2nd International Workshop on Interpolation Theory, and Related Topics Santiago de Compostela, Spain. July 18 to 22, 2011.

Complex interpolation of vector measures. A generalization of the Stein-Weiss formula.

Fernando Mayoral Departamento de Matemática Aplicada II Universidad de Sevilla (Spain)

Joint work with:

R. del Campo, A. Fernández and F. Naranjo (Universidad de Sevilla)
and E. A. Sánchez-Pérez (Universidad Politécnica de Valencia)
Partially supported by MTM2009-14483-C02 and La Junta de Andalucía.

Classical Results: Interpolation spaces of integrable function spaces with respect to a scalar positive measure.

• Complex interpolation (M. Riesz, 1926, G.O. Thorin, 1938, Calderón, 60', Lions, 60')

$$[L^{p_0}(\mu), L^{p_1}(\mu)]_{[\theta]} = [L^{p_0}(\mu), L^{p_1}(\mu)]^{[\theta]} = L^{p(\theta)}(\mu).$$

• Real interpolation (J. Marcinkiewicz, 1939, Lions, Peetre, 60')

$$(L^{p_0}(\mu), L^{p_1}(\mu))_{\theta,q} = L^{p(\theta),q}(\mu).$$

For $1 \leq p_0 \neq p_1 \leq \infty$ and $0 < \theta < 1$,

$$rac{1}{
ho(heta)} = rac{1- heta}{
ho_0} + rac{ heta}{
ho_1}$$

Classical Results: Interpolation spaces with change of measure.

E.M. Stein and G. Weiss, 1958

Generalizations of the theorems of M. Riesz and J. Marcinkiewicz to operators defined on L^p spaces with change of measure

• Complex interpolation

$$[L^{p_0}(f_0\mu), L^{p_1}(f_1\mu)]_{[\theta]} = L^{p(\theta)}(f_0^{1-\alpha}f_1^{\alpha}\mu), \ \alpha = \frac{\theta p(\theta)}{p_1}.$$

• Real interpolation (the diagonal case, Stein-Weiss, Lions, Peetre)

$$(L^{p_0}(f_0\mu), L^{p_1}(f_1\mu))_{\theta, p(\theta)} = L^{p(\theta)}(f_0^{1-\alpha}f_1^{\alpha}\mu), \ \alpha = \frac{\theta p(\theta)}{p_1}$$

0 (0)

 Real interpolation (the off-diagonal case, Lizorkin, 1976 and Freitag, 1978, Gilbert, Peetre,...)

Classical Results: Interpolation spaces with change of measure.

Extensions

- (I. Asekritova, N. Kruglyak, L. Nikolova, St. Math. 2005) The Lizorkin-Freitag formula for several weighted *L^p* spaces.
- (M. Cwikel, Proc. Amer. Math. Soc. 1974) The Lions-Peetre formula

$$(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q} = L^{p(\theta)} \left((A_0, A_1)_{\theta,q} \right), \ q = p(\theta)$$

has no natural extension for $q \neq p(\theta)$.

• (Ferreyra, Proc. Amer. Math. Soc. 1997) The Stein-Weiss theorem cannot be extended to Lorentz spaces $L^{p,r}$ with change of measure.

What's about spaces of integrable functions with respect to a vector measure?

For a Banach space X, a measurable space (Ω, Σ) (where Σ is a σ -algebra of subsets of Ω) and a vector measure (a countably additive set function)

$$m: \Sigma \longrightarrow X$$

let us consider, for $1 \leq p < \infty$, the spaces

- $L^p_w(m)$ of scalar measurable functions f, on (Ω, Σ) , such that $|f|^p$ is weakly integrable with respect to m.
- $L^{p}(m)$ of scalar measurable functions f, on (Ω, Σ) , such that $|f|^{p}$ is integrable with respect to m.

