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Two main aims of the talk

• to explain how small deviations and metric entropy are connected

• to illustrate this connection by some concrete examples
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Many applications
– approximation theory
– functional analysis (eigenvalue distributions)
– PDEs (spectral properties)
– probability on Banach spaces (small deviations)
– mathematical learning theory
– compressed sensing
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Often the ’inverse’ function of ε 7→ N (ε,A) is more convenient,
i.e. the entropy numbers, defined for n ∈ N by

εn(A) = inf{ε > 0 : A can be covered by n balls in M of radius ε}

A is precompact ⇐⇒N (ε,A) <∞ for all ε > 0⇐⇒ lim
n→∞

εn(A) = 0

y rate of decay of εn(A) describes the ’degree’ of compactness of A
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|λ1(T )| ≥ |λ2(T )| ≥ ... ≥ |λk(T )| ≥ ... ≥ 0

If T has < n eigenvalues, we set λn(T ) = λn+1(T ) = . . . = 0.

Carl-Triebel inequality. |λk(T )| ≤
√

2ek(T )
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Let E be a real separable Banach space with dual E′.
A Gaussian measure µ on E is a Borel measure on E such that all its
one-dimensional image measures µa = a(µ), a ∈ E′, are centered
Gaussian measures on R.

µa is uniquely determined by its variance σ2
a =

∫
R t

2 dµa(t)
y µ is uniquely determined by each of the following quantities:

– characteristic function µ̂(a) :=
∫
E e

i〈x,a〉 dµ(x) = e−σ
2
a/2

– covariance operator R : E′ → E, Ra :=
∫
E
x〈x, a〉 dµ(x)︸ ︷︷ ︸

Bochner integral

– reproducing kernel Hilbert space Hµ , i.e. the completion of R(E′)
w.r.t. the inner product

〈Ra,Rb〉µ =
∫
E
〈x, a〉〈x, b〉 dµ(x) , a, b ∈ E′



Remark. For every Gaussian measure µ on E there are a Hilbert
space H and an operator T : H → E s.t. µ = T (γH), where γH is
the canonical Gaussian cylinder measure on H.

y the covariance operator of µ is R = TT ′,
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2
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Clearly T is not unique, but one can always take T = Id : Hµ → E.

A centered Gaussian process is a random process X = X(t), t ∈ I,
such that all X(t) are centered normal random variables. The process
is uniquely determined by its covariance structure, i.e. the function

K(s, t) = EX(s)X(t) (s, t ∈ I) .

We will consider processes with index set I = [0, 1]d, d ∈ N.
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E = L2([0, 1]d) or C([0, 1]d) or some Orlicz space.

Problem. Determine the asymptotic behaviour as ε→ 0 of the
small ball probabilities of the measure µ, resp. of the
small deviation probabilities of the process X(t)

ϕ(ε) :=

{
ϕµ(ε) = − logµ ({x ∈ E : ‖x‖E ≤ ε})
ϕX(ε) = − log P (‖X(.)‖E ≤ ε}) .

Many applications in probability and analysis.
- Law of the iterated logarithm of Chung type
- Strong limit laws in statistics
- Quantization (approximation) of stochastic processes
- Metric entropy of linear operators
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Notation. E – real separable Banach space
B – closed unit ball of E
µ – Gaussian measure on E
K – unit ball of the RKHS Hµ of µ.

Kuelbs/Li 1993. Let λ > 0 and ε > 0. Then

ϕ(2ε) + log Φ(λ+ αε) ≤ H(ε, λK) ≤ 2λ2 + ϕ(ε)

where Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2dt and Φ(αε) = µ(εB) .

λ =
√

ϕ(ε)
2 y ϕ(2ε) ≤ H

(
ε
√

2
ϕ(ε) , K

)
≤ 2ϕ(ε)

This looks quite complicated, but is very useful!
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Let M =M(ε, λK) =M(2ε, 2λK).
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y H(ε, λK) = logN (ε, λK) ≤ logM(ε, λK) = logM ≤ 2λ2 + ϕ(ε)

Proof of the lower estimate. more complicated

Some consequences.
1. Goodman 1990. H(ε,K) = o(ε−2) y Hµ ↪→ E compactly.

