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Basic definitions: Rearrangements
(Ω, d , µ) Metric space. µ Borel probability measure.
u : Ω→ R,

distribution function

µu(t) = µ {x ∈ Ω : |u(x)| > t} , (t ≥ 0).

decreasing rearrangement u∗µ of u:

u∗µ(s) = inf {t : µu(t) ≤ s} , (s ≥ 0).

maximal function u∗∗µ of u:

u∗∗µ (t) =
1

t

∫ t

0
u∗µ(s)ds. (f + g)∗∗µ (t) ≤ f ∗∗µ (t) + g∗∗µ (t).

Modulus of the gradient:
f ∈ Lip(Ω)

|∇f (x)| = lim sup
d(x ,y)→0

|f (x)− f (y)|
d(x , y)

,
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Symmetrization by truncation: Isoperimetry

A ⊂ Ω, Borelian set

µ+(A) = lim inf
h→0

µ (Ah)− µ (A)

h
,

Ah = {x ∈ Ω : d(x ,A) < h} .

The boundary measure is a natural generalization of the notion of
surface area to the metric probability space setting.
An isoperimetric inequality measures the relation between µ+(A)
and µ(A) by means of the isoperimetric profile I = I(Ω,d ,µ) defined
as the pointwise maximal function I(Ω,d ,µ) : [0, 1]→ [0,∞) such
that

µ+(A) ≥ I(Ω,d ,µ)(µ(A)),
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Example: Isoperimetric Inequality on R2

Among all regions in the plane, enclosed by a piecewise C 1

boundary curve, with area A and perimeter L,

4πA ≤ L2.

If equality holds, then the region is a circle.



Symmetrization by truncation: Isoperimetry

I(Ω,d ,µ) isoperimetric profile.

J : [0, 1]→ [0,∞) continuous, concave function, symmetric about
1/2 with J(0) = 0 st.

I(Ω,d ,µ)(t) ≥ J(t), (t ∈ [0, 1/2])

will be called an isoperimetric estimator

Ω ⊂ Rn (”nice”) J(t) ' t(n−1)/n

Rn, dγn(x) = (2π)−n/2e−|x |
2/2dx , J(t) ' t

(
log 1

t

)1/2

Condition 1. In what follows we shall assume (Ω, d , µ) has a
nonzero isoperimetric estimator.
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Function spaces

X = X (Ω) Banach function space is a r.i. space if:

f ∈ X , g∗µ = f ∗µ ⇒ g ∈ X and ‖g‖X = ‖f ‖X .

An r.i. space X (Ω) can be represented by a r.i. space on the
interval (0, 1), with Lebesgue measure, X̄ = X̄ (0, 1), such that

‖f ‖X = ‖f ∗µ ‖X̄ ,

for every f ∈ X .
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Function spaces
Examples:

I Lp-spaces

‖f ‖p =

(∫
Ω
|f (x)|p dµ(x)

)1/p

=

(∫ ∞
0

µu(t)d(tp)

)1/p

=

(∫ 1

0
f ∗µ (t)pdt

)1/p

.

I Lorentz spaces Lp,q

‖f ‖p,q =

(∫ 1

0

(
t1/pf ∗µ (t)

)q dt

t

)1/q

. Lp,1 ⊂ Lp,p = Lp ⊂ Lp,∞.

I Others:

Hn(Ω) =

(∫ 1

0

(
f ∗µ (t)

log( e
t )

)n
dt

t

)1/n

.

Orlicz spaces.
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Classically conditions on r.i. spaces are formulated in terms of the
Hardy operators defined by

Pf (t) =
1

t

∫ t

0
f (s)ds; Qf (t) =

1

t

∫ µ(Ω)

t
f (s)

ds

s
,

the boundedness of these operators on r.i. spaces can be simply
described in terms of the so called Boyd indices defined by

ᾱX = inf
s>1

ln hX (s)

ln s
and αX = sup

s<1

ln hX (s)

ln s
,

where hX (s) denotes the norm of the dilation operator on X̄ of the
dilation operator Es , s > 0, defined by

Es f (t) =

{
f ∗( t

s ) 0 < t < s,
0 s < t < 1

.