Interpolation of $L^{p}(m)$ and $L^{p}_{w}(m)$ spaces

 Complex interpolation (A. Fernández, F. Naranjo, F. Mayoral, E.A. Sánchez-Pérez, Collect. Math., 2010)

 $[L^{p_0}(m), L^{p_1}(m)]_{[\theta]} = [L^{p_0}_w(m), L^{p_1}_w(m)]_{[\theta]} = L^{p(\theta)}(m)$

 $[L^{p_0}(m), L^{p_1}(m)]^{[\theta]} = [L^{p_0}_w(m), L^{p_1}_w(m)]^{[\theta]} = L^{p(\theta)}_w(m)$

 Real interpolation (A. Fernández, F. Naranjo and F. Mayoral, J. Math. Anal. Appl., 2011)

 $(L^{p_0}(m), L^{p_1}(m))_{\theta,q} = (L^{p_0}_w(m), L^{p_1}_w(m))_{\theta,q} = L^{p(\theta),q}(||m||).$

 Complex interpolation with change of measure (R. del Campo, A. Fernández, F. Naranjo, F. Mayoral, E.A. Sánchez-Pérez, Acta Math. Sinica, 2011)

 $[L^{p_0}(m_0), L^{p_1}(m_1)]_{[\theta]} = ??$

- 1 Spaces $L^p(m)$ and $L^p_w(m)$.
- 2 The interpolated vector measure.
- 3 Complex interpolation of $L^p(m)$ -spaces.

Vector measures. The function spaces. Applications.

① Spaces $L^p(m)$ and $L^p_w(m)$.

- Vector measures.
- The function spaces.
- Applications.

2 The interpolated vector measure.

3 Complex interpolation of $L^{p}(m)$ -spaces.

Vector measures. The function spaces. Applications.

Vector Measures

- (Ω, Σ) measurable space $(\Sigma \text{ is a } \sigma \text{algebra over a set } \Omega)$.
- *m* : Σ → X (countably additive) vector measure in a Banach space X with dual X'.
- The semivariation of m. For $A \in \Sigma$,

$$\|m\|(A) := \sup\left\{\left|\left\langle m, x'\right
ight
angle | (A) : x' \in X', \|x'\| \le 1
ight\}$$

• $|\langle m, x' \rangle|$ is the variation measure of the scalar measure $\langle m, x' \rangle$ defined by $\langle m, x' \rangle$ (A) := $\langle m(A), x' \rangle$,

$$\Sigma \xrightarrow{m} X \xrightarrow{x'} \mathbb{R}.$$

Vector measures. The function spaces. Applications.

The space $L^p_w(m)$

• $L^p_w(m)$ is the space of all scalar measurable functions f on Ω such that $|f|^p$ is a *weakly integrable function* with respect to m. That is, $|f|^p$ is integrable with respect to each $|\langle m, x' \rangle|, x' \in X'$.

• It is a Banach lattice with the natural order (*a.e.*) and the norm

$$\|f\|_p := \sup\left\{\int_{\Omega} |f|^p d\left|\langle m, x'
ight| : \|x'\| \leq 1\right\}, \qquad f \in L^p_w(m).$$

•
$$L^p_w(m)$$
 has the Fatou property.

Vector measures. The function spaces. Applications.

The space $L^p(m)$

• $L^{p}(m)$ is the space of all scalar measurable functions f on Ω such that $|f|^{p}$ is an *integrable function* with respect to m. That is, $f \in L^{p}_{w}(m)$ and for each $A \in \Sigma$ there exists $\int_{A} |f|^{p} dm \in X$ such that

$$\left\langle \int_{A} |f|^{p} dm, x' \right\rangle = \int_{A} |f|^{p} d\langle m, x' \rangle, \ \forall x' \in X'.$$

- $L^{p}(m)$ is an order-continuous closed ideal in $L^{p}_{w}(m)$.
- $L^{p}(m)$ is the closure, in $L^{p}_{w}(m)$, of the simple functions.
- L¹(m) = L¹_w(m) if and only if L^p(m) is reflexive for some/every 1

Vector measures. The function spaces. Applications.

The spaces $L^p(m)$ and $L^p_w(m)$

For 1 ,

$\begin{array}{ccccc} L^q_w(m) &\subset & L^p_w(m) &\subset & L^1_w(m) &\subset & L^0(m) \\ & & & \cup & & \cup \\ L^\infty(m) &\subset & L^q(m) &\subset & L^p(m) &\subset & L^1(m) & & L^q_w(m) \subset & L^p(m) \end{array}$

Vector measures. The function spaces. Applications.

