Compactness of embeddings of Besov and Triebel-Lizorkin spaces defined on quasi-bounded domains

> Hans-Gerd Leopold*)

Friedrich-Schiller-Universität Jena,
D 07737 Jena, Germany

## Santiago de Compostela <br> July 22th, 2011

${ }^{*)}$ joint work with L. Skrzypczak (Poznan)

## Motivation

$$
e_{k}\left(B_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow B_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\frac{s_{1}-s_{2}}{n}}
$$

if

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain


## Motivation

$$
e_{k}\left(B_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow B_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\frac{s_{1}-s_{2}}{n}}
$$

if

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain
- $\Omega$ bounded domain

Motivation

$$
e_{k}\left(B_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow B_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\frac{s_{1}-s_{2}}{n}}
$$

if

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain
- $\Omega$ bounded domain
- $\Omega$ E-thick domain with $|\Omega|<\infty$ and $-\infty<s_{2}<s_{1}<0$

Function spaces and wavelet on domains Triebel 2008

Motivation

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\frac{s_{1}-s_{2}}{n}}
$$

if

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain
- $\Omega$ bounded domain
- $\Omega$ E-thick domain with $|\Omega|<\infty$ and $-\infty<s_{2}<s_{1}<0$
- $\Omega$ uniformly E-porous domain with $|\Omega|<\infty$

Function spaces and wavelet on domains Triebel 2008

Motivation

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\frac{s_{1}-s_{2}}{n}}
$$

if

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain
- $\Omega$ bounded domain
- $\Omega$ E-thick domain with $|\Omega|<\infty$ and $-\infty<s_{2}<s_{1}<0$
- $\Omega$ uniformly E-porous domain with $|\Omega|<\infty$

Function spaces and wavelet on domains Triebel 2008
Here: $\Omega$ uniformly E-porous (quasi-bounded) domain with $|\Omega|=\infty$

Motivation

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\gamma}
$$

if

$$
\gamma:=\frac{s_{1}-s_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

- $\Omega$ bounded $C^{\infty}$-domain
- $\Omega$ bounded domain
- $\Omega$ E-thick domain with $|\Omega|<\infty$ and $-\infty<s_{2}<s_{1}<0$
- $\Omega$ uniformly E-porous domain with $|\Omega|<\infty$

Function spaces and wavelet on domains Triebel 2008
Here: $\Omega$ uniformly E-porous (quasi-bounded) domain with $|\Omega|=\infty$
$\Omega$ in $\mathbb{R}^{n}$ is called quasi－bounded if

$$
\lim _{x \in \Omega,|x| \rightarrow \infty} \operatorname{dist}(x, \partial \Omega)=0
$$

An unbounded domain is not quasi－bounded if，and only if，it contains infinitely many pairwise disjoint congruent balls．
$\Omega$ in $\mathbb{R}^{n}$ is called quasi-bounded if

$$
\lim _{x \in \Omega,|x| \rightarrow \infty} \operatorname{dist}(x, \partial \Omega)=0
$$

An unbounded domain is not quasi-bounded if, and only if, it contains infinitely many pairwise disjoint congruent balls.

Corollary
Let $\Omega$ be an unbounded, uniformly E-porous domain in $\mathbb{R}^{n}$. If $\Omega$ is not quasi-bounded then an embedding

$$
\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)
$$

is never compact.

Let $\Omega$ be an uniformly E-porous domain with $\Omega \neq \mathbb{R}^{n}, b(\Omega)<\infty$ and define $\widetilde{W}_{p}^{k}(\Omega):=\overline{C_{0}^{\infty}(\Omega)} W_{p}^{k}$. Then we have

$$
\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)
$$

is compact if

Let $\Omega$ be an uniformly E-porous domain with $\Omega \neq \mathbb{R}^{n}, b(\Omega)<\infty$ and define $\widetilde{W}_{p}^{k}(\Omega):={\overline{C_{0}}(\Omega)}^{W_{p}^{k}}$. Then we have

$$
\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)
$$

is compact if

$$
\gamma:=\frac{k_{1}-k_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

Let $\Omega$ be an uniformly E-porous domain with $\Omega \neq \mathbb{R}^{n}, b(\Omega)<\infty$ and define $\widetilde{W}_{p}^{k}(\Omega):=\overline{C_{0}^{\infty}(\Omega)} W_{p}^{k}$. Then we have

$$
\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)
$$

is compact if

$$
\gamma:=\frac{k_{1}-k_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

And with one additional property concerning the box packing holds

$$
e_{k}\left(\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)\right) \sim k^{-\gamma}
$$

Application
Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\}
$$

Application
Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\} .
$$

The Dirichlet Laplacian with $D(-\Delta)=\widetilde{W}_{2}^{2}\left(\omega_{\alpha}\right):={\overline{C_{0}\left(\omega_{\alpha}\right)}}^{W_{2}^{2}}$ is a positive self-adjoint operator on $L_{2}\left(\omega_{\alpha}\right)$ and

Application
Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\}
$$

The Dirichlet Laplacian with $D(-\Delta)=\widetilde{W}_{2}^{2}\left(\omega_{\alpha}\right):={\overline{C_{0}}\left(\omega_{\alpha}\right)}^{W_{2}^{2}}$ is a positive self-adjoint operator on $L_{2}\left(\omega_{\alpha}\right)$ and

$$
\lambda_{k}(-\Delta) \sim\left\{\begin{array}{lll}
k^{\frac{2 \alpha}{1+\alpha}} & \text { if } & 0<\alpha<1 \\
k \log k & \text { if } & \alpha=1 \\
k^{\frac{2}{2}} & \text { if } & \alpha>1
\end{array}\right.
$$

Uniformly E-porous domains
Let $\Omega$ be an open set in $\mathbb{R}^{n}$ such that $\Omega \neq \mathbb{R}^{n}$ and $\Gamma=\partial \Omega$.

