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Multipliers and solid hulls

Definition
• If E and F are sequence spaces on J (J = Z or J = Z+), then
λ = {λn} ∈ ω := ω(J) is said to be a multiplier from E into F provided

{λnxn} ∈ F for every {xn} ∈ E .

The set of all multipliers from E into F is denoted by M(E ,F ).

• λ = {λn} ∈ ω is said to be a multiplier from the space X ⊂ H(D) (resp.,
X ⊂ L1(T), T := [0, 2π]) into a sequence space F provided λ ∈M(X̂ ,F ),
where

X̂ :=
{
{f̂ (n)}; f =

∑
n

f̂ (n)un ∈ X
}
,

and un(z) := zn, z ∈ D, n ∈ Z+ (resp., un(t) := e int , t ∈ T, n ∈ Z).
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Multipliers and solid hulls

• A subset X of ω(J) is said to be solid provided(
{xn} ∈ X and |yn| ¬ |xn| for all n ∈ J

)
=⇒ {yn} ∈ X .

• If A ⊂ ω is a sequence space, then there is a largest solid set, s(A),
contained within it, and a smallest solid set, S(A), containing it.
We also have,

s(A) =M(`∞,A),

S(A) =
{

x ∈ ω; |x | ¬ |a| for some a ∈ A
}
.

Theorem (J.M. Anderson and A.L. Shields, 1976)
Let X ⊂ ω be any solid linear space. Then for any linear sequence space
A ⊂ ω we have

M(A,X ) =M(S(A),X ),

M(X ,A) =M(X , s(A)).
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Multipliers and solid hulls

THE BASIC PROBLEM

Given a sequence space A ⊂ ω, find s(A) and S(A).
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Multipliers and solid hulls

In what follows if X ⊂ H(D) (resp., X ⊂ L1(T), T := [0, 2π]), then

s(X ) := s(X̂ ) and S(X ) := S(X̂ ).

Examples
• For Lp := Lp(T) with p = 1, we have

`2 = s(L1) ⊂ L̂1 ⊂ S(L1) = c0

(the last equality follows follows from the Riemann-Lebesgue lemma, and the
fact: {{f̂ (n)xn}; f ∈ L1, {xn} ∈ c0} = c0 (E. Hewitt, 1964)).

• If 1 < p ¬ 2, then

`2 ⊂ s(Lp) ⊂ L̂p ⊂ S(Lp) ⊂ `(p′, 2)

(by L2 ⊂ Lp ⊂ L1, and L̂p ⊂ `(p′, 2), 1/p + 1/p′ = 1 (C.N. Kellogg, 1971)).
• If 2 ¬ p <∞, then

`(p′, 2) ⊂ s(Lp) ⊂ L̂p ⊂ S(Lp) = `2
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Multipliers and solid hulls

Theorem (J.P. Kahane, Y. Katznelson and de Leeuw, 1977)
If {cn}n∈Z ∈ `2, then there exists f ∈ C(T) and a constant K independent
of {cn} such that

|cn| ¬ |f̂ (n)|, n ∈ Z

and
‖f ‖C(T) ¬ K

(∑
n∈Z
|cn|2

)1/2
.
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Hardy type spaces

• Denote by H+(D) the subspace of all f ∈ H(D) such that the radial limit
function

f∗(t) := lim
r→1−

fr (t)

exists for almost all t ∈ T, where fr (t) := f (re it) for 0 ¬ r < 1 and t ∈ T.
Given a complex quasi-Banach lattice X on T, we define spaces

HX :=
{

f ∈ H(D); sup
0¬r<1

‖fr‖X <∞
}
,

HX + :=
{

f ∈ H+(D); f∗ ∈ X
}
,

equipped with the quasi-norms

‖f ‖HX := sup
0¬r<1

‖fr‖X ,

‖f ‖HX+ := ‖f∗‖X .

• If X := Lp, 1 ¬ p ¬ ∞, we obtain a classical Hardy space Hp := HLp.
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Hardy type spaces

Theorem (MM & PM, 2010)

Let X be a quasi-Banach lattice on T such that HX + ↪→ N+. Then HX + is
a quasi-Banach space.

• In the proof we use a deep theorem of Khintchine and Ostrovski. As usual,
N+ ⊂ H(D) stands for the space equipped with the F -norm

‖f ‖N+ = sup
0<r<1

∫ 2π

0
log
(
1 + |f (re it)|

)
dt.
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Hardy type spaces

Theorem (Khintchine and Ostrovski)
Let {fn}∞n=1 be a sequence of functions analytic in the unit disc D
satisfying the following conditions:
(i) There exists a constant C > 0 such that

sup
0<r<1

∫ 2π

0
log+ |fn(re it)| dt ¬ C , n ∈ N.