Representation of Banach lattices.

Theorem.

- (G. Curbera, 1992) Every order continuous Banach lattice with weak unit is order isometric to a space L¹(m).
- (A. Fernández, F. Mayoral, F. Naranjo, C. Sáez and E.A. Sánchez-Pérez, 2006) Every abstract *p*-convex Banach lattice with order continuous norm and a weak unit is Banach lattice isomorphic to a space L^p(m).
- (G. Curbera and W. Ricker, 2007) Every abstract *p*-convex Banach lattice *E* with the *σ*-Fatou property and possessing a weak unit which belongs to {*x* ∈ *E* : |*x*| ≥ *u_n* ↓ 0 implies ||*u_n*|| ↓ 0} is Banach lattice isomorphic to a space *L^p_w(m)*.

Vector measures. The function spaces. Applications.

Optimal domains

For an order continuous Banach function space $X(\mu)$ (over a positive finite measure), a Banach space E and a continuos linear operator $T : X(\mu) \longrightarrow E$, define

$$m_T: A \in \Sigma \longrightarrow m_T(A) = T(\chi_A) \in E$$

Then:

- m_T is a (σ -additive) vector measure.
- $X(\mu) \hookrightarrow L^1(m_T)$ and

$$T(f\chi_A)=\int_A f\,dm_T,\,\,A\in\Sigma.$$

Vector measures. The function spaces. Applications.

Optimal domains

The integration operator with respect to m_T extends T and in a natural sense $L^1(m_T)$ is the optimal domain for T.

- Convolution operators (G. Curbera,...)
- Kernel operators (G. Curbera, O. Delgado, W. Ricker,...)
- Hardy operator (O. Delgado, J. Soria)
- Fourier transform (G. Mockenhaupt, W. Ricker)

• . . .

The framework. The interpolated measure. The compatibility condition.

1 Spaces $L^p(m)$ and $L^p_w(m)$.

- 2 The interpolated vector measure.
 - The framework.
 - The interpolated measure.
 - The compatibility condition.

3 Complex interpolation of $L^{p}(m)$ -spaces.

The framework.

The motivation

If μ_0 and μ_1 are two scalar positive measures (over the same measurable space) then they are both absolutely continuous with respect to $\mu = \mu_0 + \mu_1$. The Radon–Nikodym theorem gives us $0 \leq f_0, f_1 \in L^1(\mu)$ such that

$$\mu_0(A) = \int_A f_0 \, d\mu$$
 and $\mu_1(A) = \int_A f_1 \, d\mu$

For each $0 < \alpha < 1$, Stein and Weiss consider the scalar positive measure defined by $\mu_{\alpha}(A) = \int_{A} f_{0}^{1-\alpha} f_{1}^{\alpha} d\mu$. Then the Stein-Weiss interpolation formula reads,

$$[L^{p_0}(\mu_0), L^{p_1}(\mu_1)]_{[\theta]} = L^{p(\theta)}(\mu_\alpha).$$

with

$$\frac{1}{p(\theta)} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \text{ and } \alpha = \frac{\theta p(\theta)}{p_1}.$$
E. Mayoral Complex interpolation of vector n

Complex interpolation of vector measures

The motivation

The framework. The interpolated measure. The compatibility condition.

The measure μ_{α} can be defined by

$$\mu_{\alpha}(A) = \inf \left\{ \sum_{B \in \pi} \mu_0(A \cap B)^{1-\alpha} \mu_1(A \cap B)^{\alpha} : \pi \in \Pi(\Omega) \right\}.$$

Here $\Pi(\Omega)$ is the family of finite measurable partitions of Ω .

The framework. The interpolated measure. The compatibility condition.

The motivation

Example 1. The argument fails for positive vector measures.

