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Basic notation

A - B . . . ∃c ∈ (0,+∞) s.t. A ≤ cB

A ≈ B . . .A - B and B - A

Ω ⊂ IRn a domain, f ∈M(Ω)

f ∗(t) := inf {λ ≥ 0 : |{x ∈ Ω : |f (x)|>λ}|n ≤ t}

f ∗∗(t) := t−1
∫ t

0 f ∗(τ) dτ , t > 0

X ,Y . . . (quasi-) Banach spaces X ↪→ Y

f ∈ Lp(IRn), 1 ≤ p <∞, h ∈ IRn

∆hf (x) := f (x + h)− f (x), x ∈ IRn

ω1(f , t)p := supx∈IRn,|h|≤t ‖∆hf (x)‖p, t ≥ 0
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Slowly varying functions

Definition

b ∈ SV = SV (0, 1)⇐⇒ b ∈M+(0, 1) , 0 6≡ b 6≡ ∞, and
∀ε > 0 ∃ hε ∈M+(0, 1; ↑), ∃ h−ε ∈M+((0, 1; ↓) such that

tεb(t) ≈ hε(t) and t−εb(t) ≈ h−ε(t) ∀ t ∈ (0, 1)

b ∈ SV (0, 1) ⇒ ∃ b̃ ∈ SV (0, 1) ∩ C ((0, 1)), b̃ ≈ b on (0, 1)

Examples

`(t) := 1 + | log t|, t ∈ (0, 1)
`1 := `, `i := `1 ◦ `i−1, i > 1

1 b(t) = `α(t) :=
∏m

i=1 `
αi
i (t), t ∈ (0, 1), m ∈ IN,

α = (α1, . . . , αm) ∈ IRm

2 b(t) = exp
(
|log t|β

)
, t ∈ (0, 1), β ∈ (0, 1)
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The Besov space B0,b
p,r = B0,b

p,r (Rn)

Definition

Let 1 ≤ p <∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) be such that

‖t−1/r b(t)‖r ,(0,1) =∞. (1)

The Besov space B0,b
p,r = B0,b

p,r (Rn) consists of those functions f ∈ Lp(Rn)
for which the norm

‖f ‖
B0,b

p,r
:= ‖f ‖p + ‖t−1/r b(t)ω1(f , t)p‖r ,(0,1) (2)

is finite.
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Theorem 1

Let 1 ≤ p <∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
Assume that ω is a non-negative measurable function on (0, 1). Then

‖ω(t)f ∗(t)‖q,(0,1) . ‖f ‖
B0,b

p,r
(3)

for all f ∈ B0,b
p,r (Rn) if and only if

‖ω(t)f ∗(t)‖q,(0,1) .
∥∥∥t−1/r b(t1/n)

(∫ t

0
(f ∗(u))p du

)1/p∥∥∥
r ,(0,1)

(4)

for all f ∈M0(Rn).
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Main ingredients of the proof

Theorem (Kolyada, (1988))

If 1 ≤ p <∞, then

t
(∫ ∞

tn

s−p/n

∫ s

0
(f ∗(u)− f ∗(s))p du

ds

s

)1/p
. ω1(f , t)p

for all t > 0 and f ∈ Lp(Rn).
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Theorem (Caetano, Gogatishvili, Opic, (2008))

Let f ∈ Lp(Rn) and

F (x)) :=

{
f ∗(Vn|x |n), x ∈ Rn, if p = 1,

f ∗∗(Vn|x |n), x ∈ Rn, if p ∈ (1,∞),

where Vn := |Bn(0, 1)|n.
Then

ω1(F , t)p . t
(∫ ∞

tn

s−p/n

∫ s

0
(f ∗(u)− f ∗(s))p du

ds

s

)1/p

for all t > 0 and f ∈ Lp(Rn).
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The classical Lorentz space Λloc
q (ω)

Definition

Given q ∈ (0,∞] and ω ∈M+(0, 1) , the classical Lorentz space Λloc
q (ω)

is defined to be the set of all measurable functions f ∈ Rn such that

‖ωf ∗‖q;(0,1) <∞.

In particular, putting ω(t) := t1/p−1/q b(t), t ∈ (0, 1), where
b ∈ SV (0, 1), we obtain the Lorentz-Karamata space Lloc

p,q;b.

Note that Lorentz-Karamata spaces involve as particular cases the
generalized Lorentz-Zygmund spaces, the Lorentz spaces, the Zygmund
classes and Lebesgue spaces.
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Some more notation

1 ≤ p <∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞

If b ∈ SV (0, 1), we put b(t) := 1 for t ∈ [1, 2],

br (t) := ‖s−1/r b(s1/n)‖r ,(t,2), t ∈ (0, 1),

b∗∗∞(t) := t−1

∫ t

0
b∞(τ) dτ, t ∈ (0, 1).

If ω ∈M+(0, 1) , we put

Ωq(t) := ‖ω(s)‖q,(0,t), t ∈ (0, 1].

ρ :=∞ if p ≤ q and 1
ρ := 1

q −
1
p if q < p
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Theorem 2

Let 1 ≤ p <∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).