Uniformly E-porous domains
Let $\Omega$ be an open set in $\mathbb{R}^{n}$ such that $\Omega \neq \mathbb{R}^{n}$ and $\Gamma=\partial \Omega$.
$\Omega$ is said to be E-porous if there is a number $\eta$ with $0<\eta<1$ such that for any ball $B(\gamma, r) \subset \mathbb{R}^{n}, \gamma \in \Gamma, 0<r<1$, there exist a ball $B(y, \eta r)$ with

$$
B(y, \eta r) \subset B(\gamma, r) \quad \text { and } \quad B(y, \eta r) \cap \bar{\Omega}=\emptyset
$$

Uniformly E-porous domains
Let $\Omega$ be an open set in $\mathbb{R}^{n}$ such that $\Omega \neq \mathbb{R}^{n}$ and $\Gamma=\partial \Omega$.
$\Omega$ is said to be E-porous if there is a number $\eta$ with $0<\eta<1$ such that for any ball $B(\gamma, r) \subset \mathbb{R}^{n}, \gamma \in \Gamma, 0<r<1$, there exist a ball $B(y, \eta r)$ with

$$
B(y, \eta r) \subset B(\gamma, r) \quad \text { and } \quad B(y, \eta r) \cap \bar{\Omega}=\emptyset
$$

The domain $\Omega$ is called uniformly E -porous if it is E -porous and $\Gamma$ is uniformly porous.

Uniformly E-porous domains
Let $\Omega$ be an open set in $\mathbb{R}^{n}$ such that $\Omega \neq \mathbb{R}^{n}$ and $\Gamma=\partial \Omega$.
$\Omega$ is said to be E-porous if there is a number $\eta$ with $0<\eta<1$ such that for any ball $B(\gamma, r) \subset \mathbb{R}^{n}, \gamma \in \Gamma, 0<r<1$, there exist a ball $B(y, \eta r)$ with

$$
B(y, \eta r) \subset B(\gamma, r) \quad \text { and } \quad B(y, \eta r) \cap \bar{\Omega}=\emptyset
$$

The domain $\Omega$ is called uniformly E -porous if it is E -porous and $\Gamma$ is uniformly porous.

A close set $\Gamma$ is said to be uniformly porous if it is porous and $\Gamma=\operatorname{supp} \mu$ with a locally finite positive Radon measure $\mu$ on $\mathbb{R}^{n}$ and

$$
\mu(B(\gamma, r)) \sim h(r), \quad \text { with } \quad \gamma \in \Gamma, \quad 0<r<1
$$

where $h:[0,1] \rightarrow \mathbb{R}$ is a continuous strictly increasing function with $h(0)=0$ and $h(1)=1$.

Function spaces on domains

$$
\widetilde{A}_{p, q}^{s}(\bar{\Omega})=\left\{f \in A_{p, q}^{s}\left(\mathbb{R}^{n}\right): \quad \operatorname{supp} f \subset \bar{\Omega}\right\} .
$$

Function spaces on domains

$$
\begin{gathered}
\widetilde{A}_{p, q}^{s}(\bar{\Omega})=\left\{f \in A_{p, q}^{s}\left(\mathbb{R}^{n}\right): \quad \operatorname{supp} f \subset \bar{\Omega}\right\} \\
\widetilde{A}_{p, q}^{s}(\Omega)=\left\{f \in D^{\prime}(\Omega): \quad f=\left.g\right|_{\Omega} \text { for some } g \in \widetilde{A}_{p, q}^{s}(\bar{\Omega})\right\}, \\
\left\|f\left|\widetilde{A}_{p, q}^{s}(\Omega)\|=\inf \| g\right| A_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\|
\end{gathered}
$$

Function spaces on domains

$$
\begin{gathered}
\widetilde{A}_{p, q}^{s}(\bar{\Omega})=\left\{f \in A_{p, q}^{s}\left(\mathbb{R}^{n}\right): \quad \operatorname{supp} f \subset \bar{\Omega}\right\} . \\
\widetilde{A}_{p, q}^{s}(\Omega)=\left\{f \in D^{\prime}(\Omega): \quad f=\left.g\right|_{\Omega} \text { for some } g \in \widetilde{A}_{p, q}^{s}(\bar{\Omega})\right\}, \\
\left\|f\left|\widetilde{A}_{p, q}^{s}(\Omega)\|=\inf \| g\right| A_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right\|, \\
\bar{B}_{p, q}^{s}(\Omega)=\left\{\begin{array}{lll}
\widetilde{B}_{p, q}^{s}(\Omega) & \text { if } & 0<p \leq \infty, 0<q \leq \infty, s>\sigma_{p}, \\
B_{p, q}^{0}(\Omega) & \text { if } & 1<p<\infty, 0<q \leq \infty, s=0 \\
B_{p, q}^{s}(\Omega) & \text { if } & 0<p<\infty, 0<q \leq \infty, s<0
\end{array}\right.
\end{gathered}
$$

Theorem［Triebel 2008］
Let $\Omega$ be an uniformly E －porous domain in $\mathbb{R}^{n}, \Omega \neq \mathbb{R}^{n}$ ．Let $\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}$ be a special u－wavelet system， constructed in［Tr08，Section 2.3 and 2．4］that is an orthonormal basis in $L_{2}(\Omega)$ and $u>\max \left(s, \sigma_{p}-s\right)$ ．

Theorem [Triebel 2008]
Let $\Omega$ be an uniformly E -porous domain in $\mathbb{R}^{n}, \Omega \neq \mathbb{R}^{n}$. Let $\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}$ be a special u-wavelet system, constructed in [Tr08, Section 2.3 and 2.4] that is an orthonormal basis in $L_{2}(\Omega)$ and $u>\max \left(s, \sigma_{p}-s\right)$. Then $f \in D^{\prime}(\Omega)$ is an element of $\bar{B}_{p, q}^{s}(\Omega)$ if, and only if,

$$
f=\sum_{j=0}^{\infty} \sum_{r=1}^{N_{j}} \lambda_{r}^{j} 2^{-j \frac{n}{2}} \Phi_{r}^{j}, \quad \lambda \in \ell_{q}\left(2^{j\left(s-\frac{n}{p}\right)} \ell_{p}^{N_{j}}\right)
$$