2. Li/Linde 1999. ϕ(ε) ∼ ε−α ⇐⇒ H(ε,K) ∼ ε−
2α

2+α (α > 0)
3. Aurzada/Ibragimov/Lifshits/van Zanten 2008.

ϕ(ε) ∼ (log 1
ε )α ⇐⇒ H(ε,K) ∼ (log 1

ε )α
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2. Li/Linde: Assume ϕ(ε) � ε−α for some α > 0.

Take λ = ε−α/2 in the upper Kuelbs-Li estimate and set δ = ε1+α/2.

y H(δ,K) = H(ε, ε−α/2K) � ε−α = δ−
2α

2+α

The other implications are less trivial, the proofs are really very tricky.

3. Aurzada et al.: Proof is simpler.
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covariance structure
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min(sj , tj) (s, t ∈ [0, 1]d) .

For dimension d = 1 this is the classical Wiener process.

Bd(t) has almost surely continuous paths and is related to the
d-dimensional integration operator Td : L2([0, 1]d)→ C([0, 1]d)

Tdf(x) =
∫ x1

0
...

∫ xd

0
f(y1, ..., yd) dyd...dy1 .

Small deviation results for the Brownian sheet have a long history.
Csáki 1982 solved the L2-case,

− log P
(
‖Bd‖L2([0,1]d) ≤ ε

)
∼ ε−2| log ε|2d−2
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Dunker/Kühn/Lifshits/Linde JAT 1999. Let d ≥ 2. Then

ek(Td : L2([0, 1]d)→ C([0, 1]d)) � k−1(log k)d−1/2

Consequently, via the Kuelbs-Li result and by the the L2-case,

ε−2| log ε|2d−2 � − log P
(
‖Bd‖C([0,1]d) ≤ ε

)
� ε−2| log ε|2d−1



Remark. The last entropy estimate has an interpretation in terms of
Sobolev spaces with dominating mixed derivatives,

ek(id : W (1,...1)
2 ([0, 1]d)→ C([0, 1]d)) = ek(Td) � k−1(log k)d−1/2 .

Proof: via relation to Kolmogorov numbers, using the Haar basis in
L2([0, 1]d), tensor techniques, and hyperbolic cross approximation
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L2-norm versus sup-norm. The sup-norm case is much harder, since
the process may attain its maximum on a very small set.
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ek(id : W (1,...1)
2 ([0, 1]d)→ C([0, 1]d)) = ek(Td) � k−1(log k)d−1/2 .

Proof: via relation to Kolmogorov numbers, using the Haar basis in
L2([0, 1]d), tensor techniques, and hyperbolic cross approximation

Intuition. Note that Bd(0) has variance 0, i.e. Bd(0) = 0 a.s.
y small entropy H(ε,K) means high concentration of the process

near 0
y large probability P(‖Bd‖ ≤ ε)

L2-norm versus sup-norm. The sup-norm case is much harder, since
the process may attain its maximum on a very small set.

Nice interplay probability – analysis.
probabilistic estimates for small deviations of processes ↔
analytical estimates for entropy of operators
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Consider the family of centered Gaussian processes Xα,β(t) , t ≥ 0 ,
defined by the covariance function

K(t, s) := EXα,β(s)Xα,β(t) =
22β+1(st)α

(s+ t)2β+1
.
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(s+ t)2β+1
.

Problem posed at the Workshop in Palo Alto, December 2008:
Find the small deviation rates of the processes Xα,β w.r.t. the
– L2 norm, if α > 0 and −1/2 < β < α
– sup norm, if α > β + 1/2 > 0 .



5. A family of smooth Gaussian processes

Consider the family of centered Gaussian processes Xα,β(t) , t ≥ 0 ,
defined by the covariance function

K(t, s) := EXα,β(s)Xα,β(t) =
22β+1(st)α

(s+ t)2β+1
.

Problem posed at the Workshop in Palo Alto, December 2008:
Find the small deviation rates of the processes Xα,β w.r.t. the
– L2 norm, if α > 0 and −1/2 < β < α
– sup norm, if α > β + 1/2 > 0 .

Remark. The conditions on α, β are best possible to ensure that the
sample paths of the process Xα,β(t) are almost surely in L2[0, 1],
respectively in C[0, 1].