Let $([0,1],\mathcal{M},\lambda)$ be the Lebesgue measure space and consider the vector measures defined by

$$m_0(A)=(\lambda(A),0)\in \mathbb{R}^2$$
 and $m_1(A)=(0,\lambda(A))\in \mathbb{R}^2.$

•
$$L^{1}(m_{0}) = L^{1}(m_{1}) = L^{1}(m_{0} + m_{1}) = L^{1}([0, 1]).$$

•
$$\int f d(m_0 + m_1) = \left(\int f d\lambda, \int f d\lambda\right).$$

• $m_1([0, 1]) = (1, 0)$ and $m_2([0, 1]) = (0, 1)$

- $m_0([0,1]) = (1,0)$ and $m_1([0,1]) = (0,1)$.
- There are no functions $f_0, f_1 \in L^1(m_0 + m_1)$ such that

$$\int_{\Omega} f_0 \, d(m_0 + m_1) = m_0(\Omega) \, \, ext{and} \, \, \int_{\Omega} f_1 \, d(m_0 + m_1) = m_1(\Omega).$$

The framework. The interpolated measure. The compatibility condition.

The framework

We consider vector measures with values in Köthe-Banach function spaces X on a complete σ -finite measure space (Θ, Λ, η). That is, X is a Banach lattice consisting in classes, modulo equality η – *a.e.*, of locally integrable, real valued functions on Θ that satisfies

(a) If
$$f \in L^0(\eta), g \in X$$
 and $|f| \le |g| \eta$ -a.e., then $f \in X$ and $||f||_X \le ||g||_X$.

(b) $\chi_A \in X$ for every $A \in \Lambda$ with finite measure. If X has order-continuous norm, the dual X' of X coincides with the Köthe dual

$$X^ imes := \left\{ g \in L^0(\eta) : \textit{f}g \in L^1(\eta) ext{ for every } f \in X
ight\}.$$

The framework. The interpolated measure. The compatibility condition.

The Calderón product

For a couple (X_0, X_1) of Köthe-Banach function spaces on the same measure space, and $0 < \alpha < 1$, the Calderón product $X(\alpha) := X_0^{1-\alpha} X_1^{\alpha}$ is the set of $x \in L^0(\eta)$ such that $|x| \le x_0^{1-\alpha} x_1^{\alpha}$ for some $0 \le x_0 \in X_0, 0 \le x_1 \in X_1$.

- $X(\alpha)$ is a Köthe-Banach function space with the norm $\|x\|_{X(\alpha)} := \inf \left\{ \|x_0\|^{1-\alpha} \|x_1\|^{\alpha} : |x| \le x_0^{1-\alpha} x_1^{\alpha}, 0 \le x_i \in X_i \right\}$
- For every $x_0 \in X_0, x_1 \in X_1$, $||x_0|^{1-\alpha}|x_1|^{\alpha}||_{X(\alpha)} \le ||x_0||^{1-\alpha}||x_1||^{\alpha}$
- If X₀ or X₁ has order continuous norm then the norm of X(α) is order-continuous too and

$$[X_0, X_1]_{[\alpha]} = X(\alpha).$$

The framework. The interpolated measure. The compatibility condition.

The interpolated measure

Let $0 < \alpha < 1$ and X_0 and X_1 be two Köthe-Banach function spaces such that

$$X(\alpha) := X_0^{1-lpha} X_1^{lpha}$$

is order-continuous. Now consider two positive vector measures on the same measurable space (Ω, Σ) ,

$$m_0: \Sigma \longrightarrow X_0 \text{ and } m_1: \Sigma \longrightarrow X_1.$$

For a measurable partition $\pi \in \Pi(\Omega)$ of Ω and a measurable subset $A \in \Sigma$, denote

$$\mathcal{C}_{\pi}(A) := \sum_{B \in \pi} m_0(A \cap B)^{1-lpha} m_1(A \cap B)^{lpha} \in X(lpha)$$

The framework. The interpolated measure. The compatibility condition.

The interpolated measure

Definition

$$[m_0, m_1]_{\alpha}(A) := \lim_{\pi} C_{\pi}(A) (= \inf_{\pi} C_{\pi}(A))$$

- [m₀, m₁]_α(A) ∈ X(α) is well-defined since X(α) is order-continuous.
- $0 \leq [m_0, m_1]_{\alpha}(A) \leq m_0(A)^{1-\alpha} m_1(A)^{\alpha} (\mu a.e.)$
- $||[m_0, m_1]_{\alpha}(A)||_{X(\alpha)} \leq ||m_0(A)||_{X_0}^{1-\alpha} ||m_1(A)||_{X_1}^{\alpha}$.