Theorem [Triebel 2008]
Let $\Omega$ be an uniformly E -porous domain in $\mathbb{R}^{n}, \Omega \neq \mathbb{R}^{n}$. Let $\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}$ be a special u-wavelet system, constructed in [Tr08, Section 2.3 and 2.4] that is an orthonormal basis in $L_{2}(\Omega)$ and $u>\max \left(s, \sigma_{p}-s\right)$. Then $f \in D^{\prime}(\Omega)$ is an element of $\bar{B}_{p, q}^{s}(\Omega)$ if, and only if,

$$
f=\sum_{j=0}^{\infty} \sum_{r=1}^{N_{j}} \lambda_{r}^{j} 2^{-j \frac{n}{2}} \Phi_{r}^{j}, \quad \lambda \in \ell_{q}\left(2^{j\left(s-\frac{n}{p}\right)} \ell_{p}^{N_{j}}\right) .
$$

If $f \in \bar{B}_{p, q}^{s}(\Omega)$ then the representation is unique with $\lambda=\lambda(f)$

$$
\lambda_{r}^{j}=\lambda_{r}^{j}(f)=2^{j \frac{n}{2}}\left(f, \Phi_{r}^{j}\right)
$$

where $($,$) is a dual pairing and$

$$
I: \bar{B}_{p, q}^{s}(\Omega) \ni f \mapsto \lambda(f) \in \ell_{q}\left(2^{j\left(s-\frac{n}{p}\right)} \ell_{p}^{N_{j}}\right)
$$

is an isomorphism.

## Sequence spaces

Let $\beta=\left\{\beta_{j}\right\}_{j=0}^{\infty}$ be a sequence of positive numbers and let $\left\{N_{j}\right\}_{j}$ be a sequence with $N_{j} \in \mathbb{N} \cup\{\infty\}$.
$\ell_{q}\left(\beta_{j} \ell_{p}^{N_{j}}\right):=\left\{\lambda=\left\{\lambda_{j, r}\right\}_{j, r}: \quad \lambda_{j, r} \in \mathbb{C}\right.$,

$$
\left.\left\|\lambda \mid \ell_{q}\left(\beta_{j} \ell_{p}^{N_{j}}\right)\right\|=\left(\sum_{j=0}^{\infty} \beta_{j}^{q}\left(\sum_{r=1}^{N_{j}}\left|\lambda_{j, r}\right|^{p}\right)^{q / p}\right)^{1 / q}<\infty\right\}
$$

(usual modifications if $p=\infty$ and/or $q=\infty$ ).
If $N_{j}=\infty$ then we put $\ell_{p}^{N_{j}}=\ell_{p}$.

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$
- If $b_{j_{0}}(\Omega)=\infty$ then $b_{j}(\Omega)=\infty$ for any $j \geq j_{0}$

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$
- If $b_{j 0}(\Omega)=\infty$ then $b_{j}(\Omega)=\infty$ for any $j \geq j_{0}$
- If $b_{j_{0}}(\Omega)>0$ then $b_{j}(\Omega)>0$ for any $j \geq j_{0}$

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$
- If $b_{j 0}(\Omega)=\infty$ then $b_{j}(\Omega)=\infty$ for any $j \geq j_{0}$
- If $b_{j_{0}}(\Omega)>0$ then $b_{j}(\Omega)>0$ for any $j \geq j_{0}$
- There exists a constant $j_{0}=j_{0}(\Omega)$ such that for $j \geq j_{0}$

$$
2^{\left(j-j_{0}\right) n} \leq b_{j}(\Omega)
$$

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$
- If $b_{j 0}(\Omega)=\infty$ then $b_{j}(\Omega)=\infty$ for any $j \geq j_{0}$
- If $b_{j_{0}}(\Omega)>0$ then $b_{j}(\Omega)>0$ for any $j \geq j_{0}$
- There exists a constant $j_{0}=j_{0}(\Omega)$ such that for $j \geq j_{0}$

$$
2^{\left(j-j_{0}\right) n} \leq b_{j}(\Omega)
$$

- If $|\Omega|<\infty$ then

$$
b_{j}(\Omega) 2^{-j n} \leq|\Omega|
$$

Box packing
Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty open set $\Omega \neq \mathbb{R}^{n}$.

$$
b_{j}(\Omega)=\sup \left\{k: \bigcup_{\ell=1}^{n} Q_{j, m_{\ell}} \subset \Omega, \quad Q_{j, m_{\ell}}\right\}, \quad j=0,1, \ldots
$$

Properties:

- $0 \leq b_{j}(\Omega) \leq \infty$ for any $j \in \mathbb{N}_{0}$ and $0<b_{j}(\Omega)$ for large $j$
- If $b_{j 0}(\Omega)=\infty$ then $b_{j}(\Omega)=\infty$ for any $j \geq j_{0}$
- If $b_{j_{0}}(\Omega)>0$ then $b_{j}(\Omega)>0$ for any $j \geq j_{0}$
- There exists a constant $j_{0}=j_{0}(\Omega)$ such that for $j \geq j_{0}$

$$
2^{\left(j-j_{0}\right) n} \leq b_{j}(\Omega)
$$

- If $|\Omega|<\infty$ then

$$
b_{j}(\Omega) 2^{-j n} \leq|\Omega|
$$

- It holds

$$
2^{n} b_{j-2}(\Omega) \leq N_{j} \leq b_{j}(\Omega)
$$

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.
There exists at most one number $b \in \mathbb{R}$ such that
$\lim \sup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $s<b$
and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$ ．
There exists at most one number $b \in \mathbb{R}$ such that
$\lim \sup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $s<b$
and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

We put

$$
b(\Omega)=\sup \left\{t \in \mathbb{R}_{+}: \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j t}=\infty\right\}
$$

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.
There exists at most one number $b \in \mathbb{R}$ such that
$\lim \sup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $s<b$
and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

We put

$$
b(\Omega)=\sup \left\{t \in \mathbb{R}_{+}: \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j t}=\infty\right\}
$$

For any nonempty open set $\Omega \subset \mathbb{R}^{n}$ we have $n \leq b(\Omega) \leq \infty$.

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.
There exists at most one number $b \in \mathbb{R}$ such that
$\lim \sup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $s<b$
and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

We put

$$
b(\Omega)=\sup \left\{t \in \mathbb{R}_{+}: \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j t}=\infty\right\}
$$

For any nonempty open set $\Omega \subset \mathbb{R}^{n}$ we have $n \leq b(\Omega) \leq \infty$.
If the measure $|\Omega|$ is finite then $b(\Omega)=n$.

