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Basic definitions: Rearrangements

(Q, d, ) Metric space. u Borel probability measure.
u:Q—R,
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Basic definitions: Rearrangements

(Q, d, ) Metric space. u Borel probability measure.
u:Q—R,

distribution function

pu(t) = pi{x € Q:Ju(x)| > t}, (£ = 0).

decreasing rearrangement u;, of u:

u,(s) =inf{t: py(t) <s}, (s >0).

maximal function uy;* of u:

SO-1 [ s (0= 60+ g
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Basic definitions: Rearrangements

(Q, d, ) Metric space. u Borel probability measure.
u:Q—R,

Modulus of the gradient:
f e Lip()

|IVf(x)| = limsup M

’ LA
d(Xv}/)_’O d(X’ .y) et



Symmetrization by truncation: Isoperimetry

A C Q, Borelian set
oy e B(An) — 1 (A)
u(A) = lim f:E»fo - ,
Ap={xe€Q:d(x,A) < h}.
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Symmetrization by truncation: Isoperimetry
A C Q, Borelian set
oy e B(An) — 1 (A)
u(A) = lim f:E»fo - ,
Ap={xe€Q:d(x,A) < h}.

The boundary measure is a natural generalization of the notion of
surface area to the metric probability space setting.
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Symmetrization by truncation: Isoperimetry

A C Q, Borelian set

pt(A) = lim fjifo EA\Zn) — B\7) (Ah)h K (A),

Ap={xe€Q:d(x,A) < h}.

An isoperimetric inequality measures the relation between p™(A)
and 1(A) by means of the isoperimetric profile | = /g 4,,,) defined
as the pointwise maximal function /(q 4, : [0,1] — [0, 00) such
that

1 (A) = Ko (H(A)),
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Example: Isoperimetric Inequality on R?
Among all regions in the plane, enclosed by a piecewise C?
boundary curve, with area A and perimeter L,

AA < 2.

If equality holds, then the region is a circle.
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Symmetrization by truncation: Isoperimetry

l@,d,.1) isoperimetric profile.

J:]0,1] — [0, 00) continuous, concave function, symmetric about
1/2 with J(0) = 0 st.

he,aum(t) = J(t), (¢ €0,1/2])

will be called an isoperimetric estimator
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Symmetrization by truncation: Isoperimetry

l@,d,.1) isoperimetric profile.

J:]0,1] — [0, 00) continuous, concave function, symmetric about
1/2 with J(0) = 0 st.

he,aum(t) = J(t), (¢ €0,1/2])

will be called an isoperimetric estimator

Q CR” ("nice”) J(t) ~ tr=1/n
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Symmetrization by truncation: Isoperimetry

l@,d,.1) isoperimetric profile.

J:]0,1] — [0, 00) continuous, concave function, symmetric about
1/2 with J(0) = 0 st.

he,aum(t) = J(t), (¢ €0,1/2])

will be called an isoperimetric estimator
Q CR” ("nice”) J(t) ~ tr=1/n

R, dryp(x) = (21)~"2e M /2dx, J(t) ~ t (log )"/
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Symmetrization by truncation: Isoperimetry

liQ,d,,1) isoperimetric profile.

J:]0,1] — [0, 00) continuous, concave function, symmetric about
1/2 with J(0) = 0 st.

Kaa(®) > (1), (€ [0,1/2])

will be called an isoperimetric estimator
Q C R” ("nice”) J(t) =~ tlr=V/n
R, dyn(x) = (2m)~"/2e*/2dx, J(t) ~ t (log 1)"/?

Condition 1. In what follows we shall assume (2, d, i) has a
nonzero isoperimetric estimator.
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Function spaces

X = X(Q2) Banach function space is a r.i. space if:

feX, g, =f;=geXand [glx=Ifllx-
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Function spaces

X = X(Q2) Banach function space is a r.i. space if:
feX g =f =geXand [gllx =Ifllx-

An r.i. space X() can be represented by a r.i. space on the
interval (0, 1), with Lebesgue measure, X = X(0, 1), such that

Ifllx = 1%

for every f € X.
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Function spaces
Examples:

» [P-spaces

7l = </Q eIr du(x))l/p - (/000 #u(t)d(t”)> ;




Function spaces
Examples:

