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Main goal

We study the following basic question:
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Main goal

We study the following basic question:

Can optimal results be iterated?
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What is meant by optimality

DEFINITION.
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DEFINITION. X , Y are function spaces, T is an operator, defined
at least on X , M is some category of (quasi-)normed function
spaces.
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DEFINITION. X , Y are function spaces, T is an operator, defined
at least on X , M is some category of (quasi-)normed function
spaces.

We say that Y is the optimal range partner for X with respect to
T within M if

Luboš Pick (Charles University, Prague) Optimality and iteration



What is meant by optimality

DEFINITION. X , Y are function spaces, T is an operator, defined
at least on X , M is some category of (quasi-)normed function
spaces.

We say that Y is the optimal range partner for X with respect to
T within M if

Y ∈ M;
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What is meant by optimality

DEFINITION. X , Y are function spaces, T is an operator, defined
at least on X , M is some category of (quasi-)normed function
spaces.

We say that Y is the optimal range partner for X with respect to
T within M if

Y ∈ M;

T is bounded from X to Y (notation T : X → Y );
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What is meant by optimality

DEFINITION. X , Y are function spaces, T is an operator, defined
at least on X , M is some category of (quasi-)normed function
spaces.

We say that Y is the optimal range partner for X with respect to
T within M if

Y ∈ M;

T is bounded from X to Y (notation T : X → Y );

Y is the smallest such space in M, that is, if Z ∈ M is such
that T : X → Z , then Y →֒ Z .
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.

Given u : Ω → R and m ∈ N, we denote the m-th gradient of u
by Dmu.
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.

Given u : Ω → R and m ∈ N, we denote the m-th gradient of u
by Dmu. That is,

Dmu :=

(

∂αu

∂xα

)

|α|≤m

.
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.

Given u : Ω → R and m ∈ N, we denote the m-th gradient of u
by Dmu. That is,

Dmu :=

(

∂αu

∂xα

)

|α|≤m

.

The Euclidean–Sobolev space W m,p(Ω) is the set of all functions u
which together with |Dmu| belong to Lp(Ω).
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.

Given u : Ω → R and m ∈ N, we denote the m-th gradient of u
by Dmu. That is,

Dmu :=

(

∂αu

∂xα

)

|α|≤m

.

The Euclidean–Sobolev space W m,p(Ω) is the set of all functions u
which together with |Dmu| belong to Lp(Ω).

The general Euclidean–Sobolev space W mX (Ω) is the set of all
functions u which together with |Dmu| belong to X , where X is
a function space on Ω.
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Sobolev spaces

Let Ω ⊂ Rn be a Lipschitz domain of measure 1, n ≥ 2.

Given u : Ω → R and m ∈ N, we denote the m-th gradient of u
by Dmu. That is,

Dmu :=

(

∂αu

∂xα

)

|α|≤m

.

The Euclidean–Sobolev space W m,p(Ω) is the set of all functions u
which together with |Dmu| belong to Lp(Ω).

The general Euclidean–Sobolev space W mX (Ω) is the set of all
functions u which together with |Dmu| belong to X , where X is
a function space on Ω.

NOTE: W m,p(Ω) = W mLp(Ω).
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Order of an embedding

A very important ingredient in a Sobolev embedding is the order m.
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Order of an embedding

A very important ingredient in a Sobolev embedding is the order m.

We will carefully distinguish first-order embeddings

W 1X →֒ Y

from the higher-order ones
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Order of an embedding

A very important ingredient in a Sobolev embedding is the order m.

We will carefully distinguish first-order embeddings

W 1X →֒ Y

from the higher-order ones

W mX →֒ Y (m > 1).
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Iteration

Suppose that

W 1X →֒ Y

Luboš Pick (Charles University, Prague) Optimality and iteration



Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .
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Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .

Then, of course,
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Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .

Then, of course,

W 2X →֒ W 1Y →֒ Z
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Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .

Then, of course,

W 2X →֒ W 1Y →֒ Z , hence W 2X →֒ Z .
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Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .