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.
There exists at most one number $b \in \mathbb{R}$ such that

$$
\limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad \text { if } s<b
$$

and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

We put

$$
b(\Omega)=\sup \left\{t \in \mathbb{R}_{+}: \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j t}=\infty\right\}
$$

For any nonempty open set $\Omega \subset \mathbb{R}^{n}$ we have $n \leq b(\Omega) \leq \infty$.
If the measure $|\Omega|$ is finite then $b(\Omega)=n$.
If $\Omega$ is unbounded and not quasi-bounded then $b(\Omega)=\infty$.

It follows $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad$ if $0<s<n$.
There exists at most one number $b \in \mathbb{R}$ such that

$$
\limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty \quad \text { if } s<b
$$

and

$$
\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0 \quad \text { if } s>b
$$

We put

$$
b(\Omega)=\sup \left\{t \in \mathbb{R}_{+}: \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j t}=\infty\right\}
$$

For any nonempty open set $\Omega \subset \mathbb{R}^{n}$ we have $n \leq b(\Omega) \leq \infty$.
If the measure $|\Omega|$ is finite then $b(\Omega)=n$.
If $\Omega$ is unbounded and not quasi-bounded then $b(\Omega)=\infty$.
But there exist also quasi-bounded domains such that $b(\Omega)=\infty$.

## Example 1

Let $\alpha>0$. We consider the open sets $\omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha}, x>1\right\}
$$

Example 1
Let $\alpha>0$. We consider the open sets $\omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha}, x>1\right\}
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

Example 1
Let $\alpha>0$ ．We consider the open sets $\omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha}, x>1\right\}
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

and in consequence

$$
b\left(\omega_{\alpha}\right)=\left\{\begin{array}{lll}
\alpha^{-1}+1 & \text { if } & 0<\alpha<1 \\
2 & \text { if } & \alpha \geq 1
\end{array}\right.
$$

Example 1
Let $\alpha>0$. We consider the open sets $\omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha}, x>1\right\}
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

and in consequence

$$
b\left(\omega_{\alpha}\right)= \begin{cases}\alpha^{-1}+1 & \text { if } \quad 0<\alpha<1 \\ 2 & \text { if } \quad \alpha \geq 1\end{cases}
$$

$\lim _{j \rightarrow \infty} b_{j}\left(\omega_{\alpha}\right) 2^{-j b\left(\omega_{\alpha}\right)}$ is a positive finite number if $\alpha \neq 1$. If $\alpha=1$ then the limit equals infinity.

## Example 2

Let $\alpha>0$. We consider the open set $\Omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

## Example 2

Let $\alpha>0$. We consider the open set $\Omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Then

$$
b_{j}\left(\Omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{j(\alpha+1)} & \text { if } \quad \alpha>1\end{cases}
$$

and

Example 2
Let $\alpha>0$. We consider the open set $\Omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Then

$$
b_{j}\left(\Omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{j(\alpha+1)} & \text { if } \quad \alpha>1\end{cases}
$$

and

$$
b\left(\Omega_{\alpha}\right)=\left\{\begin{array}{lll}
\alpha^{-1}+1 & \text { if } & 0<\alpha<1 \\
\alpha+1 & \text { if } & \alpha \geq 1
\end{array}\right.
$$

## Example 2

Let $\alpha>0$. We consider the open set $\Omega_{\alpha} \subset \mathbb{R}^{2}$ defined as follows

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Then

$$
b_{j}\left(\Omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{j(\alpha+1)} & \text { if } \quad \alpha>1\end{cases}
$$

and

$$
b\left(\Omega_{\alpha}\right)=\left\{\begin{array}{lll}
\alpha^{-1}+1 & \text { if } & 0<\alpha<1 \\
\alpha+1 & \text { if } & \alpha \geq 1
\end{array}\right.
$$

Again $\lim _{j \rightarrow \infty} b_{j}\left(\Omega_{\alpha}\right) 2^{-j b\left(\Omega_{\alpha}\right)}$ is a positive finite number if $\alpha \neq 1$, but if $\alpha=1$ then the limit equals again infinity.

## Remark

If there exist $j_{0}$ such that $N_{j_{0}}=\infty$ then the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ holds if and only if

$$
p_{1} \leq p_{2} \quad \text { and } \quad\left\{\beta_{j}^{-1}\right\}_{j} \in \ell_{\boldsymbol{q} *} .
$$

## Remark

If there exist $j_{0}$ such that $N_{j_{0}}=\infty$ then the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ holds if and only if

$$
p_{1} \leq p_{2} \quad \text { and } \quad\left\{\beta_{j}^{-1}\right\}_{j} \in \ell_{q_{*}} .
$$

Moreover, in that cases the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ is never compact.

## Remark

If there exist $j_{0}$ such that $N_{j_{0}}=\infty$ then the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ holds if and only if

$$
p_{1} \leq p_{2} \quad \text { and } \quad\left\{\beta_{j}^{-1}\right\}_{j} \in \ell_{q *} .
$$

Moreover, in that cases the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ is never compact.

Corollary
Let $\Omega$ be an unbounded, uniformly E-porous domain in $\mathbb{R}^{n}$. If $\Omega$ is not quasi-bounded then an embedding

$$
\ell_{q_{1}}\left(2^{s_{1}-\frac{n}{p_{1}}-s_{2}+\frac{n}{p_{2}}} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right) \quad \text { or }
$$

is never compact.

## Remark

If there exist $j_{0}$ such that $N_{j_{0}}=\infty$ then the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ holds if and only if

$$
p_{1} \leq p_{2} \quad \text { and } \quad\left\{\beta_{j}^{-1}\right\}_{j} \in \ell_{q *} .
$$

Moreover, in that cases the embedding $\ell_{q_{1}}\left(\beta_{j} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right)$ is never compact.

Corollary
Let $\Omega$ be an unbounded, uniformly E-porous domain in $\mathbb{R}^{n}$. If $\Omega$ is not quasi-bounded then an embedding

$$
\ell_{q_{1}}\left(2^{s_{1}-\frac{n}{p_{1}}-s_{2}+\frac{n}{p_{2}}} \ell_{p_{1}}^{N_{j}}\right) \hookrightarrow \ell_{q_{2}}\left(\ell_{p_{2}}^{N_{j}}\right) \quad \text { or } \quad \bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)
$$

is never compact.

