in L^1_{loc}(\mathbb{R}^1)$  and  $f \in \mathbb{D}$ , every level set of Mf is infinite, too. (Note in passing that  $f \notin BMO(\mathbb{R}^1)$ .

#### 3 The range

Well known is:

- if  $f \in \mathbb{D}$ , then Mf is measurable lower semicontinuous function;
- $f \leq Mf$  and if N > 2 an equality can hold without f being a constant
- $M: L^1(\mathbb{R}^N) \to L^{1,\infty}(\mathbb{R}^N)$  is bounded;
- $M: L^p(\mathbb{R}^N) \to L^p(\mathbb{R}^N), 1 , is bounded.$

An example showing that if  $f \in L^1(\mathbb{R}^N)$ , then generally we have not  $Mf \in L^1_{loc}(\mathbb{R}^N)$ :

**3.1 Example.** If  $f \in \mathbb{D}$ , then it may happen that  $Mf \notin L_{\text{loc}}^1(\mathbb{R}^N)$ . Put  $f(x) = \chi_{(0,1/2)}(x)/(x\log^2 x)$ ,  $x \in \mathbb{R}^1$  a.e.; then  $f \in \mathbb{D}$ ,  $Mf \notin L_{\text{loc}}^1(\mathbb{R}^N)$ ,  $Mf \in L^1(\log L)^{-1}((0,1/2))$ .

Example 2.5 shows that if  $f \in \mathbb{D}$ , then the measure of every level set of Mf can be infinite, considering a function f having the same property. Such a phenomenon may occur even if the measure of every level set of f is finite, namely, when  $f \notin L^1(\mathbb{R}^N) + L^\infty(\mathbb{R}^N)$ , as in the Example 2.3) (the example with the concentric balls).

## Two spaces near $L_1$

Let us recall the Kolmogorov inequality:

$$\|Mf\|_{L^{r}(A)}^{r} \leq \frac{c(N)|A|^{1-r}}{1-r} \|f\|_{L^{1}(\mathbb{R}^{N})'}^{r}$$
(3.1)

true for every  $f \in L^1(\mathbb{R}^N)$ ,  $r \in ]0, 1[$ ,  $A \subset \mathbb{R}^N$ ,  $|A| < \infty$ .

Hence  $Mf \in L^{r}(A)$  with 0 < r < 1,  $f \in L^{1}(\mathbb{R}^{N})$ ,  $|A| < \infty$ .

An extrapolation on the left hand side of (3.1) offers two reasonable candidates.

A characterization of logarithmic Lebesgue spaces, considered for  $p \ge 1$  by Edmunds and Triebel, yields:

$$\int_0^{\varepsilon_0} \varepsilon^{\sigma-1} \|Mf\|_{L^{1-\varepsilon}(A)} d\varepsilon \le c(N, |A|, \varepsilon_0, \sigma) \|f\|_{L^1(\mathbb{R}^N)}, \quad (3.2)$$

where  $\varepsilon_0 \in (0,1)$  is arbitrary,  $\sigma > 1$  is a parameter. The left hand side term of (3.2) is equivalent to the quasinorm in the (generalized) Orlicz space  $L^1(\log L)^{-\sigma}(A)$ . (Alternatively the abstract extrapolation  $\Sigma$ -method due to Milman can be employed.)

We have

**3.2 Theorem.** If  $f \in L^1(\mathbb{R}^N)$ , then  $Mf \in \bigcap_{\sigma > 1} L^1(\log L)^{-\sigma}(A)$  for every  $A \subset \mathbb{R}^N$ ,  $|A| < \infty$ . **3.3 Example.** This is optimal in the scale of logarithmic Lebesgue spaces: Put

$$f(x) = \frac{1}{x |\log x| \log^2 |\log x|} \chi_{(0,a)}(x), \quad x \in \mathbb{R}^1,$$

where  $a = \exp(-\exp(1))$ . Then  $f \in L^1(\mathbb{R}^N)$  and  $Mf \notin L^1(\log L)^{-1}(]0, a[)$ 