Then, of course,

W 2X →֒ W 1Y →֒ Z , hence W 2X →֒ Z .

QUESTION REVISITED:
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Iteration

Suppose that

W 1X →֒ Y and W 1Y →֒ Z .

Then, of course,

W 2X →֒ W 1Y →֒ Z , hence W 2X →֒ Z .

QUESTION REVISITED: Is there any loss of information in the
iteration process or not?
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Non-limiting embeddings for Lebesgue spaces
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Non-limiting embeddings for Lebesgue spaces

Let M be the class of Lebesgue spaces on Ω.
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Non-limiting embeddings for Lebesgue spaces

Let M be the class of Lebesgue spaces on Ω.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p , 1 ≤ p < n.
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Non-limiting embeddings for Lebesgue spaces

Let M be the class of Lebesgue spaces on Ω.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p , 1 ≤ p < n.

Then the range space is optimal within M.
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Non-limiting embeddings for Lebesgue spaces

Let M be the class of Lebesgue spaces on Ω.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p , 1 ≤ p < n.

Then the range space is optimal within M.

(ii) Non-limiting higher-order Euclidean–Sobolev embedding:

W m,p →֒ L
np

n−mp , 1 ≤ p <
n

m
.
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Non-limiting embeddings for Lebesgue spaces

Let M be the class of Lebesgue spaces on Ω.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p , 1 ≤ p < n.

Then the range space is optimal within M.

(ii) Non-limiting higher-order Euclidean–Sobolev embedding:

W m,p →֒ L
np

n−mp , 1 ≤ p <
n

m
.

Then the range space is optimal within M.
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Question formulated for this example
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Question formulated for this example

QUESTION: Is the higher-order embedding preserved under
iteration of the first-order ones?
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Answer
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Answer

Let p < n
2
.
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2
. As we have seen, we have
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Let p < n
2
. As we have seen, we have

W 1,p →֒ L
np

n−p .
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Let p < n
2
. As we have seen, we have

W 1,p →֒ L
np

n−p .

Iterating this, we get
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Answer

Let p < n
2
. As we have seen, we have

W 1,p →֒ L
np

n−p .

Iterating this, we get

W 2,p →֒ W
1,

np
n−p →֒ L

n
np

n−p

n−
np

n−p = L
np

n−2p .
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Answer

Let p < n
2
. As we have seen, we have

W 1,p →֒ L
np

n−p .

Iterating this, we get

W 2,p →֒ W
1,

np
n−p →֒ L

n
np

n−p

n−
np

n−p = L
np

n−2p .

So, in this case, the range space obtained by iteration is optimal,
hence no information is lost.
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Limiting embeddings for Lebesgue spaces
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Limiting embeddings for Lebesgue spaces

Let M be still the class of Lebesgue spaces on Ω.
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Limiting embeddings for Lebesgue spaces

Let M be still the class of Lebesgue spaces on Ω.

Limiting higher-order Euclidean–Sobolev embedding:

W m,
n
m →֒

{

Lq, q ∈ [1,∞), if 1 ≤ m ≤ n − 1;

L∞ if m = n.
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Limiting embeddings for Lebesgue spaces

Let M be still the class of Lebesgue spaces on Ω.

Limiting higher-order Euclidean–Sobolev embedding:

W m,
n
m →֒

{

Lq, q ∈ [1,∞), if 1 ≤ m ≤ n − 1;

L∞ if m = n.

In the latter case, the range space is optimal within M.
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Limiting embeddings for Lebesgue spaces

Let M be still the class of Lebesgue spaces on Ω.

Limiting higher-order Euclidean–Sobolev embedding:

W m,
n
m →֒

{

Lq, q ∈ [1,∞), if 1 ≤ m ≤ n − 1;

L∞ if m = n.

In the latter case, the range space is optimal within M.