Theorem
Let $\Omega$ be an uniformly E-porous domain with $\Omega \neq \mathbb{R}^{n}$ and $b(\Omega)<\infty$. Let

$$
\frac{s_{1}-s_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

## Theorem

Let $\Omega$ be an uniformly E-porous domain with $\Omega \neq \mathbb{R}^{n}$ and $b(\Omega)<\infty$. Let

$$
\frac{s_{1}-s_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

If

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

then

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\gamma}
$$

with

$$
\gamma=\frac{s_{1}-s_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right) .
$$

The condition

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

can be replaced by $\left\{b_{j}(\Omega)\right\}_{j}$ is an admissible sequence, that is

$$
c_{0} b_{j}(\Omega) \leq b_{j+1}(\Omega) \leq c_{1} b_{j}(\Omega)
$$

The condition

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

can be replaced by $\left\{b_{j}(\Omega)\right\}_{j}$ is an admissible sequence, that is

$$
2^{n} b_{j}(\Omega) \leq b_{j+1}(\Omega) \leq c_{1} b_{j}(\Omega)
$$

And $\quad s_{1}-s_{2}+(b(\Omega)-n)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>b(\Omega)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} \quad$ by
$\left\{2^{j\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)} b_{j}(\Omega)^{-\left(\frac{1}{p_{2}}-\frac{1}{p_{1}}\right)_{+}}\right\}_{j}$ is almost strongly increasing.

The condition

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

can be replaced by $\left\{b_{j}(\Omega)\right\}_{j}$ is an admissible sequence, that is

$$
2^{n} b_{j}(\Omega) \leq b_{j+1}(\Omega) \leq c_{1} b_{j}(\Omega)
$$

And $\quad s_{1}-s_{2}+(b(\Omega)-n)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>b(\Omega)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} \quad$ by
$\left\{2^{j\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)} b_{j}(\Omega)^{-\left(\frac{1}{p_{2}}-\frac{1}{p_{1}}\right)_{+}}\right\}_{j}$ is almost strongly increasing.
Then we obtain

$$
e_{2 b_{k}(\Omega)}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim 2^{-k\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)} b_{k}(\Omega)^{-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}
$$

The condition

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

can be replaced by $\left\{b_{j}(\Omega)\right\}_{j}$ is an admissible sequence, that is

$$
2^{n} b_{j}(\Omega) \leq b_{j+1}(\Omega) \leq c_{1} b_{j}(\Omega)
$$

And $\quad s_{1}-s_{2}+(b(\Omega)-n)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>b(\Omega)\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+}$
$\left\{2^{j\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)} b_{j}(\Omega)^{-\left(\frac{1}{p_{2}}-\frac{1}{p_{1}}\right)_{+}}\right\}_{j}$ is almost strongly increasing.
Then we obtain
$e_{2 b_{k}(\Omega)}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim 2^{-k\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)} b_{k}(\Omega)^{-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}$
or
$e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim \mathbb{B}^{-1}\left(2^{-k\left(s_{1}-s_{2}-n\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)\right)}\right) k^{-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}$.

## Remark

Let $s_{1}, s_{2} \in \mathbb{R}, 0<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ and we assume

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

## Remark

Let $s_{1}, s_{2} \in \mathbb{R}, 0<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ and we assume

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

For positive real $\gamma$, such that

$$
\frac{s_{1}-s_{2}}{n} \geq \gamma>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+},
$$

there exists an uniformly E-porous quasi-bounded domain $\Omega$ in $\mathbb{R}^{n}$ such that

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\gamma} .
$$

## Remark

Let $s_{1}, s_{2} \in \mathbb{R}, 0<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ and we assume

$$
\frac{s_{1}-s_{2}}{n}>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

For positive real $\gamma$, such that

$$
\frac{s_{1}-s_{2}}{n} \geq \gamma>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+},
$$

there exists an uniformly E-porous quasi-bounded domain $\Omega$ in $\mathbb{R}^{n}$ such that

$$
e_{k}\left(\bar{B}_{p_{1}, q_{1}}^{s_{1}}(\Omega) \hookrightarrow \bar{B}_{p_{2}, q_{2}}^{s_{2}}(\Omega)\right) \sim k^{-\gamma} .
$$

Choose an example with

$$
b(\Omega)=n \frac{\frac{s_{1}-s_{2}}{n}-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}{\gamma-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} \geq n .
$$

Let $\Omega$ be a uniformly E-porous quasi-bounded domain with $|\Omega|=\infty$ and $b(\Omega)<\infty$ with one additional property, then

$$
\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)
$$

is compact if

Here $\widetilde{W}_{p}^{k}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{W_{p}^{k}}$.

Let $\Omega$ be a uniformly E-porous quasi-bounded domain with $|\Omega|=\infty$ and $b(\Omega)<\infty$ with one additional property, then

$$
\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)
$$

is compact if

$$
\frac{k_{1}-k_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)>\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)_{+} .
$$

and

$$
e_{k}\left(\widetilde{W}_{p_{1}}^{k_{1}}(\Omega) \hookrightarrow \widetilde{W}_{p_{2}}^{k_{2}}(\Omega)\right) \sim k^{-\gamma}
$$

with

$$
\gamma=\frac{k_{1}-k_{2}}{b(\Omega)}+\frac{b(\Omega)-n}{b(\Omega)}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right) .
$$

Here $\widetilde{W}_{p}^{k}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{W_{p}^{k}}$.

Applications to spectral theory on unbounded domains
Let $\Omega$ be a quasi-bounded uniformly E-porous domain Then we have $\bar{B}_{2,2}^{2 m}(\Omega)=\bar{F}_{2,2}^{2 m}(\Omega)=\widetilde{W}_{2}^{2 m}(\Omega), m \in \mathbb{N}$. Let

$$
A(x, D)=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) \partial^{\alpha}
$$

be formally self-adjoint, uniformly strongly elliptic differential operator of order $2 m$, with real valued coefficients $a_{\alpha} \in C^{\infty}(\Omega)$ that are uniformly bounded and uniformly continuous for $|\alpha| \leq 2 m$.