» [P-spaces

o (o) ([ inac)”
= ([

» Lorentz spaces LP9

1 q dt 14
”pr’q = (/0 (tl/pf:(t)> t) ) [Pl =[PP — [P [P®
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Function spaces
Examples:

» [P-spaces

o (o) ([ inac)”
= ([

» Lorentz spaces LP9

1 q dt 14
”pr’q = (/0 <t1/pf:(t)) t) ) [P c [PP — [P [P®

» Others:

i urB
Orlicz spaces. n L



Classically conditions on r.i. spaces are formulated in terms of the
Hardy operators defined by

t () s
Pf(t) = 1/0 f(s)ds; Qf(t) = 1/tu f(s)d—,

t t S
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Classically conditions on r.i. spaces are formulated in terms of the
Hardy operators defined by

t Q) s
Pf(t)zl/0 f(s)ds; Qf(t)zl/tu f(s)d ,

t

the boundedness of these operators on r.i. spaces can be simply
described in terms of the so called Boyd indices defined by
_ . . Inhx(s) In hx(s)
0 p

ax = inf and ay =su
s>1 Ins s<1 Ins

i

where hx(s) denotes the norm of the dilation operator on X of the
dilation operator Eg, s > 0, defined by

*(Y) 0<t<s,
Esf(t):{ 0(5) s<t<l

The operator E, is bounded on X for every r.i. space X(Q) and for
every s > 0; moreover,

hx(s) < max(1,s). (1)

. urBe
For example, if X = LP, then a1 = ajp = % e



It is well known that if X is a r.i. space,

P is bounded on X & ax <1,
Q is bounded on X < ay > 0.
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It is well known that if X is a r.i. space,

P is bounded on X & ax <1,
Q is bounded on X < ay > 0.

Let X be a r.i. space,

t t
/0 F*(s)ds < /0 g*(s)ds — [|Fllx < llgllx

.l



Two Poincaré inequalities

Q C R", "nice". (fQ f= 0)

Gagliardo-Nirenberg-Sobolev-Petre: 1 < p < n, g = -2

n—p

/01 (tl/qf**(t))p% ~ /01 (tl/qf*(t))p# < C/Q [V£(x)[P dx.
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Two Poincaré inequalities

Q C R", "nice". (fQ f= 0)
Gagliardo-Nirenberg-Sobolev-Petre: 1 < p < n, g =

pn
n—

1 ok P dt ~ ' * pﬂ P
/0 (tl/qf (t)) —/0 (tl/qf (t)) < C [ |VF(x)|P dx.

t

RS]

Gross' inequality: ( [gn f(x)dvn(x) = 0)

1
| rwroe e [ 1GoP el dnae) < [ VAR (),

.l



_ (1) — (1)
- t

(—F) (t)

Bl




() — £7(¢)
=

(=F) (1)
1 1
P = [ @ = [ - ) S I
= Q(F ()~ F (N (O + 1l
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_ - ()
MAGEAU

(=F) (1)
1 1
P = [ @ = [ - ) S I
= Q(F ()~ F (N (O + 1l

/ (eare(0)" 2 o / (e - o)) L

~ /01 (e (7 () - ()"

1 Kok *
N / p(1/q+1)-1 ('M)pdt
0
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1 1
F(t) = / (—F7) (s)ds = / (F5(s) — F(9)) = + [1F
—Q(F ()~ () (1) + Il
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1 1
F(t) = / (—F7) (s)ds = / (F5(s) — F(9)) = + [1F
—Q(F ()~ () (1) + Il

o) ot
[ (arap() % o [ (amvm (OO,
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Euclidean setting

(=) ()
Ilne = | (D)l <o
1
Gaussian setting
(=) ()
e < | (O D) fog H <o
2

.l



Question. Is there a relation (pointwise?) between

(—F*Y(t), J(t) and VF?
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Symmetrization by truncation: The gradient
I :]0,1] — [0, 00) isoperimetric estimator, there are equiv.

1.
VA C Q, Borel set, " (A) > I(u(A)). Isoperimetric
2. ~
/ 11 (5))ds < / V()| dp(x). Ledoux
0 Q
3.

(=) (s)I(s) < = d /{f>f o) |VFf(x)| du(x). Maz'ya - Talenti

t
/ (- ))*(s)ds < /O VT’ (s)ds. Polya-Szegd




Symmetrization by truncation: The gradient
I :]0,1] — [0, 00) isoperimetric estimator, there are equiv.