QUESTION: Can the latter embedding be obtained by iteration of
first-order ones?
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Answer
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Answer

Let n > 1.
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Answer

Let n > 1. Then

W n,1 →֒ W n−1,
n

n−1 →֒ W n−2,
n

n−2 →֒ . . . →֒ W 1,n →֒ Lq ) L∞.
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Answer

Let n > 1. Then

W n,1 →֒ W n−1,
n

n−1 →֒ W n−2,
n

n−2 →֒ . . . →֒ W 1,n →֒ Lq ) L∞.

So, in the limiting case, there is a loss of information.
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Orlicz spaces
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Orlicz spaces

Let n > 2 and let M be the category of Orlicz spaces on Ω.
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Orlicz spaces

Let n > 2 and let M be the category of Orlicz spaces on Ω.

Then
W 2,

n
2 (Ω) →֒ W 1,n(Ω) →֒ exp L

n
n−1 (Ω)
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Orlicz spaces

Let n > 2 and let M be the category of Orlicz spaces on Ω.

Then
W 2,

n
2 (Ω) →֒ W 1,n(Ω) →֒ exp L

n
n−1 (Ω)

and the range at each step is optimal within M.
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Orlicz spaces

Let n > 2 and let M be the category of Orlicz spaces on Ω.

Then
W 2,

n
2 (Ω) →֒ W 1,n(Ω) →֒ exp L

n
n−1 (Ω)

and the range at each step is optimal within M.

However, it is known that

W 2,
n
2 (Ω) →֒ exp L

n
n−2 (Ω) ( exp L

n
n−1 (Ω),

hence, again, there is a loss of information in the iteration
process.
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An attempt for a remedy
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An attempt for a remedy

QUESTION What could have been done in order to avoid the
loss?
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An attempt for a remedy

QUESTION What could have been done in order to avoid the
loss?

A POSSIBILITY: Use Lorentz spaces instead of Lebesgue and
Orlicz ones!
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Lorentz spaces
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Lorentz spaces

Let M be the category of Lorentz spaces.
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Lorentz spaces

Let M be the category of Lorentz spaces.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p
,p

, 1 ≤ p < n.

Luboš Pick (Charles University, Prague) Optimality and iteration



Lorentz spaces

Let M be the category of Lorentz spaces.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p
,p

, 1 ≤ p < n.

Then the range space is optimal within M.
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Lorentz spaces

Let M be the category of Lorentz spaces.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p
,p

, 1 ≤ p < n.

Then the range space is optimal within M.

(ii) Non-limiting higher-order Euclidean–Sobolev embedding:

W m,p →֒ L
np

n−mp
,p

, 1 ≤ p <
n

m
.
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Lorentz spaces

Let M be the category of Lorentz spaces.

(i) Non-limiting first-order Euclidean–Sobolev embedding:

W 1,p →֒ L
np

n−p
,p

, 1 ≤ p < n.

Then the range space is optimal within M.

(ii) Non-limiting higher-order Euclidean–Sobolev embedding:

W m,p →֒ L
np

n−mp
,p

, 1 ≤ p <
n

m
.

Then the range space is optimal within M.
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Limiting embeddings for Lorentz spaces
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Limiting embeddings for Lorentz spaces

Using Lorentz spaces, we get

W n,1 = W nL1 →֒ W n−1L
n

n−1
,1 →֒ W n−2L

n
n−2

,1 →֒

→֒ . . . →֒ W 1Ln,1 →֒ L∞.
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Limiting embeddings for Lorentz spaces

Using Lorentz spaces, we get

W n,1 = W nL1 →֒ W n−1L
n

n−1
,1 →֒ W n−2L

n
n−2

,1 →֒

→֒ . . . →֒ W 1Ln,1 →֒ L∞.

So now the range space is optimal, hence there is no loss of
information in the iteration process.
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A summary
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A summary

We believe that there is a general principle behind the scene.
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A summary

We believe that there is a general principle behind the scene.