Applications to spectral theory on unbounded domains
Let $\Omega$ be a quasi-bounded uniformly E-porous domain Then we have $\bar{B}_{2,2}^{2 m}(\Omega)=\bar{F}_{2,2}^{2 m}(\Omega)=\widetilde{W}_{2}^{2 m}(\Omega), m \in \mathbb{N}$. Let

$$
A(x, D)=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) \partial^{\alpha}
$$

be formally self-adjoint, uniformly strongly elliptic differential operator of order $2 m$, with real valued coefficients $a_{\alpha} \in C^{\infty}(\Omega)$ that are uniformly bounded and uniformly continuous for $|\alpha| \leq 2 m$. Then the operator $A=A(x, D)$ with domain

$$
\mathcal{D}(A)=\bar{B}_{2,2}^{2 m}(\Omega)
$$

is a closed linear operator with discrete spectrum $\sigma(A)$ of eigenvalues having no finite limit point.

Applications to spectral theory on unbounded domains
Let $\Omega$ be a quasi-bounded uniformly E-porous domain Then we have $\bar{B}_{2,2}^{2 m}(\Omega)=\bar{F}_{2,2}^{2 m}(\Omega)=\widetilde{W}_{2}^{2 m}(\Omega), m \in \mathbb{N}$. Let

$$
A(x, D)=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) \partial^{\alpha}
$$

be formally self-adjoint, uniformly strongly elliptic differential operator of order $2 m$, with real valued coefficients $a_{\alpha} \in C^{\infty}(\Omega)$ that are uniformly bounded and uniformly continuous for $|\alpha| \leq 2 m$. Then the operator $A=A(x, D)$ with domain

$$
\mathcal{D}(A)=\bar{B}_{2,2}^{2 m}(\Omega)
$$

is a closed linear operator with discrete spectrum $\sigma(A)$ of eigenvalues having no finite limit point. Moreover we assume that $A$ is a positive self-adjoint in $L_{2}(\Omega)$.

Theorem
Let $\Omega$ be an uniformly E-porous domain in $\mathbb{R}^{n}, \Omega \neq \mathbb{R}^{n}$, such that $b(\Omega)<\infty$ and

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

Theorem
Let $\Omega$ be an uniformly E -porous domain in $\mathbb{R}^{n}, \Omega \neq \mathbb{R}^{n}$, such that $b(\Omega)<\infty$ and

$$
0<\liminf _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)} \leq \limsup _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}<\infty
$$

Let $\lambda_{1}, \lambda_{2}, \ldots$ be eigenvalues of $A$ ordered by their magnitude and counted according to their multiplicities. Then

$$
\lambda_{k} \sim k^{\frac{2 m}{b(\Omega)}} .
$$

Example 1
Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\}
$$

Example 1
Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\}
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

## Example 1

Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\} .
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

The Dirichlet Laplacian with $D(-\Delta)=\widetilde{W}_{2}^{2}\left(\omega_{\alpha}\right):={\overline{C_{0}}\left(\omega_{\alpha}\right)}^{W_{2}^{2}}$ is a positive self-adjoint operator on $L_{2}\left(\omega_{\alpha}\right)$ and

## Example 1

Let $\alpha>0$ and

$$
\omega_{\alpha}:=\left\{(x, y) \in \mathbb{R}^{2}:|y|<x^{-\alpha} \text { where } x>1\right\}
$$

Then

$$
b_{j}\left(\omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{2 j} & \text { if } \quad \alpha>1\end{cases}
$$

The Dirichlet Laplacian with $D(-\Delta)=\widetilde{W}_{2}^{2}\left(\omega_{\alpha}\right):={\overline{C_{0}}\left(\omega_{\alpha}\right)}^{W_{2}^{2}}$ is a positive self-adjoint operator on $L_{2}\left(\omega_{\alpha}\right)$ and

$$
\lambda_{k}(-\Delta) \sim\left\{\begin{array}{lll}
k^{\frac{2 \alpha}{1+\alpha}} & \text { if } & 0<\alpha<1 \\
k \log k & \text { if } & \alpha=1 \\
k & \text { if } & \alpha>1
\end{array}\right.
$$

## Example 2

Let $\alpha>0$ and

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Example 2
Let $\alpha>0$ and

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Then

$$
b_{j}\left(\Omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ 2^{2 j} & \text { if } \quad \alpha=1 \\ 2^{j(\alpha+1)} & \text { if } \quad \alpha>1\end{cases}
$$

## Example 2

Let $\alpha>0$ and

$$
\Omega_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y|<|x|^{-\alpha}\right\} .
$$

Then

$$
b_{j}\left(\Omega_{\alpha}\right) \sim \begin{cases}2^{j\left(\alpha^{-1}+1\right)} & \text { if } \quad 0<\alpha<1 \\ j 2^{2 j} & \text { if } \quad \alpha=1, \\ 2^{j(\alpha+1)} & \text { if } \quad \alpha>1,\end{cases}
$$

The Dirichlet Laplacian with $D(-\Delta)=\widetilde{W}_{2}^{2}\left(\Omega_{\alpha}\right):={\overline{C_{0}^{\infty}\left(\Omega_{\alpha}\right)}}^{W_{2}^{2}}$ is a positive self-adjoint operator on $L_{2}\left(\Omega_{\alpha}\right)$ and

$$
\lambda_{k}(-\Delta) \sim\left\{\begin{array}{lll}
k^{\frac{2 \alpha}{1+\alpha}} & \text { if } & 0<\alpha<1 \\
k \log k & \text { if } & \alpha=1 \\
k^{\frac{2}{1+\alpha}} & \text { if } & \alpha>1
\end{array}\right.
$$

Appendix

Wavelets on domains
Let $\psi_{F} \in C^{u}(\mathbb{R})$ and $\psi_{M} \in C^{u}(\mathbb{R}), u \in \mathbb{N}$ be real compactly supported Daubechies wavelets.
We assume also that $\psi_{M}$ satisfy the moment conditions for all $v \in \mathbb{N}_{0}, v<u$.

