Metric entropy and small deviations of Gaussian processes

Thomas Kühn

Universität Leipzig, Germany
2nd International Workshop on Interpolation Theory, Function Spaces and Related Topics, Santiago de Compostela, 18-22 June 2011

18 June 2011

Plan of the talk

1. Metric entropy - basic definitions and properties
2. Gaussian measures and processes
3. Relations between small deviations and metric entropy
4. The d-dimensional Brownian sheet
5. A family of smooth Gaussian processes
6. Covering numbers in Gaussian RKHS

Plan of the talk

1. Metric entropy - basic definitions and properties
2. Gaussian measures and processes
3. Relations between small deviations and metric entropy
4. The d-dimensional Brownian sheet
5. A family of smooth Gaussian processes
6. Covering numbers in Gaussian RKHS

Two main aims of the talk

- to explain how small deviations and metric entropy are connected
- to illustrate this connection by some concrete examples

1. Metric entropy - basic definitions and properties
2. Metric entropy - basic definitions and properties

- Metric entropy
- introduced by Pontryagin and Schnirelman (1932)
- first systematic treatment by Kolmogorov/Tihomirov (1959)
- later by G.G.Lorentz and many others
- different versions: ε-entropy, covering numbers, entropy numbers
- defined for sets and for operators

1. Metric entropy - basic definitions and properties

- Metric entropy
- introduced by Pontryagin and Schnirelman (1932)
- first systematic treatment by Kolmogorov/Tihomirov (1959)
- later by G.G.Lorentz and many others
- different versions: ε-entropy, covering numbers, entropy numbers
- defined for sets and for operators
- Many applications
- approximation theory
- functional analysis (eigenvalue distributions)
- PDEs (spectral properties)
- probability on Banach spaces (small deviations)
- mathematical learning theory
- compressed sensing
- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define

- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers
$\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A$ can be covered by n balls of radius $\varepsilon\}$

- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers
$\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A$ can be covered by n balls of radius $\varepsilon\}$
packing numbers
$\mathcal{M}(\varepsilon, A)=\max \{n \in \mathbb{N}: \exists n$ points in A of mutual distance $>\varepsilon\}$

- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers
$\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A$ can be covered by n balls of radius $\varepsilon\}$ packing numbers
$\mathcal{M}(\varepsilon, A)=\max \{n \in \mathbb{N}: \exists n$ points in A of mutual distance $>\varepsilon\}$
Kolmogorov's ε-entropy $\mathcal{H}(\varepsilon, A)=\log _{2} \mathcal{N}(\varepsilon, A)$

- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers

$$
\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A \text { can be covered by } n \text { balls of radius } \varepsilon\}
$$

packing numbers
$\mathcal{M}(\varepsilon, A)=\max \{n \in \mathbb{N}: \exists n$ points in A of mutual distance $>\varepsilon\}$
Kolmogorov's ε-entropy $\mathcal{H}(\varepsilon, A)=\log _{2} \mathcal{N}(\varepsilon, A)$

- Basic inequalities.

$$
\mathcal{M}(2 \varepsilon, A) \leq \mathcal{N}(\varepsilon, A) \leq \mathcal{M}(\varepsilon, A)
$$

- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers
$\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A$ can be covered by n balls of radius $\varepsilon\}$ packing numbers
$\mathcal{M}(\varepsilon, A)=\max \{n \in \mathbb{N}: \exists n$ points in A of mutual distance $>\varepsilon\}$
Kolmogorov's ε-entropy $\mathcal{H}(\varepsilon, A)=\log _{2} \mathcal{N}(\varepsilon, A)$

- Basic inequalities.

$$
\mathcal{M}(2 \varepsilon, A) \leq \mathcal{N}(\varepsilon, A) \leq \mathcal{M}(\varepsilon, A)
$$

- Often the 'inverse' function of $\quad \varepsilon \mapsto \mathcal{N}(\varepsilon, A)$ is more convenient, i.e. the entropy numbers, defined for $n \in \mathbb{N}$ by
$\varepsilon_{n}(A)=\inf \{\varepsilon>0: A$ can be covered by n balls in M of radius $\varepsilon\}$
- Metric entropy of sets.

Let (M, d) be a metric space, $A \subseteq M$ and $\varepsilon>0$. We define covering numbers
$\mathcal{N}(\varepsilon, A)=\min \{n \in \mathbb{N}: A$ can be covered by n balls of radius $\varepsilon\}$ packing numbers
$\mathcal{M}(\varepsilon, A)=\max \{n \in \mathbb{N}: \exists n$ points in A of mutual distance $>\varepsilon\}$
Kolmogorov's ε-entropy $\mathcal{H}(\varepsilon, A)=\log _{2} \mathcal{N}(\varepsilon, A)$

- Basic inequalities.

$$
\mathcal{M}(2 \varepsilon, A) \leq \mathcal{N}(\varepsilon, A) \leq \mathcal{M}(\varepsilon, A)
$$

- Often the 'inverse' function of $\quad \varepsilon \mapsto \mathcal{N}(\varepsilon, A)$ is more convenient, i.e. the entropy numbers, defined for $n \in \mathbb{N}$ by $\varepsilon_{n}(A)=\inf \{\varepsilon>0: A$ can be covered by n balls in M of radius $\varepsilon\}$
- A is precompact $\Longleftrightarrow \mathcal{N}(\varepsilon, A)<\infty$ for all $\varepsilon>0 \Longleftrightarrow \lim _{n \rightarrow \infty} \varepsilon_{n}(A)=0$ \curvearrowright rate of decay of $\varepsilon_{n}(A)$ describes the 'degree' of compactness of A
- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define

- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define covering numbers

$$
\mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right)
$$

- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define covering numbers

$$
\mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right)
$$

(dyadic) entropy numbers

$$
e_{k}(T)=\varepsilon_{2^{k-1}}\left(T\left(B_{X}\right)\right)
$$

- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define covering numbers $\quad \mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right)$
(dyadic) entropy numbers $\quad e_{k}(T)=\varepsilon_{2^{k-1}}\left(T\left(B_{X}\right)\right)$