It is not hard to check that the process Xα,β = Xα,β(t), 0 ≤ t ≤ 1 is
related to the operator

(Sf)(t) = tα
∫ ∞

0
xβe−xtf(x) dx , f ∈ L2[0,∞), t ∈ [0, 1]
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Let α > 0 and α > β > −1/2. Then

log P
(∫ 1

0
Xα,β(t)2 dt ≤ ε2

)
∼ −(log 1

ε )3 as ε→ 0 .



It is not hard to check that the process Xα,β = Xα,β(t), 0 ≤ t ≤ 1 is
related to the operator

(Sf)(t) = tα
∫ ∞

0
xβe−xtf(x) dx , f ∈ L2[0,∞), t ∈ [0, 1]

Theorem. (small deviations under L2-norm)
Let α > 0 and α > β > −1/2. Then

log P
(∫ 1

0
Xα,β(t)2 dt ≤ ε2

)
∼ −(log 1

ε )3 as ε→ 0 .

By the Kuelbs-Li entropy connection (in the log-case) it is clear that
this would follow from the

Proposition. For all α > β > −1/2 the entropy numbers of the
operator S : L2[0,∞)→ L2[0, 1] satisfy

log en(S) ∼ − 3
√
n as n→∞ .



Sketch of proof. The operator T := SS′ : L2[0, 1]→ L2[0, 1] is

(Tf)(t) = Γ(2β + 1)
∫ 1

0

(tx)α

(t+ x)2β+1
dt .

The singular numbers of T are known (Laptev 1974)

sn(T ) ≈ e−2c
√
n , where c = cα,β =

√
α− β
π

Now sn(T ) = sn(S)2 implies sn(S) ≈ e−c
√
n .

Since we are in the Hilbert space setting, the singular numbers and
the entropy numbers of S coincide with those of the diagonal
operator Dσ in `2, (xn) 7→ (σnxn), with σn = sn(S).

Gordon-König-Schütt 1987: ek(Dσ) ∼ sup
n≥1

2−k/n(σ1 · · ·σn)1/n

y − log ek(S) ∼ inf
n≥1

( kn + 1
n

n∑
j=1

√
j) ∼ inf

n≥1
( kn +

√
n) ∼ 3

√
n .



Theorem. (small deviations under sup-norm)
Aurzada/Gao/Kühn/Li/Shao JTP 2011+
Let α > β + 1

2 > 0 . Then

log P
(

sup
0≤t≤1

|Xα,β(t)| ≤ ε
)
∼ −(log 1

ε )3 .

(same estimate as in L2-norm, but for a smaller range of α)
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|Xα,β(t)| ≤ ε
)
∼ −(log 1

ε )3 .
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Of course, the process Xα,β is related to the same operator S, but
now considered as an operator into C[0, 1].
y enough to show: S : L2 → C satisfies the same entropy

estimate as S : L2 → L2, that means log en(S) ∼ − 3
√
n.

Since C ↪→ L2 with norm one, the lower estimate is clear.



Theorem. (small deviations under sup-norm)
Aurzada/Gao/Kühn/Li/Shao JTP 2011+
Let α > β + 1

2 > 0 . Then

log P
(

sup
0≤t≤1

|Xα,β(t)| ≤ ε
)
∼ −(log 1

ε )3 .

(same estimate as in L2-norm, but for a smaller range of α)

Of course, the process Xα,β is related to the same operator S, but
now considered as an operator into C[0, 1].
y enough to show: S : L2 → C satisfies the same entropy

estimate as S : L2 → L2, that means log en(S) ∼ − 3
√
n.

Since C ↪→ L2 with norm one, the lower estimate is clear.

Idea for the upper estimate. Observe that S maps even into a
smaller space than C[0, 1], namely in the Hölder space Cλ[0, 1] with
λ := min(α− β − 1

2 ,
1
2) > 0.

But how can we take advantage of this fact? By interpolation!



Lemma. Let u be an operator from some Banach space E into
Cλ[0, 1] for some 0 < λ ≤ 1. Then

en(u : E → C) ≤ 2‖u : E → Cλ‖
1

2λ+1 · en(u : E → L2)
2λ

2λ+1 .