$$
\begin{aligned}
& \Psi_{G, m}^{j, L}(x):=2^{(j+L) n / 2} \prod_{a=1}^{n} \psi_{G_{a}}\left(2^{j+L_{x}} x_{a}-m_{a}\right) \\
& \quad G \in\{F, M\}^{n}, \quad m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}
\end{aligned}
$$

where $L \in \mathbb{N}_{0}$ is fixed such that

$$
\operatorname{supp} \psi_{F} \subset(-\varepsilon, \varepsilon) \quad \operatorname{supp} \psi_{M} \subset(-\varepsilon, \varepsilon)
$$

for some sufficiently small $\varepsilon>0$.
$\{F, M\}^{n *}=\{F, M\}^{n} \backslash\{\bar{F}=(F, \ldots, F)\}$.

$$
\mathbb{Z}_{\Omega}:=\left\{x_{r}^{j} \in \Omega: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}, N_{j} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

such that
$\left|x_{r}^{j}-x_{r^{\prime}}^{j}\right| \geq c_{1} 2^{-j}, \quad r \neq r^{\prime}$ and $\left.\operatorname{dist}\left(\bigcup_{r=1}^{N_{j}} B\left(x_{r}^{j}, c_{2} 2^{-j}\right), \Gamma\right)\right) \geq c_{3} 2^{-j}$.
$\qquad$

$$
\mathbb{Z}_{\Omega}:=\left\{x_{r}^{j} \in \Omega: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}, N_{j} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

such that

$$
\left.\left|x_{r}^{j}-x_{r^{\prime}}^{j}\right| \geq c_{1} 2^{-j}, \quad r \neq r^{\prime} \quad \text { and } \operatorname{dist}\left(\bigcup_{r=1}^{N_{j}} B\left(x_{r}^{j}, c_{2} 2^{-j}\right), \Gamma\right)\right) \geq c_{3} 2^{-j} .
$$

The system of functions

$$
\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\} \quad \text { with } \quad \operatorname{supp} \Phi_{r}^{j} \subset B\left(x_{r}^{j}, c_{2} 2^{-j}\right)
$$

is called $u$-wavelet system (with respect to $\Omega$ ) if it consists of:

$$
\mathbb{Z}_{\Omega}:=\left\{x_{r}^{j} \in \Omega: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}, N_{j} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

such that
$\left|x_{r}^{j}-x_{r^{\prime}}^{j}\right| \geq c_{1} 2^{-j}, \quad r \neq r^{\prime}$ and $\left.\operatorname{dist}\left(\bigcup_{r=1}^{N_{j}} B\left(x_{r}^{j}, c_{2} 2^{-j}\right), \Gamma\right)\right) \geq c_{3} 2^{-j}$.
The system of functions

$$
\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\} \quad \text { with } \quad \operatorname{supp} \Phi_{r}^{j} \subset B\left(x_{r}^{j}, c_{2} 2^{-j}\right)
$$

is called $u$-wavelet system (with respect to $\Omega$ ) if it consists of:
$\Phi_{r}^{0}=\Psi_{G, m}^{0, L} \quad$ for some $\quad G \in\{G, F\}^{n}, m \in \mathbb{Z}^{n}$

$$
\mathbb{Z}_{\Omega}:=\left\{x_{r}^{j} \in \Omega: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}, N_{j} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

such that
$\left|x_{r}^{j}-x_{r^{\prime}}^{j}\right| \geq c_{1} 2^{-j}, \quad r \neq r^{\prime}$ and $\left.\operatorname{dist}\left(\bigcup_{r=1}^{N_{j}} B\left(x_{r}^{j}, c_{2} 2^{-j}\right), \Gamma\right)\right) \geq c_{3} 2^{-j}$.
The system of functions

$$
\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\} \quad \text { with } \quad \operatorname{supp} \Phi_{r}^{j} \subset B\left(x_{r}^{j}, c_{2} 2^{-j}\right)
$$

is called $u$-wavelet system (with respect to $\Omega$ ) if it consists of:
$\Phi_{r}^{0}=\Psi_{G, m}^{0, L} \quad$ for some $\quad G \in\{G, F\}^{n}, m \in \mathbb{Z}^{n}$
$\Phi_{r}^{j}=\Psi_{G, m}^{j, L} \quad \operatorname{dist}\left(x_{r}^{j}, \Gamma\right) \geq c_{4} 2^{-j}, \quad G \in\{G, F\}^{n *}, m \in \mathbb{Z}^{n}$

$$
\mathbb{Z}_{\Omega}:=\left\{x_{r}^{j} \in \Omega: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\}, N_{j} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

such that
$\left|x_{r}^{j}-x_{r^{\prime}}^{j}\right| \geq c_{1} 2^{-j}, \quad r \neq r^{\prime}$ and $\left.\operatorname{dist}\left(\bigcup_{r=1}^{N_{j}} B\left(x_{r}^{j}, c_{2} 2^{-j}\right), \Gamma\right)\right) \geq c_{3} 2^{-j}$.
The system of functions

$$
\left\{\Phi_{r}^{j}: j \in \mathbb{N}_{0} ; r=1, \ldots, N_{j}\right\} \quad \text { with } \quad \operatorname{supp} \Phi_{r}^{j} \subset B\left(x_{r}^{j}, c_{2} 2^{-j}\right)
$$

is called $u$-wavelet system (with respect to $\Omega$ ) if it consists of:
$\Phi_{r}^{0}=\Psi_{G, m}^{0, L} \quad$ for some $\quad G \in\{G, F\}^{n}, m \in \mathbb{Z}^{n}$
$\Phi_{r}^{j}=\Psi_{G, m}^{j, L} \quad \operatorname{dist}\left(x_{r}^{j}, \Gamma\right) \geq c_{4} 2^{-j}, \quad G \in\{G, F\}^{n *}, m \in \mathbb{Z}^{n}$
$\Phi_{r}^{j}=\sum_{\left|m-m^{\prime}\right| \leq K} d_{m, m^{\prime}}^{j} \Psi_{\bar{F}, m}^{j, L} \quad \operatorname{dist}\left(x_{r}^{j}, \Gamma\right)<c_{4} 2^{-j} m=m(j, r) \in \mathbb{Z}^{n}$,
with

$$
\sum_{\left|m-m^{\prime}\right| \leq K} d_{m, m^{\prime}}^{j} \leq D, \operatorname{supp} \Psi_{\bar{F}, m^{\prime}}^{j, L} \subset B\left(x_{r}^{j}, c_{2} 2^{-j}\right)
$$

## Example 3

Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.