- T is compact $\Longleftrightarrow \lim _{k \rightarrow \infty} e_{k}(T)=0 \Longleftrightarrow \mathcal{N}(\varepsilon, T)<\infty$ for all $\varepsilon>0$
- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define covering numbers $\quad \mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right)$ (dyadic) entropy numbers $\quad e_{k}(T)=\varepsilon_{2^{k-1}}\left(T\left(B_{X}\right)\right)$

- T is compact $\Longleftrightarrow \lim _{k \rightarrow \infty} e_{k}(T)=0 \Longleftrightarrow \mathcal{N}(\varepsilon, T)<\infty$ for all $\varepsilon>0$
- Relation to eigenvalues. If $T: X \rightarrow X$ is a compact operator, then its spectrum $\sigma(T)$ has no accumulation points except possibly 0 , and all $\lambda \in \sigma(T), \lambda \neq 0$, are eigenvalues of finite multiplicity.
- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define

$$
\begin{array}{lc}
\text { covering numbers } & \mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right) \\
\text { (dyadic) entropy numbers } & e_{k}(T)=\varepsilon_{2^{k-1}}\left(T\left(B_{X}\right)\right)
\end{array}
$$

- T is compact $\Longleftrightarrow \lim _{k \rightarrow \infty} e_{k}(T)=0 \Longleftrightarrow \mathcal{N}(\varepsilon, T)<\infty$ for all $\varepsilon>0$
- Relation to eigenvalues. If $T: X \rightarrow X$ is a compact operator, then its spectrum $\sigma(T)$ has no accumulation points except possibly 0 , and all $\lambda \in \sigma(T), \lambda \neq 0$, are eigenvalues of finite multiplicity.
\curvearrowright Ordering of the eigenvalues (counting multiplicities)

$$
\begin{aligned}
& \left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \ldots \geq\left|\lambda_{k}(T)\right| \geq \ldots \geq 0 \\
& \text { If } T \text { has }<n \text { eigenvalues, we set } \lambda_{n}(T)=\lambda_{n+1}(T)=\ldots=0 .
\end{aligned}
$$

- Metric entropy of operators.

Let X, Y be (quasi-)Banach spaces, B_{X} the closed unit ball in X and $T: X \rightarrow Y$ a (bounded linear) operator. We define

$$
\begin{array}{lc}
\text { covering numbers } & \mathcal{N}(\varepsilon, T)=\mathcal{N}\left(\varepsilon, T\left(B_{X}\right) ; Y\right) \\
\text { (dyadic) entropy numbers } & e_{k}(T)=\varepsilon_{2^{k-1}}\left(T\left(B_{X}\right)\right)
\end{array}
$$

- T is compact $\Longleftrightarrow \lim _{k \rightarrow \infty} e_{k}(T)=0 \Longleftrightarrow \mathcal{N}(\varepsilon, T)<\infty$ for all $\varepsilon>0$
- Relation to eigenvalues. If $T: X \rightarrow X$ is a compact operator, then its spectrum $\sigma(T)$ has no accumulation points except possibly 0 , and all $\lambda \in \sigma(T), \lambda \neq 0$, are eigenvalues of finite multiplicity.
\curvearrowright Ordering of the eigenvalues (counting multiplicities)

$$
\begin{aligned}
& \left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \ldots \geq\left|\lambda_{k}(T)\right| \geq \ldots \geq 0 \\
& \text { If } T \text { has }<n \text { eigenvalues, we set } \lambda_{n}(T)=\lambda_{n+1}(T)=\ldots=0 .
\end{aligned}
$$

Carl-Triebel inequality.

$$
\left|\lambda_{k}(T)\right| \leq \sqrt{2} e_{k}(T)
$$

2. Gaussian measures and processes
3. Gaussian measures and processes

- Let E be a real separable Banach space with dual E^{\prime}. A Gaussian measure μ on E is a Borel measure on E such that all its one-dimensional image measures $\mu_{a}=a(\mu), a \in E^{\prime}$, are centered Gaussian measures on \mathbb{R}.

2. Gaussian measures and processes

- Let E be a real separable Banach space with dual E^{\prime}.

A Gaussian measure μ on E is a Borel measure on E such that all its one-dimensional image measures $\mu_{a}=a(\mu), a \in E^{\prime}$, are centered Gaussian measures on \mathbb{R}.

- μ_{a} is uniquely determined by its variance $\sigma_{a}^{2}=\int_{\mathbb{R}} t^{2} d \mu_{a}(t)$
$\curvearrowright \mu$ is uniquely determined by each of the following quantities:
- characteristic function $\widehat{\mu}(a):=\int_{E} e^{i\langle x, a\rangle} d \mu(x)=e^{-\sigma_{a}^{2} / 2}$
- covariance operator $R: E^{\prime} \rightarrow E, R a:=\underbrace{\int_{E} x\langle x, a\rangle d \mu(x)}_{\text {Bochner integral }}$
- reproducing kernel Hilbert space H_{μ}, i.e. the completion of $R\left(E^{\prime}\right)$ w.r.t. the inner product

$$
\langle R a, R b\rangle_{\mu}=\int_{E}\langle x, a\rangle\langle x, b\rangle d \mu(x), \quad a, b \in E^{\prime}
$$

- Remark. For every Gaussian measure μ on E there are a Hilbert space H and an operator $T: H \rightarrow E$ s.t. $\mu=T\left(\gamma_{H}\right)$, where γ_{H} is the canonical Gaussian cylinder measure on H.
\curvearrowright the covariance operator of μ is $R=T T^{\prime}$,

$$
\text { in particular } \sigma_{a}^{2}=\int_{E}\langle x, a\rangle^{2} d \mu(x)=\langle R a, a\rangle=\left\|T^{\prime} a\right\|^{2}
$$

\curvearrowright the characteristic function of μ is

$$
\widehat{\mu}(a)=e^{-\sigma_{a}^{2} / 2}=e^{-\left\|T^{\prime} a\right\|^{2} / 2}
$$

Clearly T is not unique, but one can always take $T=I d: H_{\mu} \rightarrow E$.