The operator Es is bounded on X̄ for every r.i. space X (Ω) and for
every s > 0; moreover,

hX (s) ≤ max(1, s). (1)

For example, if X = Lp, then αLp = αLp = 1
p .
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It is well known that if X is a r.i. space,

P is bounded on X̄ ⇔ αX < 1,
Q is bounded on X̄ ⇔ αX > 0.

(2)

Let X be a r.i. space,∫ t

0
f ∗(s)ds ≤

∫ t

0
g∗(s)ds → ‖f ‖X ≤ ‖g‖X



It is well known that if X is a r.i. space,

P is bounded on X̄ ⇔ αX < 1,
Q is bounded on X̄ ⇔ αX > 0.

(2)

Let X be a r.i. space,∫ t

0
f ∗(s)ds ≤

∫ t

0
g∗(s)ds → ‖f ‖X ≤ ‖g‖X



Two Poincaré inequalities

Ω ⊂ Rn, ”nice”.
(∫

Ω f = 0
)

Gagliardo-Nirenberg-Sobolev-Petre: 1 ≤ p < n, q = pn
n−p∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1/qf ∗(t)

)p dt

t
≤ C

∫
Ω
|∇f (x)|p dx .

Gross’ inequality:
(∫

Rn f (x)dγn(x) = 0
)

∫ 1

0
f ∗∗γn

(t)2log
1

t
dt '

∫
Rn

|f (x)|2 ln |f (x)| dγn(x) ≤
∫

Rn

|∇f (x)|2 dγn(x),
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(−f ∗∗)
′
(t) =

f ∗∗(t)− f ∗(t)

t
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∫ 1

t
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t

'
∫ 1

0
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(
f ∗∗(t)− f ∗(t)

t
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dt

p
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1

q
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n − p

np
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− 1 = p
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1− 1

n
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t
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t

))p

dt



(−f ∗∗)
′
(t) =

f ∗∗(t)− f ∗(t)

t

f ∗∗(t) =

∫ 1

t
(−f ∗∗)

′
(s)ds =

∫ 1

t
(f ∗∗(s)− f ∗(s))

ds

s
+ ‖f ‖L1

= Q (f ∗∗(·)− f ∗(·)) (t) + ‖f ‖L1

∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1/qQ (f ∗∗(·)− f ∗(·)) (t)

)p dt

t

'
∫ 1

0

(
t1/q (f ∗∗(t)− f ∗(t))

)p dt

t

'
∫ 1

0
tp(1/q+1)−1

(
f ∗∗(t)− f ∗(t)

t

)p

dt

p

(
1

q
+ 1

)
= p

(
n − p

np
+ 1

)
− 1 = p

(
1− 1

n

)
∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1−1/n

(
f ∗∗(t)− f ∗(t)

t

))p

dt



(−f ∗∗)
′
(t) =

f ∗∗(t)− f ∗(t)

t

f ∗∗(t) =

∫ 1

t
(−f ∗∗)

′
(s)ds =

∫ 1

t
(f ∗∗(s)− f ∗(s))

ds

s
+ ‖f ‖L1

= Q (f ∗∗(·)− f ∗(·)) (t) + ‖f ‖L1

∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1/qQ (f ∗∗(·)− f ∗(·)) (t)

)p dt

t

'
∫ 1

0

(
t1/q (f ∗∗(t)− f ∗(t))

)p dt

t

'
∫ 1

0
tp(1/q+1)−1

(
f ∗∗(t)− f ∗(t)

t

)p

dt

p

(
1

q
+ 1

)
= p

(
n − p

np
+ 1

)
− 1 = p

(
1− 1

n

)
∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1−1/n

(
f ∗∗(t)− f ∗(t)

t

))p

dt



(−f ∗∗)
′
(t) =

f ∗∗(t)− f ∗(t)

t

f ∗∗(t) =

∫ 1

t
(−f ∗∗)

′
(s)ds =

∫ 1

t
(f ∗∗(s)− f ∗(s))

ds

s
+ ‖f ‖L1

= Q (f ∗∗(·)− f ∗(·)) (t) + ‖f ‖L1

∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1/qQ (f ∗∗(·)− f ∗(·)) (t)

)p dt

t

'
∫ 1

0

(
t1/q (f ∗∗(t)− f ∗(t))