The framework. The interpolated measure. The compatibility condition.

The interpolated measure

Lemma

Let m_0 and m_1 be two equivalent positive vector measures and $0 < \alpha < 1$.

- [m₀, m₁]_α : Σ → X(α) is a (countably additive) positive vector measure.
- For every $A \in \Sigma$ and every $0 \le x' \in X(\alpha)'$ such that $x' \le (x'_0)^{1-\alpha}(x'_1)^{\alpha}, \ 0 \le x'_0 \in X'_0, 0 \le x'_1 \in X'_1, \ \langle [m_0, m_1]_{\alpha}(A), x' \rangle \le \langle m_0(A), x'_0 \rangle^{1-\alpha} \langle m_1(A), x'_1 \rangle^{\alpha}$
- In particular, $\langle [m_0, m_1]_{lpha}, x' \rangle \leq [\langle m_0, x'_0 \rangle, \langle m_1, x'_1 \rangle]_{lpha}$.
- $||[m_0, m_1]_{\alpha}||(A) \leq (||m_0||(A))^{1-\alpha}(||m_1||(A))^{\alpha}.$

The framework. The interpolated measure. The compatibility condition.

The $L^1(m)$ -space of the interpolated measure

Proposition

Let $m_0: \Sigma \longrightarrow X_0$ and $m_1: \Sigma \longrightarrow X_1$ two equivalent positive vector measures on (Ω, Σ) . Then, for every $0 < \alpha < 1$,

$$\left(L^1(m_0)\right)^{1-\alpha}\left(L^1(m_1)\right)^{\alpha}\subseteq L^1\left([m_0,m_1]_{\alpha}\right)$$

is a continuous inclusion.

Remark. In general, this inclusion is non-injective. The interpolated measure $[m_0, m_1]_{\alpha}$ can be the null measure even if m_0 and m_1 are non-trivial. In this case, the inclusion is simply the zero map.

Examples

The framework. The interpolated measure. The compatibility condition.

Example 1

Let $\big([0,1],\mathcal{M},\lambda\big)$ be the Lebesgue measure space and consider the vector measures defined by

$$m_0(A)=(\lambda(A),0)\in \mathbb{R}^2 ext{ and } m_1(A)=(0,\lambda(A))\in \mathbb{R}^2.$$

•
$$L^1(m_0) = L^1(m_1) = L^1([0,1]).$$

•
$$[m_0, m_1]_{\alpha} = 0$$
 for every $0 < \alpha < 1$.

•
$$(L^1(m_0))^{1-\alpha} (L^1(m_1))^{\alpha} = L^1([0,1]).$$

Examples

Example 2

Let $([0,1], \mathcal{M}, \lambda)$ be the Lebesgue measure space and consider $1 \leq s_1 \leq s_0 < \infty$ and a function $0 < g \in L^t(\lambda)$, where $\frac{1}{s_0} + \frac{1}{t} = \frac{1}{s_1}$. Consider the vector measures defined by

$$m_0: A \in \mathcal{M} \longrightarrow m_0(A) = \chi_A \in L^{s_0}(\lambda),$$

$$m_1: A \in \mathcal{M} \longrightarrow m_1(A) = g\chi_A \in L^{s_1}(\lambda).$$

•
$$[m_0, m_1]_{\alpha}(A) = g^{\alpha} \chi_A \in L^s(\lambda), \frac{1}{s} = \frac{1-\alpha}{s_0} + \frac{\alpha}{s_1}.$$

• $g \in L^t(\lambda) \Longrightarrow g^{\alpha} \in L^s(\lambda) \text{ since } \alpha s < t.$
• $L^1(m_0) = L^{s_0}(\lambda), \ L^1(m_1) = \{f : fg \in L^{s_1}(\lambda)\} = L^{s_1}(g^{s_1}\lambda),$
• $(L^1(m_0))^{1-\alpha}(L^1(m_1))^{\alpha} = L^s(g^{\alpha s}\lambda).$
• $L^1([m_0, m_1]_{\alpha}) = \{f : fg^{\alpha} \in L^s(\lambda)\} = L^s(g^{\alpha s}\lambda).$

The framework.