- Remark. For every Gaussian measure μ on E there are a Hilbert space H and an operator $T: H \rightarrow E$ s.t. $\mu=T\left(\gamma_{H}\right)$, where γ_{H} is the canonical Gaussian cylinder measure on H.
\curvearrowright the covariance operator of μ is $R=T T^{\prime}$,

$$
\text { in particular } \sigma_{a}^{2}=\int_{E}\langle x, a\rangle^{2} d \mu(x)=\langle R a, a\rangle=\left\|T^{\prime} a\right\|^{2}
$$

\curvearrowright the characteristic function of μ is

$$
\widehat{\mu}(a)=e^{-\sigma_{a}^{2} / 2}=e^{-\left\|T^{\prime} a\right\|^{2} / 2}
$$

Clearly T is not unique, but one can always take $T=I d: H_{\mu} \rightarrow E$.

- A centered Gaussian process is a random process $X=X(t), t \in I$, such that all $X(t)$ are centered normal random variables. The process is uniquely determined by its covariance structure, i.e. the function

$$
K(s, t)=\mathbb{E} X(s) X(t) \quad(s, t \in I)
$$

We will consider processes with index set $\quad I=[0,1]^{d}, d \in \mathbb{N}$.

- The small ball/small deviation problem. Let μ be a Gaussian measure on a separable Banach space E, e.g. the distribution of a Gaussian process $X=X(t), t \in[0,1]^{d}$, whose sample paths are almost surely in some Banach space E of functions. In most cases $E=L_{2}\left([0,1]^{d}\right)$ or $C\left([0,1]^{d}\right)$ or some Orlicz space.
- The small ball/small deviation problem. Let μ be a Gaussian measure on a separable Banach space E, e.g. the distribution of a Gaussian process $X=X(t), t \in[0,1]^{d}$, whose sample paths are almost surely in some Banach space E of functions. In most cases $E=L_{2}\left([0,1]^{d}\right)$ or $C\left([0,1]^{d}\right)$ or some Orlicz space.
Problem. Determine the asymptotic behaviour as $\varepsilon \rightarrow 0$ of the small ball probabilities of the measure μ, resp. of the small deviation probabilities of the process $X(t)$

$$
\varphi(\varepsilon):= \begin{cases}\varphi_{\mu}(\varepsilon) & =-\log \mu\left(\left\{x \in E:\|x\|_{E} \leq \varepsilon\right\}\right) \\ \varphi_{X}(\varepsilon) & \left.=-\log \mathbb{P}\left(\|X(.)\|_{E} \leq \varepsilon\right\}\right)\end{cases}
$$

- The small ball/small deviation problem. Let μ be a Gaussian measure on a separable Banach space E, e.g. the distribution of a Gaussian process $X=X(t), t \in[0,1]^{d}$, whose sample paths are almost surely in some Banach space E of functions. In most cases $E=L_{2}\left([0,1]^{d}\right)$ or $C\left([0,1]^{d}\right)$ or some Orlicz space.
Problem. Determine the asymptotic behaviour as $\varepsilon \rightarrow 0$ of the small ball probabilities of the measure μ, resp. of the small deviation probabilities of the process $X(t)$

$$
\varphi(\varepsilon):= \begin{cases}\varphi_{\mu}(\varepsilon) & =-\log \mu\left(\left\{x \in E:\|x\|_{E} \leq \varepsilon\right\}\right) \\ \varphi_{X}(\varepsilon) & \left.=-\log \mathbb{P}\left(\|X(.)\|_{E} \leq \varepsilon\right\}\right)\end{cases}
$$

- Many applications in probability and analysis.
- Law of the iterated logarithm of Chung type
- Strong limit laws in statistics
- Quantization (approximation) of stochastic processes
- Metric entropy of linear operators

3. Relations between small deviations and metric entropy
4. Relations between small deviations and metric entropy

- Notation. E - real separable Banach space
B - closed unit ball of E
μ - Gaussian measure on E
K - unit ball of the RKHS H_{μ} of μ.

3. Relations between small deviations and metric entropy

- Notation. E - real separable Banach space
B - closed unit ball of E
μ - Gaussian measure on E
K - unit ball of the RKHS H_{μ} of μ.
- Kuelbs/Li 1993. Let $\lambda>0$ and $\varepsilon>0$. Then

$$
\varphi(2 \varepsilon)+\log \Phi\left(\lambda+\alpha_{\varepsilon}\right) \leq \mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)
$$

where $\quad \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \quad$ and $\quad \Phi\left(\alpha_{\varepsilon}\right)=\mu(\varepsilon B)$.
3. Relations between small deviations and metric entropy

- Notation. $\quad E$ - real separable Banach space
B - closed unit ball of E
μ - Gaussian measure on E
K - unit ball of the RKHS H_{μ} of μ.
- Kuelbs/Li 1993. Let $\lambda>0$ and $\varepsilon>0$. Then

$$
\varphi(2 \varepsilon)+\log \Phi\left(\lambda+\alpha_{\varepsilon}\right) \leq \mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)
$$

where $\quad \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \quad$ and $\quad \Phi\left(\alpha_{\varepsilon}\right)=\mu(\varepsilon B)$.

- $\lambda=\sqrt{\frac{\varphi(\varepsilon)}{2}} \curvearrowright \quad \varphi(2 \varepsilon) \leq \mathcal{H}\left(\varepsilon \sqrt{\frac{2}{\varphi(\varepsilon)}}, K\right) \leq 2 \varphi(\varepsilon)$

This looks quite complicated, but is very useful!

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$.

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$. the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$. the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$. the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$ in our case: $a=2 \lambda \quad \curvearrowright \mu\left(B_{\varepsilon}\left(x_{i}\right)\right) \geq e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right)$

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$. the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$ in our case: $a=2 \lambda \quad \curvearrowright \mu\left(B_{\varepsilon}\left(x_{i}\right)\right) \geq e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right)$

$$
1=\mu(E) \geq M e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right) \quad \curvearrowright \quad M \leq e^{2 \lambda^{2}} \frac{1}{\mu\left(B_{\varepsilon}(0)\right)}
$$

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$.
the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint
known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$
in our case: $a=2 \lambda \quad \curvearrowright \mu\left(B_{\varepsilon}\left(x_{i}\right)\right) \geq e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right)$

$$
\begin{aligned}
& 1=\mu(E) \geq M e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right) \quad \curvearrowright \quad M \leq e^{2 \lambda^{2}} \frac{1}{\mu\left(B_{\varepsilon}(0)\right)} \\
& \mathcal{H}(\varepsilon, \lambda K)=\log \mathcal{N}(\varepsilon, \lambda K) \leq \log \mathcal{M}(\varepsilon, \lambda K)=\log M \leq 2 \lambda^{2}+\varphi(\varepsilon)
\end{aligned}
$$

Proof of the upper estimate.

Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$.
the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint
known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$
in our case: $a=2 \lambda \quad \curvearrowright \mu\left(B_{\varepsilon}\left(x_{i}\right)\right) \geq e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right)$
$1=\mu(E) \geq M e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right) \quad \curvearrowright \quad M \leq e^{2 \lambda^{2}} \frac{1}{\mu\left(B_{\varepsilon}(0)\right)}$
$\mathcal{H}(\varepsilon, \lambda K)=\log \mathcal{N}(\varepsilon, \lambda K) \leq \log \mathcal{M}(\varepsilon, \lambda K)=\log M \leq 2 \lambda^{2}+\varphi(\varepsilon)$
Proof of the lower estimate. more complicated

Proof of the upper estimate.
Let $M=\mathcal{M}(\varepsilon, \lambda K)=\mathcal{M}(2 \varepsilon, 2 \lambda K)$.
Choose $x_{1}, \ldots, x_{M} \in 2 \lambda K$ with $\quad\left\|x_{i}-x_{j}\right\|_{E}>2 \varepsilon$ for all $i \neq j$.
\curvearrowright the (closed) balls $B_{\varepsilon}\left(x_{i}\right)$ are disjoint known in probability: $x \in a K \Longrightarrow \mu\left(B_{\varepsilon}(x)\right) \geq e^{-a^{2} / 2} \mu\left(B_{\varepsilon}(0)\right)$ in our case: $a=2 \lambda \quad \curvearrowright \mu\left(B_{\varepsilon}\left(x_{i}\right)\right) \geq e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right)$

$$
\begin{aligned}
& 1=\mu(E) \geq M e^{-2 \lambda^{2}} \mu\left(B_{\varepsilon}(0)\right) \quad \curvearrowright \quad M \leq e^{2 \lambda^{2}} \frac{1}{\mu\left(B_{\varepsilon}(0)\right)} \\
& \mathcal{H}(\varepsilon, \lambda K)=\log \mathcal{N}(\varepsilon, \lambda K) \leq \log \mathcal{M}(\varepsilon, \lambda K)=\log M \leq 2 \lambda^{2}+\varphi(\varepsilon)
\end{aligned}
$$

Proof of the lower estimate. more complicated

- Some consequences.

1. Goodman 1990. $\mathcal{H}(\varepsilon, K)=o\left(\varepsilon^{-2}\right) \quad \curvearrowright H_{\mu} \hookrightarrow E$ compactly.
2. Li/Linde 1999. $\quad \varphi(\varepsilon) \sim \varepsilon^{-\alpha} \Longleftrightarrow \mathcal{H}(\varepsilon, K) \sim \varepsilon^{-\frac{2 \alpha}{2+\alpha}} \quad(\alpha>0)$
3. Aurzada/Ibragimov/Lifshits/van Zanten 2008.

$$
\varphi(\varepsilon) \sim\left(\log \frac{1}{\varepsilon}\right)^{\alpha} \Longleftrightarrow \mathcal{H}(\varepsilon, K) \sim\left(\log \frac{1}{\varepsilon}\right)^{\alpha}
$$

Proofs. 1. Goodman: $\mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)$
$\curvearrowright\left(\frac{\varepsilon}{\lambda}\right)^{2} \mathcal{H}\left(\frac{\varepsilon}{\lambda}, K\right) \leq 2 \varepsilon^{2}+\frac{\varepsilon^{2} \varphi(\varepsilon)}{\lambda^{2}} \quad$ for all $\varepsilon, \lambda>0$.

Proofs. 1. Goodman: $\quad \mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)$
$\curvearrowright\left(\frac{\varepsilon}{\lambda}\right)^{2} \mathcal{H}\left(\frac{\varepsilon}{\lambda}, K\right) \leq 2 \varepsilon^{2}+\frac{\varepsilon^{2} \varphi(\varepsilon)}{\lambda^{2}} \quad$ for all $\varepsilon, \lambda>0$.
Keep now $\varepsilon>0$ fixed, set $\delta=\frac{\varepsilon}{\lambda}$, and let $\lambda \rightarrow \infty$. Then $\delta \rightarrow 0$ and

$$
\limsup _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K) \leq 2 \varepsilon^{2}
$$

Proofs. 1. Goodman: $\quad \mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)$

$$
\left(\frac{\varepsilon}{\lambda}\right)^{2} \mathcal{H}\left(\frac{\varepsilon}{\lambda}, K\right) \leq 2 \varepsilon^{2}+\frac{\varepsilon^{2} \varphi(\varepsilon)}{\lambda^{2}} \quad \text { for all } \varepsilon, \lambda>0
$$

Keep now $\varepsilon>0$ fixed, set $\delta=\frac{\varepsilon}{\lambda}$, and let $\lambda \rightarrow \infty$. Then $\delta \rightarrow 0$ and

$$
\limsup _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K) \leq 2 \varepsilon^{2}
$$

This is true for every $\varepsilon>0$, whence $\quad \lim _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K)=0$.

Proofs. 1. Goodman: $\quad \mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)$
$\curvearrowright\left(\frac{\varepsilon}{\lambda}\right)^{2} \mathcal{H}\left(\frac{\varepsilon}{\lambda}, K\right) \leq 2 \varepsilon^{2}+\frac{\varepsilon^{2} \varphi(\varepsilon)}{\lambda^{2}} \quad$ for all $\varepsilon, \lambda>0$.
Keep now $\varepsilon>0$ fixed, set $\delta=\frac{\varepsilon}{\lambda}$, and let $\lambda \rightarrow \infty$. Then $\delta \rightarrow 0$ and

$$
\limsup _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K) \leq 2 \varepsilon^{2}
$$

This is true for every $\varepsilon>0$, whence $\quad \lim _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K)=0$.
2. Li/Linde: Assume $\varphi(\varepsilon) \preceq \varepsilon^{-\alpha}$ for some $\alpha>0$.