)p dt

t

'
∫ 1

0
tp(1/q+1)−1

(
f ∗∗(t)− f ∗(t)

t

)p

dt

p

(
1

q
+ 1

)
= p

(
n − p

np
+ 1

)
− 1 = p

(
1− 1

n

)
∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1−1/n

(
f ∗∗(t)− f ∗(t)

t

))p

dt



(−f ∗∗)
′
(t) =

f ∗∗(t)− f ∗(t)

t

f ∗∗(t) =

∫ 1

t
(−f ∗∗)

′
(s)ds =

∫ 1

t
(f ∗∗(s)− f ∗(s))

ds

s
+ ‖f ‖L1

= Q (f ∗∗(·)− f ∗(·)) (t) + ‖f ‖L1

∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1/qQ (f ∗∗(·)− f ∗(·)) (t)

)p dt

t

'
∫ 1

0

(
t1/q (f ∗∗(t)− f ∗(t))

)p dt

t

'
∫ 1

0
tp(1/q+1)−1

(
f ∗∗(t)− f ∗(t)

t

)p

dt

p

(
1

q
+ 1

)
= p

(
n − p

np
+ 1

)
− 1 = p

(
1− 1

n

)
∫ 1

0

(
t1/qf ∗∗(t)

)p dt

t
'
∫ 1

0

(
t1−1/n

(
f ∗∗(t)− f ∗(t)

t

))p

dt



Euclidean setting

‖f ‖Lp,q �

∥∥∥∥∥∥∥∥∥∥
(−f ∗∗)

′
(t)︷ ︸︸ ︷(

f ∗∗(t)− f ∗(t)

t

)
t1−1/n

∥∥∥∥∥∥∥∥∥∥
Lp,q

� ‖∇f ‖Lp,q

Gaussian setting

‖f ‖L2 �

∥∥∥∥∥∥∥∥∥∥
(−f ∗∗)

′
(t)︷ ︸︸ ︷(

f ∗∗(t)− f ∗(t)

t

)
t

√
log

1

t

∥∥∥∥∥∥∥∥∥∥
L2

� ‖∇f ‖L2



Question. Is there a relation (pointwise?) between

(−f ∗∗)′(t), J(t) and ∇f ?



Symmetrization by truncation: The gradient
I : [0, 1]→ [0,∞) isoperimetric estimator, there are equiv.

1.
∀A ⊂ Ω, Borel set, µ+(A) ≥ I (µ(A)). Isoperimetric

2. ∫ ∞
0

I (µf (s))ds ≤
∫

Ω
|∇f (x)| dµ(x). Ledoux

3.

(−f ∗µ )′(s)I (s) ≤ d

ds

∫
{|f |>f ∗µ (s)}

|∇f (x)| dµ(x). Maz’ya - Talenti

4. ∫ t

0
((−f ∗µ )′(.)I (.))∗(s)ds ≤

∫ t

0
|∇f |∗µ (s)ds. Pólya-Szegö

5. (
−f ∗∗µ

)′
I (t) = (f ∗∗µ (t)− f ∗µ (t))

I (t)

t
≤ |∇f |∗∗µ (t). Oscillation
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f t2
t1

(x) =


t2 − t1 if |f (x)| ≥ t2,
|f (x)| − t1 if t1 < |f (x)| < t2,
0 if |f (x)| ≤ t1.∫ ∞

0
I (µ

f
t2
t1

(s))ds ≤
∫

Ω

∣∣∇f t2
t1

(x)
∣∣ dµ.

∫ t2−t1

0
I (µ

f
t2
t1

(s))ds ≥ (t2−t1) min (I (µ {|f | ≥ t2}), I (µ {|f | > t1}) .

For s > 0 and h > 0, pick t1 = f ∗µ (s + h),t2 = f ∗µ (s),

(
f ∗µ (s)− f ∗µ (s + h)

)
min(I (s + h), I (s)) ≤

∫
{f ∗µ (s+h)<|f |≤f ∗µ (s)}

|∇ |f | (x)| dµ

=

∫
{|f |>f ∗µ (t)}

|∇ |f | (x)| dµ

−
∫
{|f |>f ∗µ (s+h)}

|∇ |f | (x)| dµ
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f ∗µ (s)− f ∗µ (s + h)

)
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min(I (s + h), I (s))

≤ 1
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{|f |>f ∗µ (t)}

|∇ |f | (x)| dµ−
∫
{|f |>f ∗µ (s+h)}
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But if f ∗µ absolutely continuous??