(ii) On some set E ⊂ T of positive measure the sequence {(fn)∗} of the
radial limits converges in measure to a function φ.

Then the sequence {fn} converges uniformly on compact subsets of D to
a function f , and the sequence {(fn)∗} converges in measure on E to f∗.
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Hardy type spaces

Theorem (MM & PM, 2010)

Assume that X is a r.i. quasi-Banach lattice on T. Suppose that at least one of
the following statements holds:

(i) X has the Fatou property.
(ii) X is a real interpolation space with respect to (Lp, Lq), 0 < p < q ¬ ∞ (i.e.,

X = (Lp, Lq)E for some E ).
Then HX and HX + are quasi-Banach spaces and HX = HX + with the equivalence
of quasi-norms.
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Hardy type spaces

Theorem (Hausdorff-Young)

If f =
∑∞

n=0 f̂ (n)un ∈ Hp, 1 ¬ p ¬ 2, then {f̂ (n)} ∈ `p′ , where 1
p + 1

p′ = 1 and

‖{f̂ (n)}‖`p′ ¬ ‖f ‖Hp .

In terms of multipliers, {1, 1, ..., } ∈ M(Hp, `p′).

Theorem (G.H. Hardy and J.E. Littlewood, 1926)

If f =
∑∞

n=0 f̂ (n)un ∈ H1, then

∞∑
n=0

|f̂ (n)|
n + 1 ¬ π‖f ‖H1 .

In terms of multipliers, {1/(n + 1)} ∈ M(H1, `1).
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Hardy type spaces

Theorem (R.E.A.C. Paley, 1933)
If {nk} is a lacunary sequence, then there exists a positive constant C
such that if f =

∑∞
n=0 f̂ (n)un ∈ H1 we have(∑

k
|f̂ (nk)|2

)1/2
¬ C‖f ‖H1 .

In terms of multipliers, {λn} ∈ M(H1, `2), where λn = 1 if n = nk , and
λn = 0 if n 6= nk .
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Hardy type spaces

Theorem (C. Fefferman, unpublished)
{λn}n∈Z+ ∈M(H1, `1) if and only if

sup
N1

∞∑
j=0

((j+1)N−1∑
k=jN

|λk |
)2
<∞.

Theorem (S.V. Kisliakov, 1981)

S(H∞) = `2.

Theorem (M. Jevtić and M. Pavlović, 2006)
If 0 < p < 1, then {xn} ∈ S(Hp) if and only if

∞∑
n=0

2−n(1−p)
(

sup
0¬k¬2n

|xk |
)p

<∞.
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Hardy type spaces

Definition
• Let I0 := {0} and for n ∈ N set In := {k ∈ N; 2n−1 ¬ k < 2n}. For

a given quasi-normed sequence lattices E ,F on Z+ the space

`(E ,F ) :=
{

x ∈ ω;
{∥∥xχIn

∥∥
E
}

n ∈ F
}

equipped with the quasi-norm∥∥x
∥∥ :=

∥∥∥{∥∥xχIn
∥∥

E
}

n

∥∥∥
F

is called the dyadically blocked mixed sequence space of E and F .

• If E = `p, F = `q, then we obtain the well known space `(p, q)

introduced by C.N. Kellogg (1971).

• `(∞,F ) := `(`∞,F ).
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Solid hulls via interpolation

Definition
• The galb GX of a quasi-Banach space X is the space of all sequences
{λn} ∈ ω(Z+) such that the series

∑
n∈Z+

λnxn converges provided {xn}
is a bounded sequence in X . GX is a quasi-Banach sequence space when
equipped with the quasi-norm

∥∥{λn}
∥∥

GX
:= sup

{∥∥∥ ∞∑
k=0

λkxk

∥∥∥
X

; ‖xk‖X ¬ 1
}
.