The second approach based on (3.1): A bound for the quasinorm of Mf in  $L^{(1)}(A)$ , the grand  $L^1$  space (Iwaniec and Sbordone, Greco):

$$||Mf||_{L^{1}(A)} \leq c(N, |A|) ||f||_{L^{1}(\mathbb{R}^{N})}$$

where the quasinorm in  $L^{(1)}(A)$  is given by

$$\|g\|_{L^{1)}(A)} = \sup_{0 < \varepsilon < 1} \left( \varepsilon \frac{1}{|A|} \int\limits_{A} |g(y)|^{1-\varepsilon} dy \right)^{1/(1-\varepsilon)}$$

**3.4 Proposition.** If  $f \in L^1(\mathbb{R}^N)$ , then it is  $Mf \in L^{(1)}(A)$  for every  $A \subset \mathbb{R}^N$  of finite measure.

The latter approach is better in terms of inclusions of functions spaces since

$$L^{1}(\log L)^{-1}(A) \subset L^{1}(A) \subset \bigcap_{\sigma > 1} L^{1}(\log L)^{-\sigma}(A)$$

for every A of finite measure (Capone, Fiorenza).

**3.5 Theorem.** Assume that  $f \in L^1_{loc}(\mathbb{R}^N)$  and let  $\varphi : [0, \infty] \to$  $[0,\infty[, \varphi \text{ strictly increasing, } \varphi(\infty) = \infty, \lim \varphi(t)/t^s = 0 \text{ for}$ some 0 < s < 1. Then the following statements are equivalent: (i)  $f \in L^1(\mathbb{R}^N) + L^\infty(\mathbb{R}^N)$ ; (ii) there is  $\alpha > 0$  such that  $f \in L^1(\{f > \alpha\})$ ; (iii) there is  $\alpha > 0$  such that  $|\{Mf > \alpha\}| < \infty$ ; (iv) there is  $\alpha > 0$  and 0 < r < 1 such that  $Mf \in L^r(\{Mf > n\})$  $\alpha$  }); (v) there is  $\alpha > 0$  such that

 $Mf \in L^{r}(\{Mf > \alpha\}) \text{ for all } 0 < r < 1;$ 

(vi) there is 0 < r < 1 such that  $Mf \in L^{r}(\mathbb{R}^{N}) + L^{\infty}(\mathbb{R}^{N});$ 

(vii) 
$$Mf \in \bigcap_{0 < r < 1} L^{r}(\mathbb{R}^{N}) + L^{\infty}(\mathbb{R}^{N});$$
  
(viii)  $\varphi(Mf) \in L^{1}(\mathbb{R}^{N}) + L^{\infty}(\mathbb{R}^{N});$   
(ix) there is  $\alpha > 0$  such that  $|\{Mf > \alpha\}| < \infty$  and  $Mf \in L^{1}(\{Mf > \alpha\}) + L^{\infty}(\mathbb{R}^{N});$   
(x) there is  $\alpha > 0$  such that  $|\{Mf > \alpha\}| < \infty$  and  
 $Mf \in \bigcap_{\sigma > 1} L^{1}(\log L)^{-\sigma}(\{Mf > \alpha\}) + L^{\infty}(\mathbb{R}^{N}).$ 

**3.6 Remark.** The condition (ii) in Theorem 3.5 says that f is integrable over a special set of a finite measure. Examples 2.3 and 2.4 show that this cannot be replaced by integrability of f over any set of finite measure. Furthermore, the condition (iii) in Theorem 3.5 implies that all level sets of the maximal functions in the examples recalled are of infinite measure.

**3.7 Corollary.** If  $f \in L^{1-\varepsilon}(\mathbb{R}^N) \cap L^1_{loc}(\mathbb{R}^N)$  for some  $\varepsilon \in (0,1)$  and  $Mf \in L^r(\{Mf > \alpha\})$  for some 0 < r < 1, then in view of Theorem 3.5 we have  $f \in L^1(\mathbb{R}^N)$ .