(i) Let 1 ≤ r ≤ q ≤ ∞. Then inequality (3) holds for all f ∈ B0,b
p,r (Rn)

if and only if

Ωq(1) + ‖s−
1
p
− 1
ρΩq(s)‖ρ,(t,1) . br (t) for all t ∈ (0, 1). (5)

(ii) Let 0 < q < r <∞. Then inequality (3) holds for all f ∈ B0,b
p,r (Rn)

if and only if

Ωq(1) +

∫ 1

0

(
‖s−

1
p
− 1
ρΩq(s)‖ρ,(t,1)

) qr
r−q

br (t)
r2

q−r b(t
1
n )r dt

t
<∞. (6)

(iii) Let 0 < q < r =∞. Then inequality (3) holds for all f ∈ B0,b
p,r (Rn)

if and only if

Ωq(1) +

∫
(0,1)

(
‖s−

1
p
− 1
ρΩq(s)‖ρ,(t,1)

)q
d(b∗∗∞(t)−q) <∞. (7)
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Theorem 3

Let 1 ≤ p <∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞. Let b ∈ SV (0, 1) satisfy (1).
Define, for all t ∈ (0, 1),

b̃(t) :=

{
br (t)1−r/q+r/max{p,q}b(t1/n)r/q−r/max{p,q} if r 6=∞
b∞(t) if r =∞ . (8)

Then the inequality

‖t1/p−1/qb̃(t)f ∗(t)‖q,(0,1) . ‖f ‖
B0,b

p,r
(9)

holds for all f ∈ B0,b
p,r (Rn) if and only if q ≥ r .
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Theorem 4

Let 1 ≤ p <∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
(i) Let κ ∈M+

0 (0, 1; ↓). Then the inequality

‖t1/p−1/qb̃(t)κ(t)f ∗(t)‖q,(0,1) . ‖f ‖
B0,b

p,r
(10)

holds for all f ∈ B0,b
p,r (Rn) if and only if κ is bounded.

(ii) Let κ ∈M+
0 (0, 1) and q =∞. Then inequality (10) holds for all

f ∈ B0,b
p,r (Rn) if and only if ‖κ‖∞,(0,1) <∞.
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Definition (GE)

Let (A, ‖ · ‖A) ⊂M(Rn) be a quasi-normed space s.t. A 6↪→ L∞.
A function h ∈ C +((0, ε]; ↓) , ε ∈ (0, 1), is called the (local)
growth envelope function of the space A provided that

h(t) ≈ sup
‖f ‖A≤1

f ∗(t) for all t ∈ (0, ε]. (11)

Given a growth envelope function h of the space A and a number
u ∈ (0,∞], the pair (h, u) is called the (local) growth envelope of the
space A when the inequality(∫

(0,ε)

( f ∗(t)

h(t)

)q
dµH(t)

)1/q
. ‖f ‖A

(with the usual modification when q =∞) holds for all f ∈ A if and only
if the exponent q satisfies q ≥ u. Here µH is the Borel measure associated
with the non-decreasing function H(t) := − ln h(t), t ∈ (0, ε). The
component u in the growth envelope pair is called the fine index.
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Theorem 5

Let 1 ≤ p <∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). Then the

growth envelope of B0,b
p,r (Rn) is the pair

(t−1/p br (t)−1,max{p, r}).

Note that

t−1/p br (t)−1 ≈
∫ 2

t
s−1/p−1 br (s)−1 ds =: h(t) ∀t ∈ (0, 1)

and that the function h is non-increasing and absolutely continuous
on the whole interval (0, 1).
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Remark

Put H(t) := − ln h(t) for t ∈ (0, ε), where ε ∈ (0, 1) is small enough.
Since H ′(t) ≈ 1

t for a.e. t ∈ (0, ε) , the measure µH associated with the

function H satisfies dµH(t) ≈ dt
t . Thus, by Definition (GE) and

Theorem 5,

‖t1/p−1/qbr (t)f ∗(t)‖q,(0,ε) . ‖f ‖
B0,b

p,r
for all f ∈ B0,b

p,r (Rn) (12)

if and only if
q ≥ max{p, r}. (13)

Hence, if (13) holds, then inequality (12) gives the same result as
inequality (9) of Theorem 3 (since (13) implies that b̃ = br ). However,
if r ≤ q < p, then inequality (12) does not hold, while inequality (9)

does. This means that the embeddings of Besov spaces B0,b
p,r (Rn) given

by Theorem 3 cannot be described in terms of growth envelopes when
1 ≤ r ≤ q < p <∞.
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Theorems 3 and 4 imply that if 1 ≤ p <∞, 1 ≤ r ≤ q ≤ ∞, then

B0,b
p,r (Rn) ↪→ Lp,q;b̃(Ω),

where Ω is a domain in Rn of finite Lebesgue measure, and that this
embedding is optimal within the scale of Lorentz-Karamata spaces.
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Compact embeddings

Theorem 6

Let 1 ≤ p <∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). Let Ω
be a bounded domain in Rn and let 0 < P ≤ p. Assume that b̄ ∈ SV (0, 1)
and, if P = p > q, that b̄/b̃ is a non-decreasing function on the interval
(0, δ) for some δ ∈ (0, 1). Then

B0,b
p,r (Rn) ↪→↪→ LP,q;b(Ω) 1)

if and only if

lim
t→0+

t1/P b̄(t)

t1/pb̃(t)
= 0.

) This means that the mapping u 7→ u|Ω from B0,b
p,r (Rn) into LP,q;b(Ω) is compact.
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Thank you for your attention
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