Take $\lambda=\varepsilon^{-\alpha / 2}$ in the upper Kuelbs-Li estimate and set $\delta=\varepsilon^{1+\alpha / 2}$.

$$
\mathcal{H}(\delta, K)=\mathcal{H}\left(\varepsilon, \varepsilon^{-\alpha / 2} K\right) \preceq \varepsilon^{-\alpha}=\delta^{-\frac{2 \alpha}{2+\alpha}}
$$

The other implications are less trivial, the proofs are really very tricky.

Proofs. 1. Goodman: $\mathcal{H}(\varepsilon, \lambda K) \leq 2 \lambda^{2}+\varphi(\varepsilon)$
$\curvearrowright\left(\frac{\varepsilon}{\lambda}\right)^{2} \mathcal{H}\left(\frac{\varepsilon}{\lambda}, K\right) \leq 2 \varepsilon^{2}+\frac{\varepsilon^{2} \varphi(\varepsilon)}{\lambda^{2}} \quad$ for all $\varepsilon, \lambda>0$.
Keep now $\varepsilon>0$ fixed, set $\delta=\frac{\varepsilon}{\lambda}$, and let $\lambda \rightarrow \infty$. Then $\delta \rightarrow 0$ and

$$
\limsup _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K) \leq 2 \varepsilon^{2}
$$

This is true for every $\varepsilon>0$, whence $\quad \lim _{\delta \rightarrow 0} \delta^{2} \mathcal{H}(\delta, K)=0$.
2. Li/Linde: Assume $\varphi(\varepsilon) \preceq \varepsilon^{-\alpha}$ for some $\alpha>0$.

Take $\lambda=\varepsilon^{-\alpha / 2}$ in the upper Kuelbs-Li estimate and set $\delta=\varepsilon^{1+\alpha / 2}$.

$$
\mathcal{H}(\delta, K)=\mathcal{H}\left(\varepsilon, \varepsilon^{-\alpha / 2} K\right) \preceq \varepsilon^{-\alpha}=\delta^{-\frac{2 \alpha}{2+\alpha}}
$$

The other implications are less trivial, the proofs are really very tricky.
3. Aurzada et al.: Proof is simpler.
4. The d-dimensional Brownian sheet

- This is the centered Gaussian field $B_{d}=B_{d}(t), t \in[0,1]^{d}$, with covariance structure

$$
\mathbb{E} B_{d}(s) B_{d}(t)=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right) \quad\left(s, t \in[0,1]^{d}\right)
$$

For dimension $d=1$ this is the classical Wiener process.
4. The d-dimensional Brownian sheet

- This is the centered Gaussian field $B_{d}=B_{d}(t), t \in[0,1]^{d}$, with covariance structure

$$
\mathbb{E} B_{d}(s) B_{d}(t)=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right) \quad\left(s, t \in[0,1]^{d}\right)
$$

For dimension $d=1$ this is the classical Wiener process.

- $B_{d}(t)$ has almost surely continuous paths and is related to the d-dimensional integration operator $T_{d}: L_{2}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)$

$$
T_{d} f(x)=\int_{0}^{x_{1}} \ldots \int_{0}^{x_{d}} f\left(y_{1}, \ldots, y_{d}\right) d y_{d} \ldots d y_{1}
$$

4. The d-dimensional Brownian sheet

- This is the centered Gaussian field $B_{d}=B_{d}(t), t \in[0,1]^{d}$, with covariance structure

$$
\mathbb{E} B_{d}(s) B_{d}(t)=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right) \quad\left(s, t \in[0,1]^{d}\right)
$$

For dimension $d=1$ this is the classical Wiener process.

- $B_{d}(t)$ has almost surely continuous paths and is related to the d-dimensional integration operator $T_{d}: L_{2}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)$

$$
T_{d} f(x)=\int_{0}^{x_{1}} \ldots \int_{0}^{x_{d}} f\left(y_{1}, \ldots, y_{d}\right) d y_{d} \ldots d y_{1}
$$

- Small deviation results for the Brownian sheet have a long history. Csáki 1982 solved the L_{2}-case,

$$
-\log \mathbb{P}\left(\left\|B_{d}\right\|_{L_{2}\left([0,1]^{d}\right)} \leq \varepsilon\right) \sim \varepsilon^{-2}|\log \varepsilon|^{2 d-2}
$$

- For small deviations under sup-norm much less is known.
$d=1$: classical result for the Wiener process

$$
\log \mathbb{P}\left(\left\|B_{1}\right\|_{C([0,1])} \leq \varepsilon\right) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}}
$$

$d=2$: Bass 1988 (lower bound) and Talagrand 1994 (upper bound)

$$
\log \mathbb{P}\left(\left\|B_{2}\right\|_{C\left([0,1]^{2}\right)} \leq \varepsilon\right) \sim-\varepsilon^{-2}|\log \varepsilon|^{3}
$$

$d \geq 3$: still open, only recently some progress by Lacey et al. 2009

- For small deviations under sup-norm much less is known.
$d=1$: classical result for the Wiener process

$$
\log \mathbb{P}\left(\left\|B_{1}\right\|_{C([0,1])} \leq \varepsilon\right) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}}
$$

$d=2$: Bass 1988 (lower bound) and Talagrand 1994 (upper bound)

$$
\log \mathbb{P}\left(\left\|B_{2}\right\|_{C\left([0,1]^{2}\right)} \leq \varepsilon\right) \sim-\varepsilon^{-2}|\log \varepsilon|^{3}
$$

$d \geq 3$: still open, only recently some progress by Lacey et al. 2009

- Dunker/Kühn/Lifshits/Linde JAT 1999. Let $d \geq 2$. Then

$$
e_{k}\left(T_{d}: L_{2}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)\right) \preceq k^{-1}(\log k)^{d-1 / 2}
$$

Consequently, via the Kuelbs-Li result and by the the L_{2}-case,

$$
\varepsilon^{-2}|\log \varepsilon|^{2 d-2} \preceq-\log \mathbb{P}\left(\left\|B_{d}\right\|_{C\left([0,1]^{d}\right)} \leq \varepsilon\right) \preceq \varepsilon^{-2}|\log \varepsilon|^{2 d-1}
$$

- Remark. The last entropy estimate has an interpretation in terms of Sobolev spaces with dominating mixed derivatives,

$$
e_{k}\left(i d: W_{2}^{(1, \ldots 1)}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)\right)=e_{k}\left(T_{d}\right) \preceq k^{-1}(\log k)^{d-1 / 2}
$$