∫
{f ∗µ (s+h)<|f |≤f ∗µ (s)}

|∇ |f | (x)| dµ ????
=

∫
{f ∗µ (s+h)<|f |<f ∗µ (s)}

|∇ |f | (x)| dµ

Then f ∗µ is absolutely continuous in [a, b] (0 < a < b < 1).



Condition 2. We assume that (Ω, µ) is such that for every
f ∈ Lip(Ω), and every c ∈ R, we have that |∇f (x)| = 0, a.e. on
the set {x : f (x) = c}.

Condition 1 and 2 are verified in all the classical cases: Euclidean,
Gaussian, Riemannian manifolds with positive curvature as well as
for doubling measures (homogeneous spaces).
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Integrability of solutions of elliptic equations

{
−div(a(x , u,∇u)) = fw in Ω,
u = 0 on ∂Ω,

(3)

where Ω is domain of Rn (n ≥ 2), such that µ = w(x)dx is a
probability measure on Rn, or Ω has Lebesgue measure 1 if w = 1,
and a(x , η, ξ) : Ω×R×Rn → Rn is a Carathéodory function such
that,

a(x , t, ξ).ξ ≥ w(x) |ξ|2 , for a.e. x ∈ Ω ⊂ Rn, ∀η ∈ R, ∀ξ ∈ Rn.
(4)

Example :w = 1, a(x , t, ξ) = ξ. Then (3) becomes{
∆u = f in Ω,
u = 0 on ∂Ω.



Theorem
Let u ∈W 1

0 (w ,Ω) be a solution of (3). Let µ = w(x)dx , and let
I = I(Rn;µ) be the isoperimetric profile of (Rn;µ). Then, the
following inequalities hold

1. (
−u∗µ

)′
(t)I (t)2 ≤

∫ t

0
f ∗µ (s)ds, a.e. (5)

2. ∫ µ(Ω)

t

(
|∇u|2

)∗
µ

(s)ds ≤
∫ µ(Ω)

t

((
−u∗µ

)′
(s)

∫ s

0
f ∗µ (z)dz

)
ds.

(6)



RI (h)(t) =

∫ µ(Ω)

t

(
s

I (s)

)2

h(s)
ds

s
.

Let X ,Y be two r.i. spaces on Ω such that,

‖RI (h)‖Ȳ � ‖h‖X̄ ,

and, suppose that αX < 1. Then, if u is a solution of (3) with
datum f ∈ X (Ω), we have∥∥u∗µ

∥∥
Ȳ
�
∥∥f ∗µ
∥∥

X̄
.

and∥∥u∗µ
∥∥

Ȳ
�

∥∥∥∥∥
(

I (t)

t

)2 (
u∗∗µ (t)− u∗µ(t)

)∥∥∥∥∥
X̄

+
∥∥u∗µ

∥∥
L1 �

∥∥f ∗µ
∥∥

X̄
.

Moreover, if the operator R̃I (h)(t) =
(

I (s)
s

)2 ∫ µ(Ω)
t

(
s

I (s)

)2
h(s)ds

s

is bounded on X̄ , then∥∥u∗µ
∥∥

Ȳ
�

∥∥∥∥∥
(

I (t)

t

)2

u∗µ(t)

∥∥∥∥∥
X̄

�
∥∥f ∗µ
∥∥

X̄
.
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s
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)2
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s
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Ȳ
�

∥∥∥∥∥
(

I (t)

t

)2
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∥∥∥∥∥
X̄

�
∥∥f ∗µ
∥∥

X̄
.



The Euclidian case (Ω ⊂ Rn ,|Ω| = 1.){
−div(a(x , u,∇u)) = f in Ω,
u = 0 on ∂Ω,

(7)

with ellipticity condition,

a(x , t, ξ).ξ � |ξ|2 , for a.e. x ∈ ∆, ∀η ∈ R, ∀ξ ∈ Rn.

Let X (Ω) be an r.i. space such that ᾱX̄ < 1. Let u be a solution.

1. If αX̄ > 2/n, ∥∥∥s−
2
n u∗(s)

∥∥∥
X̄
� ‖f ‖X̄ .