1.
VA C Q, Borel set, " (A) > I(u(A)). Isoperimetric
2. ~
/ 11 (5))ds < / V()| dp(x). Ledoux
0 Q
3.

(=) (s)I(s) < = d /{f>f o) |VFf(x)| du(x). Maz'ya - Talenti

t
/ (- ))*(s)ds < /O VT’ (s)ds. Polya-Szegd

(—fj*)’/(r) — (F*(t) — f;(t))’(:) < |VF[7" (t). Oscillation




th — t1 if |[f(x)|> to,
ft?(x) o ‘f(X)‘ -t if 1 < ’f(X)‘ < tp,
0 if |[f(x)| < t.

| tgstones < [ 95200 d

[ Hisge(s0)ds = (et min (1111 > ). 117 > 11)-

For s >0 and h > 0, pick t; = (s + h),t2 = £, (s),

(f;(s) —f (s + h)) min(I(s + h),1(s)) < /{ IV || (x)] c

fr(s+h)<|fI<fr(s)}

/ V1] ()] di
JH{IFI>f (1)}

-/ IV 171 () e
{IfI>f;(s+h)} une

Unisersitat Automoma.
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. th — 1t if |[f(x)|> to,
fro(x) = |f(x)| —tr if t1 <|f(x)] < ta,
0 if ()| < t1.
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th — 1t if |[f(x)|> to,
f2(x) =14 |[f(x) -t if 1 <|f(X)] < ta,
0 if ()| < t1.

| tgstones < [ 95200 di




th — 1t if |[f(x)|> to,
f2(x) =14 |[f(x) -t if 1 <|f(X)] < ta,
0 if ()| < t1.

| tgstones < [ 95200 di

[ (51 = (ot min (16 (11 2 1) {111 > ).
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th — 1t if |[f(x)|> to,
f2(x) =14 |[f(x) -t if 1 <|f(X)] < ta,
0 if ()| < t1.

/0 (g (5) ds</\wt§2 )| di.

[ (51 = (ot min (16 (11 2 1) {111 > ).

For s >0 and h > 0, pick t; = (s + h),t2 = £, (s),

(F5(s) — £2(s + h)) min(I(s + h). I(s)) < / V17 ()

{Fx(s+h)<|f|<fr(s)}

=/ V1] ()] di
{lfI>fr (1)}

—/ V1] ()] dp
{\f\>f;(s+h)} u




thus

(f;(s) —fi(s+ h))
h

1
<7 (/ VI (ol dn— | V14 (X)Idu>
{IfI>f (0} {IfI>fi(s+h)}

But if f; absolutely continuous??

min(/(s + h), 1(s))




777

IVIFI ()l dp = VIOl dp

/{f;(s+h)<|f|gf;(s)} /{f;(s+h)<|f|<f;(s)}

Then £ is absolutely continuous in [a,b] (0 < a < b < 1).

.l



Condition 2. We assume that (2, 1) is such that for every
f € Lip(2), and every ¢ € R, we have that |Vf(x)| =0, a.e. on
the set {x: f(x) = c}.

nnnnnnnnnnnnnnnnn
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Condition 2. We assume that (2, 11) is such that for every
f € Lip(2), and every ¢ € R, we have that |Vf(x)| =0, a.e. on
the set {x : f(x) = c}.

Condition 1 and 2 are verified in all the classical cases: Euclidean,
Gaussian, Riemannian manifolds with positive curvature as well as
for doubling measures (homogeneous spaces).

.y




Integrability of solutions of elliptic equations

—div(a(x,u,Vu)) =fw in Q, (3)
u=20 on 09,

where Q is domain of R” (n > 2), such that u = w(x)dx is a
probability measure on R”, or € has Lebesgue measure 1 if w =1,
and a(x,n,&) : 2 x R xR"” — R" is a Carathéodory function such
that,

a(x, t,6).6 > w(x)[€]*, forae. xeQCR" VpeR, VEeR"

(4)
Example :w =1, a(x, t,£) = £. Then (3) becomes
Au=1f inQ,
u=20 on 01.