The fact that optimality survived iteration in the last example is not
caused by the fact that the spaces used were in particular Lorentz
spaces, but because, in this case, the Lorentz spaces happen to
coincide with the optimal rearrangement-invariant spaces.
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A conjecture

A WORKING CONJECTURE:

Luboš Pick (Charles University, Prague) Optimality and iteration



A conjecture

A WORKING CONJECTURE: Let M be the category of
rearrangement-invariant (r.i.) spaces.
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A conjecture

A WORKING CONJECTURE: Let M be the category of
rearrangement-invariant (r.i.) spaces. Let m ∈ N and let
X0, X1, . . . ,Xm ∈ M.
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A conjecture

A WORKING CONJECTURE: Let M be the category of
rearrangement-invariant (r.i.) spaces. Let m ∈ N and let
X0, X1, . . . ,Xm ∈ M. Assume that

W 1Xj →֒ Xj+1, j = 0, . . . ,m − 1,

and the range is optimal within M at each step.

Luboš Pick (Charles University, Prague) Optimality and iteration



A conjecture

A WORKING CONJECTURE: Let M be the category of
rearrangement-invariant (r.i.) spaces. Let m ∈ N and let
X0, X1, . . . ,Xm ∈ M. Assume that

W 1Xj →֒ Xj+1, j = 0, . . . ,m − 1,

and the range is optimal within M at each step. Then

W mX0 →֒ Xm
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A conjecture

A WORKING CONJECTURE: Let M be the category of
rearrangement-invariant (r.i.) spaces. Let m ∈ N and let
X0, X1, . . . ,Xm ∈ M. Assume that

W 1Xj →֒ Xj+1, j = 0, . . . ,m − 1,

and the range is optimal within M at each step. Then

W mX0 →֒ Xm

and the range is optimal within M.
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The key ingredient is the first-order reduction theorem.
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Description of our approach

The key ingredient is the first-order reduction theorem.

A reduction theorem is a principle that reduces a Sobolev-type
embedding W 1X (Ω) →֒ Y (Ω) to a one-dimensional problem
involving boundedness of certain integral operator T between
representation spaces X (0, 1) and Y (0, 1) of X (Ω) and Y (Ω).
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Description of our approach

The key ingredient is the first-order reduction theorem.

A reduction theorem is a principle that reduces a Sobolev-type
embedding W 1X (Ω) →֒ Y (Ω) to a one-dimensional problem
involving boundedness of certain integral operator T between
representation spaces X (0, 1) and Y (0, 1) of X (Ω) and Y (Ω).

In other words, reduction theorem asserts the equivalence of

W 1X (Ω) →֒ Y (Ω)
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Description of our approach

The key ingredient is the first-order reduction theorem.

A reduction theorem is a principle that reduces a Sobolev-type
embedding W 1X (Ω) →֒ Y (Ω) to a one-dimensional problem
involving boundedness of certain integral operator T between
representation spaces X (0, 1) and Y (0, 1) of X (Ω) and Y (Ω).

In other words, reduction theorem asserts the equivalence of

W 1X (Ω) →֒ Y (Ω)

to
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Description of our approach

The key ingredient is the first-order reduction theorem.

A reduction theorem is a principle that reduces a Sobolev-type
embedding W 1X (Ω) →֒ Y (Ω) to a one-dimensional problem
involving boundedness of certain integral operator T between
representation spaces X (0, 1) and Y (0, 1) of X (Ω) and Y (Ω).

In other words, reduction theorem asserts the equivalence of

W 1X (Ω) →֒ Y (Ω)

to
T : X (0, 1) → Y (0, 1)

for an appropriate T .
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An iteration principle for integral operators
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1).
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1).
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1). Let m ∈ N and let
X 0, . . . ,Xm ∈ M.
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1). Let m ∈ N and let
X 0, . . . ,Xm ∈ M. Assume that

T : X j(0, 1) → X j+1(0, 1), j = 0, . . . ,m − 1,
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1). Let m ∈ N and let
X 0, . . . ,Xm ∈ M. Assume that

T : X j(0, 1) → X j+1(0, 1), j = 0, . . . ,m − 1,

and let the range space be optimal within M at each step.
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1). Let m ∈ N and let
X 0, . . . ,Xm ∈ M. Assume that