The interpolated measure.

The framework. The interpolated measure. The compatibility condition.

Examples

Example 3

Let X_0 and X_1 be two Köthe-Banach function spaces over a σ -finite measure space. For a pair of positive unconditionally convergent series $\sum_n f_n$ in X_0 and $\sum_n g_n$ in X_1 consider the vector measures defined over $\mathcal{P}(\mathbb{N})$ by

$$m_0(A)=\sum_{n\in A}f_n\in X_0 ext{ and } m_1(A)=\sum_{n\in A}g_n\in X_1.$$

- $\sum_n f_n^{1-\alpha} g_n^{\alpha}$ is a positive unconditionally convergent series in $X_0^{1-\alpha} X_1^{\alpha}$.
- $[m_0, m_1]_{\alpha}(A) = \sum_{n \in A} f_n^{1-\alpha} g_n^{\alpha}.$
- $L^1(m_0)^{1-\alpha}L^1(m_1)^{\alpha} = L^1([m_0, m_1]_{\alpha})?$

The framework. The interpolated measure. The compatibility condition.

The compatibility condition

Definition. Compatibility

A pair of equivalent vector measures m_0 and m_1 are said to be α -compatible, for 0 < α < 1 if

$$(L^1(m_0))^{1-\alpha} (L^1(m_1))^{\alpha} = L^1([m_0, m_1]_{\alpha})$$

Equivalently, $[L^1(m_0), L^1(m_1)]_{\alpha} = L^1([m_0, m_1]_{\alpha})$. **Remark.** If $m_0, m_1 : \Sigma \longrightarrow X$ are two positive vector measures such that there exists a vector measure m and functions $0 < f_0, f_1 \in L^1(m)$ such that

$$m_0 = f_0 m$$
 and $m_1 = f_1 m$ $\left(f_i m(A) := \int_A f_i dm\right)$

then m_0 and m_1 are α -compatible for every $0 < \alpha < 1$.

The framework. The interpolated measure. The compatibility condition.

Radon-Nikodym derivative with respect to a vector

measure

Definitions

Let $m, n : \Sigma \longrightarrow X$ two vector measures with values in a Banach space. We say that

- a) n is scalarly uniformly absolutely continuous with respect to m if ∀ε > 0, ∃δ > 0 such that ∀x' ∈ X', A ∈ Σ : |⟨m, x'⟩|(A) < δ ⇒ |⟨n, x'⟩|(A) < ε
 b) n is scalarly deminated by m if them with M ≥ 0 such that
- b) *n* is scalarly dominated by *m* if there exists M > 0 such that $|\langle n, x' \rangle|(A) \le M |\langle m, x' \rangle|(A), \ \forall A \in \Sigma, x' \in X'.$

The framework. The interpolated measure. The compatibility condition.

Radon-Nikodym derivative with respect to a vector

measure

Theorem, Musial, 1993

The following conditions are equivalent:

 n has a Radon-Nikodym derivative with respect to m. That is, there exists a (scalar) bounded measurable function f such that

$$n(A)=\int_A f\ dm\ \forall A\in \Sigma.$$

- n is scalarly uniformly absolutely continuous with respect to m.
- 3) n is scalarly dominated by m.

Interpolation of $L^{1}(m)$ -spaces. Interpolation of $L^{p}(m)$ -spaces. Interpolation of tensor products.

1 Spaces $L^p(m)$ and $L^p_w(m)$.

2 The interpolated vector measure.

3 Complex interpolation of $L^p(m)$ -spaces.

- Interpolation of $L^1(m)$ -spaces.
- Interpolation of $L^{p}(m)$ -spaces.
- Interpolation of tensor products.

Interpolation of $L^{1}(m)$ -spaces. Interpolation of $L^{p}(m)$ -spaces. Interpolation of tensor products.