Proof: via relation to Kolmogorov numbers, using the Haar basis in $L_{2}\left([0,1]^{d}\right)$, tensor techniques, and hyperbolic cross approximation

- Remark. The last entropy estimate has an interpretation in terms of Sobolev spaces with dominating mixed derivatives,

$$
e_{k}\left(i d: W_{2}^{(1, \ldots 1)}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)\right)=e_{k}\left(T_{d}\right) \preceq k^{-1}(\log k)^{d-1 / 2}
$$

Proof: via relation to Kolmogorov numbers, using the Haar basis in $L_{2}\left([0,1]^{d}\right)$, tensor techniques, and hyperbolic cross approximation

- Intuition. Note that $B_{d}(0)$ has variance 0 , i.e. $B_{d}(0)=0$ a.s.
$\curvearrowright \quad$ small entropy $\mathcal{H}(\varepsilon, K)$ means high concentration of the process near 0
$\curvearrowright \quad$ large probability $\mathbb{P}\left(\left\|B_{d}\right\| \leq \varepsilon\right)$
- Remark. The last entropy estimate has an interpretation in terms of Sobolev spaces with dominating mixed derivatives,

$$
e_{k}\left(i d: W_{2}^{(1, \ldots 1)}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)\right)=e_{k}\left(T_{d}\right) \preceq k^{-1}(\log k)^{d-1 / 2}
$$

Proof: via relation to Kolmogorov numbers, using the Haar basis in $L_{2}\left([0,1]^{d}\right)$, tensor techniques, and hyperbolic cross approximation

- Intuition. Note that $B_{d}(0)$ has variance 0 , i.e. $B_{d}(0)=0$ a.s.
$\curvearrowright \quad$ small entropy $\mathcal{H}(\varepsilon, K)$ means high concentration of the process near 0
$\curvearrowright \quad$ large probability $\mathbb{P}\left(\left\|B_{d}\right\| \leq \varepsilon\right)$
- L_{2}-norm versus sup-norm. The sup-norm case is much harder, since the process may attain its maximum on a very small set.
- Remark. The last entropy estimate has an interpretation in terms of Sobolev spaces with dominating mixed derivatives,

$$
e_{k}\left(i d: W_{2}^{(1, \ldots 1)}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)\right)=e_{k}\left(T_{d}\right) \preceq k^{-1}(\log k)^{d-1 / 2}
$$

Proof: via relation to Kolmogorov numbers, using the Haar basis in $L_{2}\left([0,1]^{d}\right)$, tensor techniques, and hyperbolic cross approximation

- Intuition. Note that $B_{d}(0)$ has variance 0 , i.e. $B_{d}(0)=0$ a.s.
\curvearrowright small entropy $\mathcal{H}(\varepsilon, K)$ means high concentration of the process near 0
$\curvearrowright \quad$ large probability $\mathbb{P}\left(\left\|B_{d}\right\| \leq \varepsilon\right)$
- L_{2}-norm versus sup-norm. The sup-norm case is much harder, since the process may attain its maximum on a very small set.
- Nice interplay probability - analysis.
probabilistic estimates for small deviations of processes \leftrightarrow analytical estimates for entropy of operators

5. A family of smooth Gaussian processes
6. A family of smooth Gaussian processes

- Consider the family of centered Gaussian processes $X_{\alpha, \beta}(t), t \geq 0$, defined by the covariance function

$$
K(t, s):=\mathbb{E} X_{\alpha, \beta}(s) X_{\alpha, \beta}(t)=\frac{2^{2 \beta+1}(s t)^{\alpha}}{(s+t)^{2 \beta+1}}
$$

5. A family of smooth Gaussian processes

- Consider the family of centered Gaussian processes $X_{\alpha, \beta}(t), t \geq 0$, defined by the covariance function

$$
K(t, s):=\mathbb{E} X_{\alpha, \beta}(s) X_{\alpha, \beta}(t)=\frac{2^{2 \beta+1}(s t)^{\alpha}}{(s+t)^{2 \beta+1}}
$$

- Problem posed at the Workshop in Palo Alto, December 2008: Find the small deviation rates of the processes $X_{\alpha, \beta}$ w.r.t. the - L_{2} norm, if $\alpha>0$ and $-1 / 2<\beta<\alpha$
- sup norm, if $\alpha>\beta+1 / 2>0$.

5. A family of smooth Gaussian processes

- Consider the family of centered Gaussian processes $X_{\alpha, \beta}(t), t \geq 0$, defined by the covariance function

$$
K(t, s):=\mathbb{E} X_{\alpha, \beta}(s) X_{\alpha, \beta}(t)=\frac{2^{2 \beta+1}(s t)^{\alpha}}{(s+t)^{2 \beta+1}}
$$

- Problem posed at the Workshop in Palo Alto, December 2008: Find the small deviation rates of the processes $X_{\alpha, \beta}$ w.r.t. the - L_{2} norm, if $\alpha>0$ and $-1 / 2<\beta<\alpha$
- sup norm, if $\alpha>\beta+1 / 2>0$.
- Remark. The conditions on α, β are best possible to ensure that the sample paths of the process $X_{\alpha, \beta}(t)$ are almost surely in $L_{2}[0,1]$, respectively in $C[0,1]$.
- It is not hard to check that the process $X_{\alpha, \beta}=X_{\alpha, \beta}(t), 0 \leq t \leq 1$ is related to the operator

$$
(S f)(t)=t^{\alpha} \int_{0}^{\infty} x^{\beta} e^{-x t} f(x) d x, \quad f \in L_{2}[0, \infty), t \in[0,1]
$$

- It is not hard to check that the process $X_{\alpha, \beta}=X_{\alpha, \beta}(t), 0 \leq t \leq 1$ is related to the operator

$$
(S f)(t)=t^{\alpha} \int_{0}^{\infty} x^{\beta} e^{-x t} f(x) d x, \quad f \in L_{2}[0, \infty), t \in[0,1]
$$

- Theorem. (small deviations under L_{2}-norm) Let $\alpha>0$ and $\alpha>\beta>-1 / 2$. Then

$$
\log \mathbb{P}\left(\int_{0}^{1} X_{\alpha, \beta}(t)^{2} d t \leq \varepsilon^{2}\right) \sim-\left(\log \frac{1}{\varepsilon}\right)^{3} \quad \text { as } \varepsilon \rightarrow 0
$$