Remark:
• If X is a quasi-Banach space, then by the Aoki-Rolewicz Theorem there

exists 0 < p ¬ 1 such that X is p-normable, and so `p ⊂ GX . When X
is strictly p-normable (i.e., p-normable but not q-normable with any
q > p), then GX = `p (N.J. Kalton, unpublished, 1981).
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Solid hulls via interpolation

Theorem (MM & PM, 2010)

Let X be a quasi-Banach lattice on T such that Lp ∩ Lq ↪→ X , where
0 < p, q < 1. If HX + is a quasi-Banach space then we have

`
(
∞,GX (v)

)
⊂ S(HX +),

where v :=
{

2nφ(2−n/p, 2−n/q)
}

n∈Z+
and φ is the characteristic function

of X with respect to (Lp, Lq), i.e.,

φ(s, t) := sup
{
‖f ‖X ; ‖f ‖Lp ¬ s, ‖f ‖Lq ¬ t

}
, s, t > 0.
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Solid hulls via interpolation

Definition
• Let (Ω,Σ, µ) be a measure space and {Ωn}n∈Z+ ⊂ Σ be a measurable

partition of Ω, i.e.,

Ω =
⋃

n∈Z+

Ωn and Ωi ∩ Ωj = ∅ for i 6= j .

• For a given quasi-Banach lattice Y a discretization Y d of Y consists of all
sequences {ξn} such that

∑
n∈Z+

ξnχΩn ∈ Y . Note that Y d is a quasi-Banach
sequence lattice equipped with the quasi-norm

∥∥{ξn}
∥∥

Y d :=
∥∥∥ ∞∑

n=0
ξnχΩn

∥∥∥
Y
.
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Solid hulls via interpolation

Theorem (MM & PM, 2010)
Let 0 < p, q < 1 and E ,Y be relative interpolation spaces with respect to
(Hp,Hq) and

(
Lp(I), Lq(I)

)
. Then for all f ∈ E the function

r 7→ (1− r)−1M1(r , f ) ∈ Y , 0 < r < 1

where
M1(r , f ) :=

1
2π

∫ 2π

0
|f (re it)| dt, 0 < r < 1.
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Solid hulls via interpolation

Theorem (MM & PM, 2010)

Assume that E and Y are relative interpolation spaces with respect to (Hp,Hq)

and
(
Lp(I), Lq(I)

)
, 0 < p, q < 1. Then the following inclusion holds:

S(E ) ⊂ `
(
∞,Y d (2n)

)
,

where Y d is generated by the partition
{

[rn, rn+1)
}

n∈Z+
of the interval [0, 1)

given by rn = 1− 2−n, for each n ∈ Z+.
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Solid hulls via interpolation

Theorem (MM & PM, 2010)

Let F be an interpolation functor and 0 < p0, p1 < 1. Then we have

S(F(Hp0 ,Hp1 )) = `
(
∞,F(`p0 (v0), `p1 (v1))

)
,

where vj :=
{

2n(1−1/pj )
}

n∈Z+
for j = 0, 1.
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Solid hulls via interpolation

Theorem (MM & PM, 2010)

Assume that an r.i. quasi-Banach space X on T is a real interpolation space with
respect to (Lp, Lq), 0 < p, q < 1. Let v =

{
2nρX (2−n)

}
n∈Z+

, where ρX is the
fundamental function of X. Then the following inclusions hold for the solid hull
of HX with Y := X (I)

`
(
∞,GX (v)

)
⊂ S(HX ) ⊂ `

(
∞,Y d (2n)

)
,

where Y d is generated by the partition
{

[rn, rn+1)
}

n∈Z+
of the interval [0, 1) given

by rn = 1− 2−n, for each n ∈ Z+.
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Solid hulls of Hardy-Lorentz-Zygmund spaces

Definition
• Let 0 < p <∞, 0 < q ¬ ∞, α ∈ R. The Lorentz-Zygmunt space

Lp,q(log L)α on T consists of all f ∈ L0(T) such that

‖f ‖ :=

(∫
T

(
t1/p(1 + | log t|)|α|f ∗(t)

)q dt
t

)1/q
<∞.

• In the case when X = Lp,q(log L)α, the Hardy space HX is called
Hardy-Lorentz-Zygmund space and is denoted by Hp,q(log L)α. If
α = 0, then we obtain the Hardy-Lorentz spaces Hp,q studied by
M. Lengfield (2008), M. Jevtić and M. Pavlović (2009).
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Solid hulls of Hardy-Lorentz-Zygmund spaces

Theorem (MM & PM, 2010)

Let 0 < p < 1, α ∈ R and v =
{

n1−1/p logα(n + 1)
}

n∈Z+
. Then for every

0 < q ¬ ∞ we have
S
(
Hp,q(log L)α

)
= `(∞, q)(v).