Interpolation of $L^1(m)$ -spaces

Theorem

Let $m_0 : \Sigma \longrightarrow X_0$ and $m_1 : \Sigma \longrightarrow X_1$ be two α -compatible vector measures and consider two functions $0 < f_0 \in L^1(m_0)$ and $0 < f_1 \in L^1(m_1)$. Then

$$\left(L^{1}(f_{0}m_{0})\right)^{1-\alpha}\left(L^{1}(f_{1}m_{1})\right)^{\alpha}=L^{1}\left(f_{0}^{1-\alpha}f_{1}^{\alpha}[m_{0},m_{1}]_{\alpha}\right)$$

Interpolation of $L^1(m)$ -spaces. Interpolation of $L^p(m)$ -spaces. Interpolation of tensor products.

Interpolation of $L^{p}(m)$ -spaces

Theorem

Let $m_0: \Sigma \longrightarrow X_0$ and $m_1: \Sigma \longrightarrow X_1$ be two α -compatible vector measures and consider two functions $0 < f_0 \in L^1(m_0)$ and $0 < f_1 \in L^1(m_1)$. Then, for $0 < \theta < 1 \le p_0, p_1 < \infty$, $[L^{p_0}(f_0m_0), L^{p_1}(f_1m_1)]_{[\theta]} = L^{p(\theta)} \left(f_0^{1-\alpha}f_1^{\alpha}[m_0, m_1]_{\alpha}\right)$ with $\alpha = \frac{\theta p(\theta)}{p_1}$.

Interpolation of $L^1(m)$ -spaces. Interpolation of $L^p(m)$ -spaces. Interpolation of tensor products.

Corollary

Let *m* be a positive vector measure with values in a Köthe-Banach function space and consider two functions $0 < f_0, f_1 \in L^1(m)$. Then, for $0 < \theta < 1 \le p_0, p_1 < \infty$,

$$[L^{p_0}(f_0m), L^{p_1}(f_1m)]_{[\theta]} = L^{p(\theta)} \left(f_0^{1-\alpha} f_1^{\alpha} m \right)$$

with $\alpha = \frac{\theta p(\theta)}{p_1}$.

Interpolation of $L^1(m)$ -spaces. Interpolation of $L^p(m)$ -spaces. Interpolation of tensor products.

Corollary

Let $0 < \theta < 1 \le p_0, p_1, q_0, q_1 < \infty$ and $\alpha = \frac{\theta p(\theta)}{p_1}, \beta = \frac{\theta q(\theta)}{q_1}$ with $\frac{1}{p(\theta)} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \frac{1}{q(\theta)} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$. Let (m_0, m_1) be a couple of α -compatible vector measures and (n_0, n_1) be a couple of β -compatible vector measures. If

$$T: L^{p_0}(m_0) + L^{p_1}(m_1) \longrightarrow L^{q_0}(n_0) + L^{q_1}(n_1)$$

is a linear operator such that the restrictions $T_0: L^{p_0}(m_0) \longrightarrow L^{q_0}(n_0)$ and $T_1: L^{p_1}(m_1) \longrightarrow L^{q_1}(n_1)$ are well defined and continuous then

$$T: L^{p(\theta)}([m_0, m_1]_{\alpha}) \longrightarrow L^{q(\theta)}([n_0, n_1]_{\beta})$$

is well defined and continuous

Interpolation of $L^1(m)$ -spaces. Interpolation of $L^p(m)$ -spaces. Interpolation of tensor products.

Interpolation of injective tensor products

Corollary

Let $0 < \theta < 1 \le p_0, p_1, q_0, q_1 < \infty, \alpha, \beta, p(\theta), q(\theta), (m_0, m_1)$ and (n_0, n_1) be as before.

• If $L^{p_0}(m_0), L^{p_1}(m_1), L^{q_0}(n_0)$ and $L^{q_1}(n_1)$ are 2-concave Banach lattices, then

$$\left[L^{p_0}(m_0)\hat{\otimes}_{arepsilon}L^{q_0}(n_0),L^{p_1}(m_1)\hat{\otimes}_{arepsilon}L^{q_1}(n_1)
ight]_{[heta]}=(\mathsf{Kouba},1991)$$

$$= [L^{p_0}(m_0), L^{p_1}(m_1)]_{[\theta]} \hat{\otimes}_{\varepsilon} [L^{q_0}(n_0), L^{q_1}(n_1)]_{[\theta]}$$

$$= L^{p(\theta)}([m_0, m_1]_{\alpha}) \hat{\otimes}_{\varepsilon} L^{q(\theta)}([n_0, n_1]_{\beta}).$$

Interpolation of $L^1(m)$ -spaces. Interpolation of $L^p(m)$ -spaces. Interpolation of tensor products.