T : X j(0, 1) → X j+1(0, 1), j = 0, . . . ,m − 1,

and let the range space be optimal within M at each step. Then

Tm : X 0(0, 1) → Xm(0, 1)
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An iteration principle for integral operators

THEOREM. Let

Tg(t) :=

∫

1

tα

g(s)
ϕ(s)

s
ds,

where α > 0 and ϕ is increasing and bounded on (0, 1). Let M

be the category of r.i. spaces on (0, 1). Let m ∈ N and let
X 0, . . . ,Xm ∈ M. Assume that

T : X j(0, 1) → X j+1(0, 1), j = 0, . . . ,m − 1,

and let the range space be optimal within M at each step. Then

Tm : X 0(0, 1) → Xm(0, 1)

and the range space is optimal within M.
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Consequences for Sobolev embeddings
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Consequences for Sobolev embeddings

COROLLARY. The working conjecture is true for any type of
Sobolev embedding for which a reduction theorem is known
involving an appropriate T .
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A closer look on the one-dimensional operators
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A closer look on the one-dimensional operators

QUESTION: What is T in concrete examples of embeddings?

We shall illustrate this on various examples.
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THEOREM (reduction theorem for Euclidean–Sobolev
embeddings).
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THEOREM (reduction theorem for Euclidean–Sobolev
embeddings).
The embedding

W 1X (Ω) →֒ Y (Ω)
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The embedding
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holds if and only if
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Luboš Pick (Charles University, Prague) Optimality and iteration



First example: Euclidean–Sobolev embeddings

THEOREM (reduction theorem for Euclidean–Sobolev
embeddings).
The embedding

W 1X (Ω) →֒ Y (Ω)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=
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First example: Euclidean–Sobolev embeddings

THEOREM (reduction theorem for Euclidean–Sobolev
embeddings).
The embedding

W 1X (Ω) →֒ Y (Ω)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=

∫

1

t

s
1

n
−1g(s) ds.

(Edmunds–Kerman–Pick, JFA 2000).

Luboš Pick (Charles University, Prague) Optimality and iteration



Second example: boundary trace embeddings

Luboš Pick (Charles University, Prague) Optimality and iteration



Second example: boundary trace embeddings

THEOREM (reduction theorem for boundary trace embeddings).

Luboš Pick (Charles University, Prague) Optimality and iteration



Second example: boundary trace embeddings

THEOREM (reduction theorem for boundary trace embeddings).
The boundary trace embedding

Tr : W 1X (Ω) → Y (∂Ω)
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Second example: boundary trace embeddings

THEOREM (reduction theorem for boundary trace embeddings).
The boundary trace embedding

Tr : W 1X (Ω) → Y (∂Ω)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=

∫

1

t
n

n−1

s
1

n
−1g(s) ds.
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Second example: boundary trace embeddings

THEOREM (reduction theorem for boundary trace embeddings).
The boundary trace embedding

Tr : W 1X (Ω) → Y (∂Ω)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=

∫

1

t
n

n−1

s
1

n
−1g(s) ds.

(Cianchi–Kerman–Pick, J. Anal. Math. 2008).
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Third example: Gaussian–Sobolev embeddings

THEOREM (reduction theorem for Gaussian–Sobolev
embeddings).
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Third example: Gaussian–Sobolev embeddings

THEOREM (reduction theorem for Gaussian–Sobolev
embeddings).
The Gaussian–Sobolev embedding

W 1X (Rn, γn) →֒ Y (Rn, γn)
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Third example: Gaussian–Sobolev embeddings

THEOREM (reduction theorem for Gaussian–Sobolev
embeddings).
The Gaussian–Sobolev embedding

W 1X (Rn, γn) →֒ Y (Rn, γn)

holds if and only if

T : X (0, 1) → Y (0, 1),
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Third example: Gaussian–Sobolev embeddings

THEOREM (reduction theorem for Gaussian–Sobolev
embeddings).
The Gaussian–Sobolev embedding

W 1X (Rn, γn) →֒ Y (Rn, γn)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=

∫

1

t

g(s)

s
√

1 + log(1

s
)

ds.
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Third example: Gaussian–Sobolev embeddings

THEOREM (reduction theorem for Gaussian–Sobolev
embeddings).
The Gaussian–Sobolev embedding

W 1X (Rn, γn) →֒ Y (Rn, γn)

holds if and only if

T : X (0, 1) → Y (0, 1),

where

Tg(t) :=

∫

1

t

g(s)

s
√

1 + log(1

s
)

ds.