#### 4 A survey of what can happen

For completeness let us recall the well-known variant of Stein's  $L \log L$  theorem:

**4.1 Theorem.** Let  $f \in L^1_{loc}(\mathbb{R}^N)$  and  $\sigma \ge 1$ . Then the following statements are equivalent:

(i) 
$$f[\log(1+f)]^{\sigma} \in L^1(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N);$$
  
(ii) there exists  $\alpha > 0$  such that  $f[\log(1+f)]^{\sigma} \in L^1(\{f > \alpha\});$   
(iii) there exists  $\alpha > 0$  such that  $Mf \in L^1(\log L)^{\sigma-1}(\{f > \alpha\});$   
(iv)  $Mf \in L^1(\log L)^{\sigma-1}(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N).$ 

condition on f or Mfwhat can happen
$$f \in L^1_{loc}(\mathbb{R}^N)$$
 $f \notin \mathbb{D}$  (Ex. 2.4) $\downarrow$  $f \in \mathbb{D}$  $|\{f > \beta\}| = \infty, \beta \ge 0$  (Ex. 2.5) $\downarrow$  $|\{Mf > \beta\}| = \infty, \beta \ge 0$  (Ex. 2.3) $\exists \alpha > 0: |\{Mf > \alpha\}| < \infty$  $|\{Mf > \beta\}| = \infty, \beta \ge 0$  (Ex. 3.3) $\exists \alpha > 0: Mf \in \frac{L^1}{\log L}(\{f > \alpha\})$  $Mf \notin \frac{L^1}{\log L}(\{f > \beta\}), \beta \ge 0$  (Ex. 3.1) $\exists \alpha > 0: Mf \in \frac{L^1}{\log L}(\{f > \alpha\})$  $Mf \notin L^1(\{f > \beta\}), \beta \ge 0$  (Ex. 3.1) $\exists \alpha > 0: Mf \in L^1(\{f > \alpha\})$ 

#### 5 More general setup

 $(X, d, \mu)$  a quasi-metric measure space with complete measure  $\mu$ . By  $\mathcal{M}$  we denote the set of all  $\mu$ -measurable functions defined on X.

v, w are weight functions given on X i.e. measurable almost everywhere finite, locally integrable functions. For  $\mu$ -measurable sets E we define the measures

$$v_{\mu}(E) = \int\limits_{E} v(x) d\mu$$
 and  $w_{\mu}(E) = \int\limits_{E} w(x) d\mu$ .

Analogous claims can be established for a variety of operators, which satisfy two-weight inequality of the Kolmogorov type: For an arbitrary  $\mu$ -measurable  $E \subset X$  with finite measure and s, 0 < s < 1, there holds

$$\int_{E} |(Tf)(x)|^{s} v(x) \, d\mu \le c_2 \frac{(v_{\mu} E)^{1-s}}{1-s} \left( \int_{X} \varphi(|f|)(x) w(x) \, d\mu \right)^{s},$$
(5.1)

with a constant  $c_2$  independent of f, E and s.

# Modified maximal function

Let

$$\widetilde{M}f(x) = \sup_{r>0} \frac{1}{\mu B(x, N_0 r)} \int_{B(x, r)} |f(y)| d\mu$$

where  $N_0 = a_1(1 + 2a_0)$  and the constants  $a_0$  and  $a_1$  are from the definition of a quasi-metric:

there exists a constant  $a_0$  such that  $d(x, y) \le a_0 d(y, x)$  for all x, y in X;

there exists a constant  $a_1$  such that

$$d(x,y) \le a_1(d(x,z) + d(z,y))$$

for all  $x, y, z \in X$ .

Assume that there exists a constant c such that for all balls in X

$$\frac{1}{\mu B} \int_{B} v \, d\mu \le c \, \operatorname{ess\,inf}_{x \in B} w(x). \tag{5.2}$$

Then the previous claims can be recovered.