## Example 3

Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.
$\mathcal{A}_{j}:=\left\{m: m=(\ell, 0, \ldots, 0), \quad 3 j+R_{j-1} \leq 2^{-j} \ell<3 j+R_{j}\right\}$,
$\Omega_{j}:=\bigcup_{m \in \mathcal{A}_{j}} \bar{Q}_{j, m} \quad$ and $\quad \Omega:=\left(\bigcup_{j \in \mathbb{N}_{0}} \Omega_{j}\right)^{\circ}$.
$\operatorname{card} \mathcal{A}_{j} \sim 2^{j}\left(R_{j}-R_{j-1}\right) \quad$ and $\quad b_{j}(\Omega) \sim 2^{j n} \sum_{k=0}^{j} r_{k}$.

## Example 3

Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.
$\mathcal{A}_{j}:=\left\{m: m=(\ell, 0, \ldots, 0), \quad 3 j+R_{j-1} \leq 2^{-j} \ell<3 j+R_{j}\right\}$,
$\Omega_{j}:=\bigcup_{m \in \mathcal{A}_{j}} \bar{Q}_{j, m} \quad$ and $\quad \Omega:=\left(\bigcup_{j \in \mathbb{N}_{0}} \Omega_{j}\right)^{\circ}$.
$\operatorname{card} \mathcal{A}_{j} \sim 2^{j}\left(R_{j}-R_{j-1}\right) \quad$ and $\quad b_{j}(\Omega) \sim 2^{j n} \sum_{k=0}^{j} r_{k}$.
If $r_{k}=2^{\alpha k}, \alpha>0$, then $0<\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j(n+\alpha)}<\infty$ and $b(\Omega)=n+\alpha$.

## Example 3

Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.
$\mathcal{A}_{j}:=\left\{m: m=(\ell, 0, \ldots, 0), \quad 3 j+R_{j-1} \leq 2^{-j} \ell<3 j+R_{j}\right\}$,
$\Omega_{j}:=\bigcup_{m \in \mathcal{A}_{j}} \bar{Q}_{j, m} \quad$ and $\quad \Omega:=\left(\bigcup_{j \in \mathbb{N}_{0}} \Omega_{j}\right)^{\circ}$.
$\operatorname{card} \mathcal{A}_{j} \sim 2^{j}\left(R_{j}-R_{j-1}\right) \quad$ and $\quad b_{j}(\Omega) \sim 2^{j n} \sum_{k=0}^{j} r_{k}$.
If $r_{k}=2^{\alpha k}, \alpha>0$, then $0<\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j(n+\alpha)}<\infty$ and $b(\Omega)=n+\alpha$.
If $r_{k}=2^{\alpha k} \max (1, k), \alpha>0$, then $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty$ if $s \leq n+\alpha$ and $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0$ if $s>n+\alpha$ again $b(\Omega)=n+\alpha$ but $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}=\infty$.

## Example 3

Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.
$\mathcal{A}_{j}:=\left\{m: m=(\ell, 0, \ldots, 0), \quad 3 j+R_{j-1} \leq 2^{-j} \ell<3 j+R_{j}\right\}$,
$\Omega_{j}:=\bigcup_{m \in \mathcal{A}_{j}} \bar{Q}_{j, m} \quad$ and $\quad \Omega:=\left(\bigcup_{j \in \mathbb{N}_{0}} \Omega_{j}\right)^{\circ}$.
$\operatorname{card} \mathcal{A}_{j} \sim 2^{j}\left(R_{j}-R_{j-1}\right) \quad$ and $\quad b_{j}(\Omega) \sim 2^{j n} \sum_{k=0}^{j} r_{k}$.
If $r_{k}=2^{\alpha k}, \alpha>0$, then $0<\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j(n+\alpha)}<\infty$ and $b(\Omega)=n+\alpha$.
If $r_{k}=2^{\alpha k} \max (1, k), \alpha>0$, then $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty$ if $s \leq n+\alpha$ and $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0$ if $s>n+\alpha$
again $b(\Omega)=n+\alpha$ but $\quad \lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}=\infty$.
If $r_{k}=2^{\alpha k} \max (1, k)^{-1}, \alpha>0$, then its similar to the previous.

Example 3
Let $\left\{r_{j}\right\}_{j}$ be an increasing sequence of positive numbers.
We assume that $r_{0}>1$ and put $R_{j}=R_{j-1}+2^{j(n-1)} r_{j}, R_{-1}=0$.
The sequence $\left\{R_{j}-R_{j-1}\right\}_{j}$ is also increasing.
$\mathcal{A}_{j}:=\left\{m: m=(\ell, 0, \ldots, 0), \quad 3 j+R_{j-1} \leq 2^{-j} \ell<3 j+R_{j}\right\}$,
$\Omega_{j}:=\bigcup_{m \in \mathcal{A}_{j}} \bar{Q}_{j, m} \quad$ and $\quad \Omega:=\left(\bigcup_{j \in \mathbb{N}_{0}} \Omega_{j}\right)^{\circ}$.
$\operatorname{card} \mathcal{A}_{j} \sim 2^{j}\left(R_{j}-R_{j-1}\right) \quad$ and $\quad b_{j}(\Omega) \sim 2^{j n} \sum_{k=0}^{j} r_{k}$.
If $r_{k}=2^{\alpha k}, \alpha>0$, then $0<\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j(n+\alpha)}<\infty$ and $b(\Omega)=n+\alpha$.
If $r_{k}=2^{\alpha k} \max (1, k), \alpha>0$, then $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=\infty$ if $s \leq n+\alpha$ and $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j s}=0$ if $s>n+\alpha$
again $b(\Omega)=n+\alpha$ but $\lim _{j \rightarrow \infty} b_{j}(\Omega) 2^{-j b(\Omega)}=\infty$.
If $r_{k}=2^{\alpha k} \max (1, k)^{-1}, \alpha>0$, then its similar to the previous.
If $r_{k}=2^{k^{\alpha}}, \alpha>1$ then $b_{j}(\Omega)$ are finite but $b(\Omega)=\infty$.