- It is not hard to check that the process $X_{\alpha, \beta}=X_{\alpha, \beta}(t), 0 \leq t \leq 1$ is related to the operator

$$
(S f)(t)=t^{\alpha} \int_{0}^{\infty} x^{\beta} e^{-x t} f(x) d x, \quad f \in L_{2}[0, \infty), t \in[0,1]
$$

- Theorem. (small deviations under L_{2}-norm) Let $\alpha>0$ and $\alpha>\beta>-1 / 2$. Then

$$
\log \mathbb{P}\left(\int_{0}^{1} X_{\alpha, \beta}(t)^{2} d t \leq \varepsilon^{2}\right) \sim-\left(\log \frac{1}{\varepsilon}\right)^{3} \quad \text { as } \varepsilon \rightarrow 0
$$

- By the Kuelbs-Li entropy connection (in the log-case) it is clear that this would follow from the

Proposition. For all $\alpha>\beta>-1 / 2$ the entropy numbers of the operator $S: L_{2}[0, \infty) \rightarrow L_{2}[0,1]$ satisfy

$$
\log e_{n}(S) \sim-\sqrt[3]{n} \quad \text { as } n \rightarrow \infty
$$

- Sketch of proof. The operator $T:=S S^{\prime}: L_{2}[0,1] \rightarrow L_{2}[0,1]$ is

$$
(T f)(t)=\Gamma(2 \beta+1) \int_{0}^{1} \frac{(t x)^{\alpha}}{(t+x)^{2 \beta+1}} d t
$$

The singular numbers of T are known (Laptev 1974)

$$
s_{n}(T) \approx e^{-2 c \sqrt{n}}, \quad \text { where } c=c_{\alpha, \beta}=\frac{\sqrt{\alpha-\beta}}{\pi}
$$

Now $\quad s_{n}(T)=s_{n}(S)^{2} \quad$ implies $\quad s_{n}(S) \approx e^{-c \sqrt{n}}$.
Since we are in the Hilbert space setting, the singular numbers and the entropy numbers of S coincide with those of the diagonal operator D_{σ} in $\ell_{2},\left(x_{n}\right) \mapsto\left(\sigma_{n} x_{n}\right)$, with $\sigma_{n}=s_{n}(S)$.
Gordon-König-Schütt 1987: $\quad e_{k}\left(D_{\sigma}\right) \sim \sup _{n \geq 1} 2^{-k / n}\left(\sigma_{1} \cdots \sigma_{n}\right)^{1 / n}$
$\curvearrowright \quad-\log e_{k}(S) \sim \inf _{n \geq 1}\left(\frac{k}{n}+\frac{1}{n} \sum_{j=1}^{n} \sqrt{j}\right) \sim \inf _{n \geq 1}\left(\frac{k}{n}+\sqrt{n}\right) \sim \sqrt[3]{n}$.

- Theorem. (small deviations under sup-norm)

Aurzada/Gao/Kühn/Li/Shao JTP 2011+ Let $\alpha>\beta+\frac{1}{2}>0$. Then

$$
\log \mathbb{P}\left(\sup _{0 \leq t \leq 1}\left|X_{\alpha, \beta}(t)\right| \leq \varepsilon\right) \sim-\left(\log \frac{1}{\varepsilon}\right)^{3}
$$

(same estimate as in L_{2}-norm, but for a smaller range of α)

- Theorem. (small deviations under sup-norm)

Aurzada/Gao/Kühn/Li/Shao JTP 2011+ Let $\alpha>\beta+\frac{1}{2}>0$. Then

$$
\log \mathbb{P}\left(\sup _{0 \leq t \leq 1}\left|X_{\alpha, \beta}(t)\right| \leq \varepsilon\right) \sim-\left(\log \frac{1}{\varepsilon}\right)^{3}
$$

(same estimate as in L_{2}-norm, but for a smaller range of α)

- Of course, the process $X_{\alpha, \beta}$ is related to the same operator S, but now considered as an operator into $C[0,1]$.
enough to show: $S: L_{2} \rightarrow C$ satisfies the same entropy estimate as $S: L_{2} \rightarrow L_{2}$, that means $\log e_{n}(S) \sim-\sqrt[3]{n}$.
Since $C \hookrightarrow L_{2}$ with norm one, the lower estimate is clear.
- Theorem. (small deviations under sup-norm)

Aurzada/Gao/Kühn/Li/Shao JTP 2011+ Let $\alpha>\beta+\frac{1}{2}>0$. Then

$$
\log \mathbb{P}\left(\sup _{0 \leq t \leq 1}\left|X_{\alpha, \beta}(t)\right| \leq \varepsilon\right) \sim-\left(\log \frac{1}{\varepsilon}\right)^{3}
$$

(same estimate as in L_{2}-norm, but for a smaller range of α)

- Of course, the process $X_{\alpha, \beta}$ is related to the same operator S, but now considered as an operator into $C[0,1]$.
$\curvearrowright \quad$ enough to show: $S: L_{2} \rightarrow C$ satisfies the same entropy estimate as $S: L_{2} \rightarrow L_{2}$, that means $\log e_{n}(S) \sim-\sqrt[3]{n}$.
Since $C \hookrightarrow L_{2}$ with norm one, the lower estimate is clear.
- Idea for the upper estimate. Observe that S maps even into a smaller space than $C[0,1]$, namely in the Hölder space $C^{\lambda}[0,1]$ with $\lambda:=\min \left(\alpha-\beta-\frac{1}{2}, \frac{1}{2}\right)>0$.
But how can we take advantage of this fact? By interpolation!
- Lemma. Let u be an operator from some Banach space E into $C^{\lambda}[0,1]$ for some $0<\lambda \leq 1$. Then

$$
e_{n}(u: E \rightarrow C) \leq 2\left\|u: E \rightarrow C^{\lambda}\right\|^{\frac{1}{2 \lambda+1}} \cdot e_{n}\left(u: E \rightarrow L_{2}\right)^{\frac{2 \lambda}{2 \lambda+1}}
$$