Theorem (MM & PM, 2010)
Let 0 < p < 1 and α ∈ R. Then for any solid space X , we have

M
(
Hp,∞(log L)α,X

)
= X

(
n1/p−1 log−α(n + 1)

)
.

Remark:
In the case when α = 0 the result was proved in a different way by Jevtić and
Pavlović by using nested embeddings for Hardy-Lorentz spaces proved by
Lengfield).
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Solid hulls of Hardy-Orlicz spaces

Let ϕ : [0,∞)→ [0,∞) be an Orlicz function, that is, a non-decreasing, and
left-continuous positive function with ϕ(0) = 0.

The Orlicz space

Lϕ(µ) :=
{

x ∈ L0(µ); ∃λ > 0, ϕ(|x |/λ) ∈ L1(µ)
}
,

If there exists C > 0 such that ϕ(t/C) ¬ ϕ(t)/2 for t > 0, then Lϕ is
a quasi-Banach lattice equipped with the quasi-norm

‖x‖ϕ = inf
{
λ > 0;

∫
Ω

ϕ(|x |/λ) dµ ¬ 1
}
.
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Solid hulls of Hardy-Orlicz spaces

• Given an Orlicz function ϕ,

ϕ(t) := lim sup
u→0+

ϕ(tu)

ϕ(u)
, t > 0.

The lower, respectively, the upper Matuszewska-Orlicz indices of ϕ are
defined by

α0
ϕ = lim

t→0+

lnϕ(t)

ln t , respectively, β0
ϕ = lim

t→∞

lnϕ(t)

ln t .

• For a given Orlicz space Lϕ we define Hardy-Orlicz space Hϕ by Hϕ := HLϕ.
Since Lϕ has the Fatou property, Hϕ = HL+

ϕ with the equivalence of norms.
However, it is well known that if ϕ is continuous and such that for any
function f ∈ H(D), ϕ(|f |) is subharmonic on D (which is equivalent to
t 7→ ϕ(et) is a convex function), then the following formula holds with the
equality of quasi-norms

HLϕ = HL+
ϕ .
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Solid hulls of Hardy-Orlicz spaces

Theorem (MM & PM, 2010)
Let ϕ be an Orlicz function such that 0 < α0

ϕ ¬ β0
ϕ < 1. Then for the solid

hull of the Hardy-Orlicz space Hϕ the following equality holds

S(Hϕ) = `
(
∞, `φ

)
,

where φ = {ϕn} with ϕn(t) := 2−nϕ
(
2nt
)

for t  0 and n ∈ Z+.
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Appendix

Interpolation functor

• If A0 and A1 are quasi-Banach spaces such that

Aj ↪→ X (j = 0, 1),

then A := (A0,A1) is called a quasi-Banach couple.

For a given quasi-Banach couple (A0,A1) we define:

• intersection A0 ∩ A1 equipped with the quasi-norm

‖a‖A0∩A1 = max
{
‖a‖A0 , ‖a‖A1

}
• interpolation sum A0 + A1 equipped with the quasi-norm

‖a‖A0+A1 = inf
{
‖a0‖A0 + ‖a1‖A1 ; a = a0 + a1

}
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Appendix

• If A = (A0,A1) and B = (B0,B1) are couples of quasi-Banach spaces and
T : A0 + A1 → B0 + B1 is a linear operator such that T |Aj : Aj → Bj
(j = 0, 1), then we write T : A→ B and

‖T‖A→B := max
j=0,1

‖T |Aj‖Aj→Bj .

• A map F : B → B is said to be an interpolation functor if for any A,B ∈ B
we have

(i) A0 ∩ A1 ⊂ F(A) ⊂ A0 + A1 for any A ∈ B
(ii) T : F(A)→ F(B) for any T : A→ B.

• F is said to be an exact interpolation functor if we have

‖T‖F(A)→F(B) ¬ ‖T‖A→B
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Appendix

K -method of interpolation

• K -functional of Peetre

K (t, a; A) := inf {‖a0‖A0 + t‖a1‖A1 ; a = a0 + a1}, t > 0.

• If E is a quasi-Banach sequence lattice on Z such that

`∞ ∩ `∞(2−n) ⊂ E ,

then the K -space (AE ,‖ · ‖) is defined by

AE =
{

a ∈ A0 + A1; {K (2n, a; A)} ∈ E
}
,

‖a‖ =
∥∥{K (2n, a; A)}

∥∥
E .

• A 7→ AE is an exact interpolation functor.
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