# Calderón-Zygmund singular integrals with non-doubling measures

The function  $k : \mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x = y\} \to C$ is the *m*-dimensional Calderón-Zygmund kernel if there exist c > 0 and  $\eta$ , with  $0 < \eta \leq 1$ , such that

$$|k(x,y)| \leq \frac{c}{|x-y|^m}, \quad x,y \in \mathbb{R}^n, \ x \neq y,$$

and

$$|k(x,y) - k(x',y)| + |k(y,x) - k(y,x')| \le \frac{c|x - x'|^{\eta}}{|x - y|^{m + \eta}}$$

if

$$|x-x'| \leq \frac{|x-y|}{2}.$$

Given a Borel measure  $\mu$  on  $\mathbb{R}^n$  and  $f \in L^1_{loc}(\mathbb{R}^n, \mu)$ , we define

$$T_{\mu}(x) := \int k(x,y)f(y) \, d\mu(y), \ x \in \mathbb{R}^n \setminus \operatorname{supp}(f \, d\mu),$$

the *m*-dimensional Calderón-Zygmund operator (CZSIO) with the kernel *k*. Because of possible problems with convergence if  $x \in \operatorname{supp}(f d\mu)$  we consider the  $\varepsilon$ -truncated operators  $T_{\varepsilon}$ ,  $\varepsilon > 0$ :

$$T_{\mu,\varepsilon}f(x) := \int_{|x-y|>\varepsilon} k(x,y)f(y)\,d\mu(y), \ x \in \mathbb{R}^n,$$

and their uniform estimates with respect to  $\varepsilon > 0$  in respective function spaces.

## **6** The local maximal function

The symbol  $\Omega$  will now stand for an open bounded subset of  $\mathbb{R}^N$ , functions in  $\Omega$  will be assumed to be measurable and non-negative.

The local maximal function of f is defined by

$$\begin{split} M_{\Omega}f(x) &= \sup_{\substack{Q \ni x \\ Q \subset \Omega \\ Q} \text{ cube}} \frac{1}{|Q|} \int_{Q} f(y) \, dy, \qquad x \in \Omega, \end{split}$$

where edges of cubes Q are parallel with coordinate axes. Generally  $M_{\Omega}$  preserves only some of the properties of M. First consider  $\Omega = Q_0$ , cube in  $\mathbb{R}^N$ . Put

$$\bar{f} = \begin{cases} f & \text{in } Q_0, \\ 0 & \text{in } \mathbb{R}^N \setminus Q_0, \end{cases}$$

then  $M_{Q_0}f = (M_{\mathbb{R}^N}\overline{f})|_{Q_0}$ .

Hence:  $M_{Q_0}f < \infty$  a.e. in  $Q_0$  iff  $f \in L^1(Q_0)$ . For  $f \in L^1(Q_0)$ we have  $M_{Q_0}f \in L^{1,\infty}(Q_0)$ ,  $M_{Q_0}f \in L^{1)}(Q_0)$ ,  $M_{Q_0}f \in \bigcap_{\sigma>1} L^1(\log L)^{-\sigma}(Q_0)$ . In particular,  $Mf \in \bigcap_{0 < r < 1} L^r(Q_0)$ . Further,  $M_{Q_0}f$  need not be in  $L_{1,\text{loc}}(Q_0)$  (one of previous

examples).

The range of  $M_{Q_0}$  when f is "better" than  $L^1(Q_0)$ :  $M_{Q_0}f \in L^1(Q_0)$  and f belongs to the Orlicz space  $L_A(Q_0)$ , where  $\inf_{t>0} \frac{tA'(t)}{A(t)} > 1$ , iff  $M_{Q_0}$  belongs to the same space. By the Stein's  $L \log L$  theorem,  $f \in L \log L(Q_0)$  iff  $M_{Q_0}f \in L_1(Q_0)$ .

If  $\Omega$  is a general domain, then  $M_{\Omega}$  is different from  $(M_{\mathbb{R}^N}\bar{f})|_{\Omega}$ . In general  $M_{\Omega}f \leq (M_{\mathbb{R}^N}\bar{f})|_{\Omega}$  and these functions need not be equivalent.

An example follows.

**6.1 Example.** Let N = 2,  $\Omega = \{z = (x, y); |z - 1| < 1\}$ , and let f = 1 in  $\Omega \cap \{y > 2/\sqrt{5}\}$  and 0 otherwise in  $\Omega$ . Then  $(M_{\Omega}f)|_{\Omega \cap \{y \le 0\}} = 0$  while  $(M_{\mathbb{R}^N}\bar{f})|_{\Omega \cap \{y \le 0\}} > 0$ .