.l



Theorem

Let u € W§(w,Q) be a solution of (3). Let i = w(x)dx, and let
| = Irn.,,y be the isoperimetric profile of (R"; u). Then, the
following inequalities hold

1.
—u’ ' 2 *(s)ds, a.e.
( u) (t)l(t) < /0 fu( )d ) (5)

/tum) <|Vu!2>:(5)ds§ /tum) <(—u;;)’(s)/05 f;(z)dz>

ds.
(6)

.l



R = | " (,()) )%

Let X, Y be two r.i. spaces on £ such that,

IRy = [All%
and, suppose that ax < 1. Then, if u is a solution of (3) with
datum f € X(Q), we have

lelly = 11715 -

and

il <0 s
X

.l




R = | " (,()) )%

Let X, Y be two r.i. spaces on £ such that,
IRi(Mly = [IAllx

and, suppose that ax < 1. Then, if u is a solution of (3) with
datum f € X(Q), we have

lelly = 11715 -

("9 0 - o)

. ~ 1(s)\ 2
Moreover, if the operator R;(h)(t) = (*)

S
is bounded on X, then

Il = (12) eo

and

IA

il <0 s
X

leally

Q 2
JED (i) )%

= |£7]l% - une_

X




The Euclidian case (2 C R” ,|Q| =1.)

—div(a(x,u,Vu))=f inQ, (7)
u=20 on 09,

with ellipticity condition,

a(x,t,€).6 = |¢]?, forae. xeA, VneR, V¢eR"

.l



The Euclidian case (2 C R” ,|Q| =1.)

—div(a(x,u,Vu))=f inQ, (7)
u=20 on 09,

with ellipticity condition,
a(x,t,€).6 = |¢]?, forae. xeA, VneR, V¢eR"
Let X(€2) be an r.i. space such that &g < 1. Let u be a solution.
1L Ifag >2/n,
2
)| = Iflx -
|s7hu @), =1l
2. Ifag <2/n,
—2 %k *
[s7H () = w ()| + s < 1l -

3. Ifag > L+1

|55 1vul )] = 1fllx

.l



Between exponential and Gaussian measure
Elliptic problems associated with Gaussian measures. Let o > 0,

p € [1,2] and v = exp(2a/(2 — p)), and let

Hpa(x) = Zyqexp (— x| (log(7 + [x)*) dx = pap(x)dx, x €R,

and
@g,p(x) = Spoc,p(xl) T Spoc,p(xn)y and p = M?Z-

.l



Between exponential and Gaussian measure

Elliptic problems associated with Gaussian measures. Let o > 0,

p € [1,2] and v = exp(2a/(2 — p)), and let

Hp.a(x) = Z, 8 exp (— x| (log(y + [x])*) dx = pa,p(x)dx,

and

@g,p(x) = Spoc,p(xl) T Spoc,p(xn)y and p = M?Z-

Consider

—div(a(x,u,Vu)) = fep , inQ,
u=20 on 09,

with the ellipticity condition,

x € R,

(8)

a(x, t,€).§ = ¢p p(x) €]?, forae. xeQ, VneR, V¢éeR",

where Q2 C R" is an open set such that p(2) < 1.

.l



o

1\» 1
lon (s)~s <Iog s> <Iog log <e + s>> ’ , 0<s < u(9).

.l



Let u be a solution of (8) with datum f € X(A). Assume that
agx < 1. Then,

1. If 0 < agk,
1\ 2(1-2) 1\
|ogg loglog | e + S uy(s)| = fllx-
2. If 0= oax,
1\2(-%) AN .
|ogg loglog | e + S (v (s) = up(s))|| +llull 5
X
3. Ifag >1/2,

(Iog i) <1_%) <Iog log (e + 1)) ’ ]Vu]; ) = fllx-
X

.l



Weak assumptions

Condition 1: The isoperimetric profile /q 4, is a concave
continuous function, increasing on (0,1/2), symmetric about the
point 1/2 such that, moreover, vanishes at zero.

Condition 2: For every f € Lip(Q2) , and every ¢ € R, we have
that |Vf(x)| =0, u—a.e. on the set {x : f(x) = c}.

.l



Weak assumptions

Condition 1: The isoperimetric profile /q 4, is a concave
continuous function, increasing on (0,1/2), symmetric about the
point 1/2 such that, moreover, vanishes at zero.