2. If αX̄ ≤ 2/n,∥∥∥s−
2
n (u∗∗(s)− u∗(s))

∥∥∥
X̄

+ ‖u‖L1 � ‖f ‖X̄ .

3. If αX̄ > 1
2 + 1

n , ∥∥∥s−
1
n |∇u|∗ (s)

∥∥∥
X̄
� ‖f ‖X .
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Between exponential and Gaussian measure
Elliptic problems associated with Gaussian measures. Let α ≥ 0,
p ∈ [1, 2] and γ = exp(2α/(2− p)), and let

µp,α(x) = Z−1
p,α exp (− |x |p (log(γ + |x |)α) dx = ϕα,p(x)dx , x ∈ R,

and
ϕn
α,p(x) = ϕα,p(x1) · · ·ϕα,p(xn), and µ = µ⊗n

p,α.

Consider {
−div(a(x , u,∇u)) = f ϕn

α,p in Ω,
u = 0 on ∂Ω,

(8)

with the ellipticity condition,

a(x , t, ξ).ξ � ϕn
α,p(x) |ξ|2 , for a.e. x ∈ Ω, ∀η ∈ R, ∀ξ ∈ Rn,

where Ω ⊂ Rn is an open set such that µ(Ω) < 1.
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Iµ⊗n
p,α

(s) ' s

(
log

1

s

)1− 1
p
(

log log

(
e +

1

s

))α
p

, 0 < s < µ(Ω).



Let u be a solution of (8) with datum f ∈ X (∆). Assume that
αX̄ < 1. Then,

1. If 0 < αX̄ ,∥∥∥∥∥∥
(

log
1

s

)2
(

1− 1
p

)(
log log

(
e +

1

s

))2α
p

u∗µ(s)

∥∥∥∥∥∥
X̄

� ‖f ‖X .

2. If 0 = αX̄ ,∥∥∥∥∥∥
(

log
1

s

)2
(

1− 1
p

)(
log log

(
e +

1

s

))2α
p

(u∗∗µ (s)− u∗µ(s))

∥∥∥∥∥∥
X̄

+‖u‖L1 � ‖f ‖X .

3. If αX̄ > 1/2,∥∥∥∥∥∥
(

log
1

s

)(1− 1
p

)(
log log

(
e +

1

s

))α
p

|∇u|∗µ (s)

∥∥∥∥∥∥
X̄

� ‖f ‖X .



Weak assumptions

Condition 1: The isoperimetric profile I(Ω,d ,µ) is a concave
continuous function, increasing on (0, 1/2), symmetric about the
point 1/2 such that, moreover, vanishes at zero.
Condition 2: For every f ∈ Lip(Ω) , and every c ∈ R, we have
that |∇f (x)| = 0, µ−a.e. on the set {x : f (x) = c}.
Condition 1’: The isoperimetric profile I(Ω,d ,µ) is a positive
continuous function that vanishes at zero.

I = I(Ω,d ,µ) isoperimetric.

w(t) = inf
0<s<t

I (s)

s
=

I (t)

t
if I is concave
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Theorem
Let (Ω, d , µ) be a metric probability space that satisfies Conditions
1’ and 2, and let 1 ≤ q <∞. Then for f ∈ Lip(Ω), and for all
t ∈ (0, 1), we have

1. ∫ t

0

((
−f ∗µ

)′
(·)w(·)

)∗
(s)ds ≤

∫ t

0
|∇f |∗µ (s)ds.

2.

(f ∗∗µ (t)− f ∗µ (t))w(t) ≤ 1

t

∫ t

0
|∇f |∗µ (s)ds



Theorem
Let (Ω, d , µ) be a metric probability space satisfying Condition 1’.
Then for f ∈ Lip(Ω), we have

(f ∗∗µ (t)− f ∗µ (t))w(t) ≤ 1

t

∫ t

0
|∇f |∗µ (s)ds, for t ∈ (0, 1).

From here: ∥∥(f ∗∗µ (t)− f ∗µ (t)
)

w(t)
∥∥

X̄
≤
∥∥∥|∇f |∗∗µ

∥∥∥
X̄

But this does not apply if ᾱX = 1.
What can be said for ᾱX = 1.
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Theorem
Let (Ω, d , µ) be a metric probability space satisfying Condition 1’.
Then for f ∈ Lip(Ω), we have

(f ∗∗µ (t)− f ∗µ (t))w(t) ≤ 1

t

∫ t

0
|∇f |∗µ (s)ds, for t ∈ (0, 1).