Lemma. Let u be an operator from some Banach space E into
Cλ[0, 1] for some 0 < λ ≤ 1. Then

en(u : E → C) ≤ 2‖u : E → Cλ‖
1

2λ+1 · en(u : E → L2)
2λ

2λ+1 .

Sketch of the proof.
First we construct averaging operators Pδ : L2 → C with

‖Pδ : L2 → C‖ ≤ δ−1/2 and ‖id− Pδ : Cλ → C‖ ≤ δλ

By elementary properties of entropy numbers this gives

en(u : E → C) ≤ ‖u : E → C‖ · δλ + en(u : E → L2) · δ−1/2 .

Optimizing finally over δ, the result follows.



Lemma. Let u be an operator from some Banach space E into
Cλ[0, 1] for some 0 < λ ≤ 1. Then

en(u : E → C) ≤ 2‖u : E → Cλ‖
1

2λ+1 · en(u : E → L2)
2λ

2λ+1 .

Sketch of the proof.
First we construct averaging operators Pδ : L2 → C with

‖Pδ : L2 → C‖ ≤ δ−1/2 and ‖id− Pδ : Cλ → C‖ ≤ δλ

By elementary properties of entropy numbers this gives

en(u : E → C) ≤ ‖u : E → C‖ · δλ + en(u : E → L2) · δ−1/2 .

Optimizing finally over δ, the result follows.

Remark. 1. The direct proof is not very difficult and gives exact
constants, so there is no need to use abstract interpolation theory.
2. Taking logarithms, the exponent 2λ

2λ+1 becomes a multiplicative
constant, and this solves our problem: log en(S : L2 → C) � − 3

√
n.



6. Covering numbers in Gaussian RKHSs

The positive definite Gaussian kernels

K(x, y) = exp(−σ2‖x− y‖22) , x, y ∈ [0, 1]d

where σ > 0 is an arbitrary parameter, play an important role in
learning theory. They generate RKHSs

Hσ([0, 1]d) ↪→ C([0, 1]d) .

Of special interest in learning theory are its covering numbers.



6. Covering numbers in Gaussian RKHSs

The positive definite Gaussian kernels

K(x, y) = exp(−σ2‖x− y‖22) , x, y ∈ [0, 1]d

where σ > 0 is an arbitrary parameter, play an important role in
learning theory. They generate RKHSs

Hσ([0, 1]d) ↪→ C([0, 1]d) .

Of special interest in learning theory are its covering numbers.

Theorem (Kühn, J. Complexity 2011). The covering numbers of the
embedding Iσ,d : Hσ([0, 1]d)→ C([0, 1]d) behave asymptotically like

logN (ε, Iσ,d) �
(
log 1

ε

)d+1(
log log 1

ε

)d as ε→ 0 .

The same is true for Iσ,d : Hσ([0, 1]d)→ Lp([0, 1]d) , 2 ≤ p <∞.



Remarks.
1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed (log 1
ε )

d
2 � logN (ε, Iσ,d) � (log 1

ε )d+1

and conjectured that the correct bound is (log 1
ε )

d
2
+1 .

2. Our proof uses an explicit description of ONBs in Gaussian
RKHSs, due to Steinwart/Hush/Scovel 2006.
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1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed (log 1
ε )

d
2 � logN (ε, Iσ,d) � (log 1

ε )d+1

and conjectured that the correct bound is (log 1
ε )

d
2
+1 .

2. Our proof uses an explicit description of ONBs in Gaussian
RKHSs, due to Steinwart/Hush/Scovel 2006.

Application to smooth Gaussian processes.
Let σ > 0 and d ∈ N. For the centered Gaussian process
Xσ,d = (Xσ,d(t)), t ∈ [0, 1]d with covariance structure

EXσ,d(s)Xσ,d(t) = exp
(
−σ2‖s− t‖22

)
the small deviation probabilities under the sup-norm satisfy

− log P

(
sup

t∈[0,1]d
|Xσ,d(t)| ≤ ε

)
∼
(
log 1

ε

)d+1(
log log 1

ε

)d .
The same estimates hold for all Lp-norms with 2 ≤ p <∞ .
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