Condition 1': The isoperimetric profile /g 4, is a positive
continuous function that vanishes at zero.

SDRE.




Weak assumptions

Condition 1: The isoperimetric profile /q 4, is a concave
continuous function, increasing on (0,1/2), symmetric about the
point 1/2 such that, moreover, vanishes at zero.

Condition 1': The isoperimetric profile /g 4, is a positive
continuous function that vanishes at zero.
I = lq,d,.) isoperimetric.

= inf @:

W(t) 0<s<t S

SDRE.




Weak assumptions

Condition 1: The isoperimetric profile /q 4, is a concave
continuous function, increasing on (0,1/2), symmetric about the
point 1/2 such that, moreover, vanishes at zero.

Condition 1': The isoperimetric profile /g 4, is a positive
continuous function that vanishes at zero.

I = lq,d,.) isoperimetric.

o 1910
O<s<t § t

w(t) if I is concave

SDRE.




Theorem

Let (Q2,d, 1n) be a metric probability space that satisfies Conditions
1"and 2, and let 1 < q < oo. Then for f € Lip(2), and for all

t € (0,1), we have

1.
/0 ((ﬂi")’(-)w())*(s)dsg/o VF[% (s)ds.

(57 = Ol < ¢ [ VA (s)es

.l



Theorem
Let (2,d, i) be a metric probability space satisfying Condition 1'.
Then for f € Lip(2), we have

(£7°() — 2 () w(t) < 1/0 VFT (s)ds, for t € (0,1).

.l



Theorem
Let (2,d, i) be a metric probability space satisfying Condition 1'.
Then for f € Lip(2), we have

(£7°() — 2 () w(t) < 1/0 VFT (s)ds, for t € (0,1).

From here:

(670 = £20) wt) g < 1971

X
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Theorem
Let (2,d, i) be a metric probability space satisfying Condition 1'.
Then for f € Lip(2), we have

(£7°() — 2 () w(t) < 1/0 VFT (s)ds, for t € (0,1).

From here:

(670 = £20) wt) g < 1971

X
But this does not apply if ax = 1.
What can be said for ax = 1.

.l



For simplicity let us assume that / is concave: Define

1 S
QF(t) = / f(s),z’s),

f € X, with suppf C (0,1/2), From the concavity of /, it follows
that s < I(s), s € (0,1/2), thus

1/2 ds 1/2 ds

f(t) = f(s)—= =< Qf(t) = f(s)—

ar) = [ e e = [ S
therefore @, is bounded on X for any r.i space X such that

Qax > 0.
Then, for all g € Lip(Q),
e~ [Lean| =19l
Q X

.l



Let g € Lip(2). Write

1/2 .
g,(t) :/t (—g;:) (s)ds +g,(1/2), t €(0,1/2].

lellx = llegllx = lgnxioaallx

1/2
=< /t (—g;)/(s)ds +g[§(1/2)||1\|»‘/

X

ds

1/2
< / (&) ()16) 11
t X

= |[(=&) )1)||, + lell,
= IVelx +lgll,

+ 21ty llglly,




Lemma
Given h € Lip(?) and bounded, there is a sequence (hy), of
bounded lip. functions such that:

1. For every c € R, we have that |Vh,(x)| =0, u—a.e. on the
set {x : hp(x) = c}.

2.
1
[Vha(x)] < (1 + ;) [Vh(x)] .
3.
h, — hin L'
n—0
4.

/Ot (((—hn)*)' (')/(-))* (s)ds < /Ot |V hn|* (s)ds.

.l



Is it possible to obtain an inequality for all functions?

SDRE.




Is it possible to obtain an inequality for all functions?

Euclidian case

w,_l(tl/”, f)

5 (t) — *(t) < cn .

where is X is a r.i. space

wx (t,8) = sup. lg(-+h) —&()llx -
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Is it possible to obtain an inequality for all functions?

Euclidian case

w,_l(tl/”, f)

5 (t) — *(t) < cn .

where is X is a r.i. space

wx (t,8) = sup. lg(-+h) —&()llx -

Since
I(t) = t1=Y/n

this suggests

.l



Metric spaces: wx (t,g)???
In the euclidian case:

win(t, £) = inf {|folly + tIIVA] : F = fo+ A} == K(t, F; L1, W]1)

.l



Metric spaces: wx (t,g)???