(Cianchi–Pick, JFA 2009).

Luboš Pick (Charles University, Prague) Optimality and iteration



Further examples

Luboš Pick (Charles University, Prague) Optimality and iteration



Further examples

The method can be further applied for example to

Luboš Pick (Charles University, Prague) Optimality and iteration



Further examples

The method can be further applied for example to

Euclidean–Sobolev embeddings on irregular domains that have
known isoperimetric exponent α ∈ [n−1

n
, 1);
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The method can be further applied for example to
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trace embeddings to subsets of lower dimensions than n − 1;

product probability measure spaces between exponential and
Gaussian with known isoperimetric profile;

Luboš Pick (Charles University, Prague) Optimality and iteration



Further examples

The method can be further applied for example to

Euclidean–Sobolev embeddings on irregular domains that have
known isoperimetric exponent α ∈ [n−1

n
, 1);

trace embeddings to subsets of lower dimensions than n − 1;

product probability measure spaces between exponential and
Gaussian with known isoperimetric profile;

Heisenberg chain;
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Further examples

The method can be further applied for example to

Euclidean–Sobolev embeddings on irregular domains that have
known isoperimetric exponent α ∈ [n−1

n
, 1);

trace embeddings to subsets of lower dimensions than n − 1;

product probability measure spaces between exponential and
Gaussian with known isoperimetric profile;

Heisenberg chain;

and probably lot more.
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:

the “if” part of a higher-order reduction theorem;

a construction of the optimal r.i. range space if the domain
space is prescribed;
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:

the “if” part of a higher-order reduction theorem;

a construction of the optimal r.i. range space if the domain
space is prescribed;

a reiteration (stability) theorem for iterated embeddings.
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:

the “if” part of a higher-order reduction theorem;

a construction of the optimal r.i. range space if the domain
space is prescribed;

a reiteration (stability) theorem for iterated embeddings.

NOTE: The remaining “only if” part must be proved in each case.
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:

the “if” part of a higher-order reduction theorem;

a construction of the optimal r.i. range space if the domain
space is prescribed;

a reiteration (stability) theorem for iterated embeddings.

NOTE: The remaining “only if” part must be proved in each case.
There is no general method for that.
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Description of results for Sobolev embeddings

Suppose we consider a Sobolev-type embedding for which a suitable
first-order reduction theorem is known.

Then our general iteration machinery yields basically three types of
results:

the “if” part of a higher-order reduction theorem;

a construction of the optimal r.i. range space if the domain
space is prescribed;

a reiteration (stability) theorem for iterated embeddings.

NOTE: The remaining “only if” part must be proved in each case.
There is no general method for that. Usually we test the
embedding on certain suitable type of special functions.
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Euclidean–Sobolev embeddings – higher-order reduction

theorem
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Euclidean–Sobolev embeddings – higher-order reduction

theorem

THEOREM (Higher-order reduction theorem.) Let m ∈ N,
α ∈ [n−1

n
, 1). Then

W mX (Ω) →֒ Y (Ω)

holds for every domain Ω ⊂ Rn having the isoperimetric exponent
α if and only if

Hm : X (0, 1) → Y (0, 1),
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Euclidean–Sobolev embeddings – higher-order reduction

theorem

THEOREM (Higher-order reduction theorem.) Let m ∈ N,
α ∈ [n−1

n
, 1). Then

W mX (Ω) →֒ Y (Ω)

holds for every domain Ω ⊂ Rn having the isoperimetric exponent
α if and only if

Hm : X (0, 1) → Y (0, 1),

where

Hmg(t) :=

∫

1

t

s−1+m(1−α) g(s) ds.
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Euclidean–Sobolev embeddings – higher-order optimal range

construction
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Euclidean–Sobolev embeddings – higher-order optimal range

construction

THEOREM. (Higher-order optimal range construction.) Let
m ∈ N, α ∈ [n−1

n
, 1) and let X (0, 1) be an r.i. space.