Interpolation of tensor products

Corollary

Let $0 < \theta < 1 \le p_0, p_1, q_0, q_1 < \infty, \alpha, \beta, p(\theta), q(\theta), (m_0, m_1)$ and (n_0, n_1) be as before.

• If $p_0, p_1, q_0, q_1 \ge 2$ (\Rightarrow the spaces are 2-convex Banach laticces), then

$$\left[L^{p_0}(m_0)\hat{\otimes}_{\pi}L^{q_0}(n_0), L^{p_1}(m_1)\hat{\otimes}_{\pi}L^{q_1}(n_1)
ight]_{[heta]} = (\mathsf{Kouba}, 1991)$$

 $= [L^{p_0}(m_0), L^{p_1}(m_1)]_{[\theta]} \hat{\otimes}_{\pi} [L^{q_0}(n_0), L^{q_1}(n_1)]_{[\theta]}$

$$= L^{p(\theta)}([m_0, m_1]_{\alpha}) \hat{\otimes}_{\pi} L^{q(\theta)}([n_0, n_1]_{\beta}).$$

References

- Asekritova, I.; Krugljak, N. and Nikolova, L., The Lizorkin-Freitag formula for several weighted L_p spaces and vector-valued interpolation, Studia Math. 170(3), (2005), 227–239, MR2183475 (2006f:46023).

Curbera, G. P., Operators into L^1 of a vector measure and applications to Banach lattices, Math. Ann. **293**(2), (1992), 317–330, MR1166123 (93b:46083).

Curbera, G. P. and Ricker, W. J., *The Fatou property in p-convex Banach lattices, J. Math. Anal. Appl.* **328**(1), (2007), 287–294, MR2285548 (2008g:28060).

Cwikel, M., On $(L^{p_o}(A_o), L^{p_1}(A_1))_{\theta,q}$, Proc. Amer. Math. Soc. 44, (1974), 286–292, MR0358326 (50 #10792).

del Campo, R.; Fernández, A.; Mayoral, F.; Naranjo, F. and Sánchez-Pérez, E.A., *Interpolation of vector measures, Acta Math. Sin. (Engl. Ser.)* **27**(1), (2011), 119–134, MR2754864.

Fernández, A.; Mayoral, F. and Naranjo, F., *Real interpolation method on spaces of scalar integrable functions with respect to vector measures, J. Math. Anal. Appl.* **376**(1), (2011), 203–211, MR2745400.

References

Fernández, A.; Mayoral, F.; Naranjo, F. and Sánchez-Pérez, E.A., *Complex interpolation of spaces of integrable functions with respect to a vector measure, Collect. Math.* **61**(3), (2010), 241–252, MR2732369.

Fernández, A.; Mayoral, F.; Naranjo, F.; Sáez, C. and Sánchez-Pérez, E. A., *Spaces of p-integrable functions with respect to a vector measure, Positivity* **10**(1), (2006), 1–16, MR2223581 (2006m:46053).

Ferreyra, E. V., On a negative result concerning interpolation with change of measures for Lorentz spaces, Proc. Amer. Math. Soc. **125**(5), (1997), 1413–1417, MR1363418 (97i:46055).

Musiał, K., A Radon-Nikodým theorem for the Bartle-Dunford-Schwartz integral, Atti Sem. Mat. Fis. Univ. Modena **41**(1), (1993), 227–233, MR1225685 (94g:28016).

Peetre, J., A new approach in interpolation spaces, Studia Math. 34, (1970), 23–42, MR0264390 (41 #8985).

Stein, E. M. and Weiss, G., Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87, (1958), 159–172, MR0092943 (19,1184d).

That's all. Thank you.