From here: ∥∥(f ∗∗µ (t)− f ∗µ (t)
)

w(t)
∥∥

X̄
≤
∥∥∥|∇f |∗∗µ

∥∥∥
X̄

But this does not apply if ᾱX = 1.
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For simplicity let us assume that I is concave: Define

QI f (t) =

∫ 1

t
f (s)

ds

I (s)
,

f ∈ X̄ , with suppf ⊂ (0, 1/2), From the concavity of I , it follows
that s � I (s), s ∈ (0, 1/2), thus

QI f (t) =

∫ 1/2

t
f (s)

ds

I (s)
� Qf (t) =

∫ 1/2

t
f (s)

ds

s

therefore QI is bounded on X for any r.i space X such that
αX > 0.
Then, for all g ∈ Lip(Ω),∥∥∥∥g −

∫
Ω

gdµ

∥∥∥∥
X

� ‖∇g‖X .



Let g ∈ Lip(Ω). Write

g∗µ(t) =

∫ 1/2

t

(
−g∗µ

)′
(s)ds + g∗µ(1/2), t ∈ (0, 1/2].

‖g‖X =
∥∥g∗µ

∥∥
X
�
∥∥g∗µχ[0,1/2]

∥∥
X

�

∥∥∥∥∥
∫ 1/2

t

(
−g∗µ

)′
(s)ds

∥∥∥∥∥
X

+ g∗µ(1/2) ‖1‖Ȳ

≤

∥∥∥∥∥
∫ 1/2

t

(
−g∗µ

)′
(s)I (s)

ds

I (s)

∥∥∥∥∥
X

+ 2 ‖1‖Ȳ ‖g‖L1

�
∥∥∥(−g∗µ

)′
(s)I (s)

∥∥∥
X

+ ‖g‖L1

� ‖∇g‖X + ‖g‖L1
.



Lemma
Given h ∈ Lip(Ω) and bounded, there is a sequence (hn)n of
bounded lip. functions such that:

1. For every c ∈ R, we have that |∇hn(x)| = 0, µ−a.e. on the
set {x : hn(x) = c}.

2.

|∇hn(x)| ≤ (1 +
1

n
) |∇h(x)| .

3.
hn →

n→0
h in L1.

4. ∫ t

0

(
((−hn)∗)

′
(·)I (·)

)∗
(s)ds ≤

∫ t

0
|∇hn|∗ (s)ds.



Is it possible to obtain an inequality for all functions?

Euclidian case

f ∗∗(t)− f ∗(t) ≤ cn
ωL1(t1/n, f )

t

where is X is a r.i. space

ωX (t, g) = sup
|h|≤t
‖g(.+ h)− g(.)‖X .

Since
I (t) = t1−1/n

this suggests

f ∗∗(t)− f ∗(t) ≤ cn

ωL1

(
t

I (t) , f
)

t
.
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Metric spaces: ωX (t, g)???

In the euclidian case:

ωL1(t, f ) ' inf {‖f0‖1 + t ‖∇f1‖ : f = f0 + f1} := K (t, f ; L1, W̊
1
L1)

For each f ∈ L1

f ∗∗(t)− f ∗(t) ≤ 2

K

(
t

I (t) , f ; L1,
◦

W 1
L1

)
t

, 0 < t < 1.

which implies (up to constant) isoperimetry.
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which implies (up to constant) isoperimetry.



Mastylo (2010): There exists a universal constant c > 0, such that
for every r.i. space X (Ω) with ᾱX < 1 and for all f ∈ X +W̊1

X , we
have

f ∗∗µ (t)− f ∗µ (t) ≤ c
K ( t

I (t) , f )

φX (t)
, 0 < t < 1/4. (9)

Question: Does (9) hold for all values of t, and without restrictions
on the rearrangement invariant spaces X .

In that case, we are thus able to apply our result to sets of any
measure, 0 < t < 1, and, by means of considering X = L1, we are
able to show that the validity of (9) for all r.i. spaces is indeed
equivalent to the isoperimetric inequality!
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Theorem
Let X be a r.i space on Ω. Then for each f ∈ X

f ∗∗(t)− f ∗(t) ≤ 2

K

(
t

I (t) , f ; X ,
◦

W 1
X

)
φX (t)

, 0 < t < 1.