Luboš Pick (Charles University, Prague) Optimality and iteration



Euclidean–Sobolev embeddings – higher-order optimal range

construction

THEOREM. (Higher-order optimal range construction.) Let
m ∈ N, α ∈ [n−1

n
, 1) and let X (0, 1) be an r.i. space. Then the

space Xm,α(0, 1), whose associate norm is given by

‖g‖(Xm,α(0,1))′ := ‖sm(1−α)g∗∗(s)‖
X

′

(0,1)
,

is the optimal r.i. space such that

W mX (Ω) →֒ Xm,α(Ω)

for every domain Ω ⊂ Rn with isoperimetric exponent α.
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Euclidean–Sobolev embeddings – reiteration theorem
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Euclidean–Sobolev embeddings – reiteration theorem

THEOREM. (reiteration theorem.) Under the assumptions and
the notation of the preceding two theorems, one has

(Xk,α)h,α = Xk+h,α

for every k, h ∈ N.
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Gaussian–Sobolev embeddings – higher-order reduction

theorem
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Gaussian–Sobolev embeddings – higher-order reduction

theorem

THEOREM. (Higher-order reduction theorem for Gaussian
embeddings). Let m ∈ N. Then

W mX (Rn, γn) →֒ Y (Rn, γn)

holds for every n ∈ N with constant independent of n if and only if

Hm : X (0, 1) → Y (0, 1),
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Gaussian–Sobolev embeddings – higher-order reduction

theorem

THEOREM. (Higher-order reduction theorem for Gaussian
embeddings). Let m ∈ N. Then

W mX (Rn, γn) →֒ Y (Rn, γn)

holds for every n ∈ N with constant independent of n if and only if

Hm : X (0, 1) → Y (0, 1),

where

Hmg(t) :=
1

(1 + log 1

t
)

m−1

2

∫

1

t

(log s
t
)m−1

s(1 + log 1

t
)

1

2

g(s) ds.

Luboš Pick (Charles University, Prague) Optimality and iteration



Traces – higher-order reduction theorem
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N,
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition.
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m.
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m. Let Hd be
an affine d -dimensional subspace of Rn such that Ω ∩ Hd 6= 0.
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m. Let Hd be
an affine d -dimensional subspace of Rn such that Ω ∩ Hd 6= 0.
Then

Tr : W mX (Ω) →֒ Y (Ω ∩ Hd )
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m. Let Hd be
an affine d -dimensional subspace of Rn such that Ω ∩ Hd 6= 0.
Then

Tr : W mX (Ω) →֒ Y (Ω ∩ Hd )

holds if and only if
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m. Let Hd be
an affine d -dimensional subspace of Rn such that Ω ∩ Hd 6= 0.
Then

Tr : W mX (Ω) →֒ Y (Ω ∩ Hd )

holds if and only if

Hm : X (0, 1) → Y (0, 1),
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Traces – higher-order reduction theorem

THEOREM. (Higher-order reduction theorem for traces). Let
m ∈ N, Ω ⊂ Rn connected bounded open set, satisfying the inner
cone condition. Let d ∈ N, 1 ≤ d ≤ n and n − d ≤ m. Let Hd be
an affine d -dimensional subspace of Rn such that Ω ∩ Hd 6= 0.
Then

Tr : W mX (Ω) →֒ Y (Ω ∩ Hd )

holds if and only if

Hm : X (0, 1) → Y (0, 1),

where

Hmg(t) :=

∫

1

t
n
d

s−1+m
n g(s) ds.
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