Hence:  $\overline{f} \in \mathbb{D}$  is sufficient for  $f \in \mathbb{D}_{\Omega}$ . Nevertheless, next example shows that this assumption is too strong.



**6.2 Example.** Consider the situation illustrated by the upper part, that is, let N = 2 and consider a sequence of open cubes  $Q_1, Q_2, \ldots$  Let  $\Omega$  be the triangle domain whose boundary is contained in the positive axe x, the line y = kx, and the line containing the right vertical side of  $Q_1$ . Denote by  $Q_1/2, Q_2/2, \ldots$ , concentric cubes with sidelength equal to the half of the sides of  $Q_1, Q_2, \ldots$  Let  $(a_i)$ , be any sequence of positive real numbers such that

$$\sum_{i=1}^{\infty} a_i |Q_i| = \infty$$

and put

$$f = \sum_{i=1}^{\infty} a_i \chi_{Q_i/2}.$$

Then *f* is supported in a compact set and  $f \notin L^1(\Omega)$ . If we fix  $x \in \Omega$ , then every cube *Q* such that  $Q \ni x$ ,  $Q \subset \Omega$ , intersect at most two of the cubes  $Q_i$ , thus  $M_\Omega$  is finite a.e.

Hence: f need not be integrable over every compact subset of its support in order to have  $M_{\Omega}f < \infty$  a.e. in  $\Omega$ . Of course f must be integrable over cubes contained in  $\Omega$ , this is, however, not sufficient for  $M_{\Omega}f < \infty$  a.e. in  $\Omega$ . Indeed, f can be integrable over cubes in  $\Omega$ , and still  $M_{\Omega}$  need not be a.e. finite—an example follows. **6.3 Example.** Consider  $\Omega_1$  as  $\Omega$  from Example 6.2 united with a rectangle pasted from below to  $\Omega$ , with the left vertical side on the axe *y* and the upper horizontal side on the axe *x*. Put

$$f = \sum_{i=1}^{\infty} \frac{i}{|Q_i|} \chi_{Q_i/2}.$$

Let  $Q'_1$  be the translation of  $Q_1$  having the left upper corner on the origin, and  $Q''_1 \neq Q'_1$  be any fixed translation of  $Q_1$ , contained in  $\Omega_1$ , such that the left upper corner of  $Q''_1$  stays on the line y = kx and such that the set  $E = Q'_1 \cap Q''_1$  has positive measure. Then for every  $Q_i$ , *i* sufficiently large, there exists a translation of  $Q_1$  containing  $E \cup Q_i$ , therefore, if  $x \in$ 

*E*, since 
$$M_{\Omega}f(x) \ge \frac{1}{|Q_1|} \int_{Q_i} f(y) \, dy = \frac{i}{4|Q_1|}$$
, we have  $M_{\Omega}f = \infty$  in *E*. Hence  $M_{\Omega}f$  is not finite a.e. while *f* is integrable over

every cube contained in  $\Omega$ .

The point is: a sequence of cubes with averages of f blowing up.

**6.4 Theorem.** Let  $f \in L^1(Q)$  for all  $Q \subset \Omega$ . Then the following statements are equivalent:

(i) 
$$M_{\Omega}f < \infty \text{ a.e. in } \Omega;$$
  
(ii)  $\sup_{\substack{|Q|>\varepsilon\\Q \in \Omega}} \frac{1}{|Q|} \int_{Q} f(y) \, dy < \infty \quad \text{for all } \varepsilon > 0$ 

**6.5 Remark.** If  $\Omega = Q_0$ , then (ii) is equivalent to  $f \in L^1(Q_0)$ .

### The range of the local maximal function

If  $f \in \mathbb{D}_{\Omega}$ , then plainly  $M_{\Omega}$  is lower semicontinuous and  $f \leq M_{\Omega} f$  a.e. in  $\Omega$ . On the other hand, in contrast to the behaviour of  $M_{\mathbb{R}^N}$  and  $M_{Q_0}$ , it is not generally true that  $M_{\Omega} f \in L^r(\Omega)$ .