Theorem
The following are equivalent
i) Isoperimetric inequality:

I (µ(A)) � µ+(A), for all Borel sets A with 0 < µ(A) < 1.

ii) For each f ∈ L1

f ∗∗(t)− f ∗(t) ≤ 2

K

(
t

I (t) , f ; L1,
◦

W 1
L1

)
t

, 0 < t < 1. (10)
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Theorem
Mastylo (2010) Let X be a r.i space, with 0 < αX ≤ ᾱX < 1. Let
f ∈ X , then

∥∥(f ∗(s)− f ∗(t))χ(0,t)(s)
∥∥

X̄
≤ cK

(
t

I (t)
, f ; X ,

◦
W 1

X

)
, 0 < t < 1.

If X = Lp (1 < p <∞), Ω = Rn

(∫ t

0
(f ∗(s)− f ∗(t))p ds

)1/p

≤ cK

(
t

I (t)
, f ; Lp,

◦
W 1

Lp

)
� ωLp

(
t1/n, f

)
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Theorem
Let X be a r.i space, with 0 < αX . Let f ∈ X , then the following
statements are equivalent

1.

f ∗∗µ (t)− f ∗µ (t) ≤ c

K

(
t

I (t) , f ; X ,
◦

W 1
Y

)
φX (t)

, 0 < t < 1.

2. ∥∥(f ∗µ (s)− f ∗µ (t)
)
χ(0,t)(s)

∥∥
X̄
≤ cK

(
t

I (t)
, f ; X ,

◦
W 1

X

)
, 0 < t < 1.

where c = ‖Q‖X→X .



Let 0 < t < 1 fixed. Assume frist that f is bounded, let
h ∈ Lip(Ω) such that h ≤ |f |. Let g ∈ X̄ ′ with ‖g‖X̄ ′ = 1. Notice
X̄ ′ is a r.i. space on ([0, 1],m) (here m denotes the Lenesgue
measure, we shall denote in what follows by g∗ the rearrangment
of g with respect to the m). Consider the decomposition

|f | = (|f | − h) + h.

Then

I =

∫ 1

0

(
f ∗µ (s)− f ∗µ (t)

)
χ(0,t)(s)g∗(s)ds

≤ ‖|f | − h‖X +
∥∥(h∗µ(s)− h∗µ(t)

)
χ(0,t)

∥∥
X̄

(11)



Let (hn)n be the sequence to h, then

(hn)∗µ (s)− (hn)∗µ (t) =

∫ t

s

(
− (hn)∗µ

)′
(z)dz

=

∫ t

s

(
− (hn)∗µ

)′
(z)I (s)

dz

I (z)

≤ t

I (t)

∫ t

s

(
− (hn)∗µ

)′
(z)I (s)

dz

z

≤ t

I (t)

∫ 1

s

(
− (hn)∗µ

)′
(z)I (s)

dz

z

Since 0 < αX∥∥∥((hn)∗µ (s)− (hn)∗µ (t)
)
χ(0,t)(s)

∥∥∥
X̄
≤ c

t

I (t)

∥∥∥∥(− (hn)∗µ

)′
(z)I (s)

∥∥∥∥
X̄

≤ c
t

I (t)
‖∇hn‖X

≤ c
t

I (t)
(1 +

1

n
) ‖∇h‖X̄



I J. Mart́ın and M. Milman, Pointwise Symmetrization
Inequalities for Sobolev functions and applications, Adv.
Math. 225 (2010), 121-199.

I J. Mart́ın, M. Milman . Sobolev inequalities, rearrangements,
isoperimetry and interpolation spaces Contemporary
Mathematics of the AMS 545 (2011), 167-193.

I J. Mart́ın and M. Milman, Isoperimetry and Symmetrization
for Logarithmic Sobolev inequalities, J. Funct. Anal. 256
(2009), 149-178.

I J. Mart́ın and M. Milman, Isoperimetry and symmetrization
for Sobolev spaces on metric spaces, Comptes Rendus Math.
347 (2009), 627-630.



I J. Mart́ın and M. Milman, Isoperimetric Hardy type and
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