- Lemma. Let u be an operator from some Banach space E into $C^{\lambda}[0,1]$ for some $0<\lambda \leq 1$. Then

$$
e_{n}(u: E \rightarrow C) \leq 2\left\|u: E \rightarrow C^{\lambda}\right\|^{\frac{1}{2 \lambda+1}} \cdot e_{n}\left(u: E \rightarrow L_{2}\right)^{\frac{2 \lambda}{2 \lambda+1}} .
$$

Sketch of the proof.
First we construct averaging operators $P_{\delta}: L_{2} \rightarrow C$ with

$$
\left\|P_{\delta}: L_{2} \rightarrow C\right\| \leq \delta^{-1 / 2} \quad \text { and } \quad\left\|i d-P_{\delta}: C^{\lambda} \rightarrow C\right\| \leq \delta^{\lambda}
$$

By elementary properties of entropy numbers this gives

$$
e_{n}(u: E \rightarrow C) \leq\|u: E \rightarrow C\| \cdot \delta^{\lambda}+e_{n}\left(u: E \rightarrow L_{2}\right) \cdot \delta^{-1 / 2} .
$$

Optimizing finally over δ, the result follows.

- Lemma. Let u be an operator from some Banach space E into $C^{\lambda}[0,1]$ for some $0<\lambda \leq 1$. Then

$$
e_{n}(u: E \rightarrow C) \leq 2\left\|u: E \rightarrow C^{\lambda}\right\|^{\frac{1}{2 \lambda+1}} \cdot e_{n}\left(u: E \rightarrow L_{2}\right)^{\frac{2 \lambda}{2 \lambda+1}} .
$$

Sketch of the proof.
First we construct averaging operators $P_{\delta}: L_{2} \rightarrow C$ with

$$
\left\|P_{\delta}: L_{2} \rightarrow C\right\| \leq \delta^{-1 / 2} \quad \text { and } \quad\left\|i d-P_{\delta}: C^{\lambda} \rightarrow C\right\| \leq \delta^{\lambda}
$$

By elementary properties of entropy numbers this gives

$$
e_{n}(u: E \rightarrow C) \leq\|u: E \rightarrow C\| \cdot \delta^{\lambda}+e_{n}\left(u: E \rightarrow L_{2}\right) \cdot \delta^{-1 / 2} .
$$

Optimizing finally over δ, the result follows.

- Remark. 1. The direct proof is not very difficult and gives exact constants, so there is no need to use abstract interpolation theory. 2. Taking logarithms, the exponent $\frac{2 \lambda}{2 \lambda+1}$ becomes a multiplicative constant, and this solves our problem: $\log e_{n}\left(S: L_{2} \rightarrow C\right) \preceq-\sqrt[3]{n}$.

6. Covering numbers in Gaussian RKHSs

- The positive definite Gaussian kernels

$$
K(x, y)=\exp \left(-\sigma^{2}\|x-y\|_{2}^{2}\right) \quad, \quad x, y \in[0,1]^{d}
$$

where $\sigma>0$ is an arbitrary parameter, play an important role in learning theory. They generate RKHSs

$$
H_{\sigma}\left([0,1]^{d}\right) \hookrightarrow C\left([0,1]^{d}\right)
$$

Of special interest in learning theory are its covering numbers.
6. Covering numbers in Gaussian RKHSs

- The positive definite Gaussian kernels

$$
K(x, y)=\exp \left(-\sigma^{2}\|x-y\|_{2}^{2}\right) \quad, \quad x, y \in[0,1]^{d}
$$

where $\sigma>0$ is an arbitrary parameter, play an important role in learning theory. They generate RKHSs

$$
H_{\sigma}\left([0,1]^{d}\right) \hookrightarrow C\left([0,1]^{d}\right)
$$

Of special interest in learning theory are its covering numbers.

- Theorem (Kühn, J. Complexity 2011). The covering numbers of the embedding $I_{\sigma, d}: H_{\sigma}\left([0,1]^{d}\right) \rightarrow C\left([0,1]^{d}\right)$ behave asymptotically like

$$
\log \mathcal{N}\left(\varepsilon, I_{\sigma, d}\right) \asymp \frac{\left(\log \frac{1}{\varepsilon}\right)^{d+1}}{\left(\log \log \frac{1}{\varepsilon}\right)^{d}} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

The same is true for $I_{\sigma, d}: H_{\sigma}\left([0,1]^{d}\right) \rightarrow L_{p}\left([0,1]^{d}\right), 2 \leq p<\infty$.

- Remarks.

1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed $\quad\left(\log \frac{1}{\varepsilon}\right)^{\frac{d}{2}} \preceq \log \mathcal{N}\left(\varepsilon, I_{\sigma, d}\right) \preceq\left(\log \frac{1}{\varepsilon}\right)^{d+1}$
and conjectured that the correct bound is $\left(\log \frac{1}{\varepsilon}\right)^{\frac{d}{2}+1}$.
2. Our proof uses an explicit description of ONBs in Gaussian RKHSs, due to Steinwart/Hush/Scovel 2006.

- Remarks.

1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed

$$
\left(\log \frac{1}{\varepsilon}\right)^{\frac{d}{2}} \preceq \log \mathcal{N}\left(\varepsilon, I_{\sigma, d}\right) \preceq\left(\log \frac{1}{\varepsilon}\right)^{d+1}
$$

and conjectured that the correct bound is $\left(\log \frac{1}{\varepsilon}\right)^{\frac{d}{2}+1}$.
2. Our proof uses an explicit description of ONBs in Gaussian RKHSs, due to Steinwart/Hush/Scovel 2006.

- Application to smooth Gaussian processes.

Let $\sigma>0$ and $d \in \mathbb{N}$. For the centered Gaussian process $X_{\sigma, d}=\left(X_{\sigma, d}(t)\right), t \in[0,1]^{d}$ with covariance structure

$$
\mathbb{E} X_{\sigma, d}(s) X_{\sigma, d}(t)=\exp \left(-\sigma^{2}\|s-t\|_{2}^{2}\right)
$$

the small deviation probabilities under the sup-norm satisfy

$$
-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}\left|X_{\sigma, d}(t)\right| \leq \varepsilon\right) \sim \frac{\left(\log \frac{1}{\varepsilon}\right)^{d+1}}{\left(\log \log \frac{1}{\varepsilon}\right)^{d}}
$$

The same estimates hold for all L_{p}-norms with $2 \leq p<\infty$.

THANK YOU FOR YOUR ATTENTION!