Consider Example 6.2 with  $a_i = i \exp(1/|Q_i|^2)$ . Then

$$\int_{\Omega} f^r dx = \sum_{i=1}^{\infty} \frac{|Q_i|}{4} i^r \exp\left(\frac{r}{|Q_i|^2}\right) = \infty, \qquad 0 < r < 1,$$

therefore  $M_{\Omega}f \notin L^{r}(\Omega)$ . But if  $\Omega$  is a cube  $Q_{0}$ , then  $M_{Q_{0}}f \in L^{r}(Q_{0})$  for all 0 < r < 1.

Also if  $\Omega$  is a cube  $Q_0$ , then in contrast to the behaviour of  $M_{\mathbb{R}^N}$  we have  $BMO(Q_0) \subset \mathbb{D}_{Q_0}$  (generally not true).

In spite of this we have

**6.6 Theorem.** Let  $f \in L^1(\Omega)$ . Then  $M_{\Omega}f \in L^{(1)}(\Omega)$ , therefore,  $M_{\Omega}f \in \bigcap_{\sigma>1} L^1(\log L)^{-\sigma}(\Omega)$ 

**6.7 Remark.** If  $\Omega$  is a cube  $Q_0$  and  $M_{Q_0}f \in L^1(\log L)^{-1}(Q_0)$ , then the  $L^1$  norm of f can be estimated as follows:

$$\int_{Q_0} f(x) \, dx \le 2^{N+1} \int_{Q_0} \frac{M_{Q_0} f(x)}{\log\left(e + \frac{M_{Q_0} f(x)}{|M_{Q_0} f(x)|_{Q_0}}\right)} \, dx,$$
  
where  $|M_{Q_0} f(x)|_{Q_0} = \frac{1}{|Q_0|} \int_{Q_0} M_{Q_0} f(x) \, dx.$ 

### A historical comment

In 1910 F. Riesz proved the following characterization of  $L^p$  spaces on a cube: Let 1 . Then <math>f belongs to  $L^p(Q)$  iff there exists C > 0 such that for any decomposition  $\{Q_i\}$  of Q into cubes  $Q_i$ , i.e.  $Q = \bigcup_i Q_i$  one has

$$\left(\sum_{i} \frac{1}{|Q_i|^{p-1}} \left( \int_{Q_i} |f(y) \, dy| \right)^p \right)^{1/p} \le C. \tag{6.1}$$

After easy manipulation with (6.1) (passing to dyadic cubes if necessary) we see that  $M_Q f(x) \le ||f||_p$  for  $p \le 2$ . Note that the left hand side of (6.1) is equivalent to  $||f||_p$ .

Hence for cubes and  $p \le 2$  the maximal theorem was in fact known before WWI. Maybe it is discussed somewhere in the literature.

A loosely related problem: Plainly, one can replace decompositions  $\{Q_i\}$  above (into cubes) by decompositions into measurable subsets of Q, say  $\{A_i\}$ . It is well known that  $f \in L^{p,\infty}$  iff there exists C' such that

$$\sup_{A \subset Q} \frac{1}{|A|^{1-1/p}} \int_{A} |f(y)| \, dy \le C'. \tag{6.2}$$

Relation (6.2) can be clearly replaced by

$$\sup_{\{A_i\}} \sup_{A_i} \frac{1}{|A_i|^{1-1/p}} \int_{A_i} |f(y)| \, dy \le C', \tag{6.3}$$

that is, by *sup* of the expression in (6.2) taken over all decompositions  $\{A_i\}$ .

Real interpolation of  $L^p$  and  $L^{p,\infty}$  leads to appropriate Lorentz space  $L^{p,q}$ .

The question is about an interpolation formula which might be perhaps derived from (6.1) with  $A_i$  instead of  $Q_i$  and (6.3). Would this be a formula for a quasinorm in  $L^{p,q}$  without use of rearrangements? Note that decompositions into cubes or have been treated in the literature (various clones of Morrey-Campanato spaces etc.)