In the euclidian case:

wi(t, £) = inf {||foll, + tIVA] : £ = o+ A} = K(t, £; L1, W)1)
For each f € [

K(,(t) fi L2, Wl)
(t) — (t) <2 : , 0<t <1,

which implies (up to constant) isoperimetry.

.l



Mastylo (2010): There exists a universal constant ¢ > 0, such that
for every r.i. space X(Q) with ax < 1 and for all f € X+W}, we

have
FE(t) — £5(¢) < chb’;()t’)f),o <t<1/a. (9)

.l



Mastylo (2010): There exists a universal constant ¢ > 0, such that
for every r.i. space X(Q) with ax < 1 and for all f € X+W}, we
have

£ (8) — £1(8) < CW’O <t<1/a. (9)

Question: Does (9) hold for all values of t, and without restrictions
on the rearrangement invariant spaces X.
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Mastylo (2010): There exists a universal constant ¢ > 0, such that
for every r.i. space X(Q) with ax < 1 and for all f € X+W}, we
have

£ (8) — £1(8) < CW’O <t<1/a. (9)

Question: Does (9) hold for all values of t, and without restrictions
on the rearrangement invariant spaces X.

In that case, we are thus able to apply our result to sets of any
measure, 0 < t < 1, and, by means of considering X = L!, we are
able to show that the validity of (9) for all r.i. spaces is indeed
equivalent to the isoperimetric inequality!

.l



Theorem
Let X be a r.i space on €2. Then for each f € X

Ttt),f;X, W)1<>

ox(t)

“
() — (1) <2 , 0<t <.

.l



Theorem
Let X be a r.i space on €2. Then for each f € X

K(thxm&>
F(t) — F*(t) < 2 el

,0<t<l.

Theorem
The following are equivalent
i) Isoperimetric inequality:

I(1n(A)) < T (A), for all Borel sets A with 0 < p(A) < 1.

ii) For each f € L;

K< (t),f Lt Wl)
(t) — () <2 , 0<t< . (10)



Theorem
Mastylo (2010) Let X be a r.i space, with 0 < ay < ax < 1. Let
f € X, then

t

H(f*(s) _ f*(t))X(o,t)(s)”)"( < cK (/(t)

,f;X,W}(), 0<t<l1.

.l



Theorem

Mastylo (2010) Let X be a r.i space, with 0 < ay < ax < 1. Let
f € X, then

[(F*(s) = £*(£)) x(0,6)(5)|| g < K </(tt), fi X, Vl21<> ,0<t<1.

If X =1P(1<p<oc),Q=R"

</ot (F7(s) = £7(1))° dS) v < cK <l(tt)’ fiLP, M;Llp> < wip <t1/n’ f>

.l



Theorem
Let X be a r.i space, with 0 < a.y. Let f € X, then the following
statements are equivalent

1.
K <,(ft),f;X, W,l,)
)k o * < .
f o (t) — f,(t) < c (@ ,0<t<1
2.
* * t y
1(72(5) — £2(8)) x(0(8) 5 < K (/(t) FX. W}() 0<t<l.

where ¢ = QI _x -

.l



Let 0 < t < 1 fixed. Assume frist that f is bounded, let

h € Lip(Q) such that h < |f|. Let g € X’ with | g||x, = 1. Notice
X''is a r.i. space on ([0, 1], m) (here m denotes the Lenesgue
measure, we shall denote in what follows by g* the rearrangment
of g with respect to the m). Consider the decomposition

[fl = ([f[ = h) + h.
Then

1
= / (£5(5) — (1)) X(o0.0 ()& (5)dls
0
<171 = bl + [[(B0s) = M) xomlx (11)

.l



Let (hn), be the sequence to h, then

() (5)— (b0 = [ (= (h;) (@)

Since 0 < ary

(29 = ) 0) x| = e85 | (- o) @0

X

X
t
> CW ||th||x
t 1
< c—— _ -
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It has not been out intention to provide a comprehensive
bibliography. Indeed, the topics discussed in this talk have been
intensively studied for a long time, with a variety of different
approaches. An extensive bibliography has been collected in the
paper Pointwise Symmetrization Inequalities for Sobolev functions
and applications.
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