
The initial purpose of my studies was to find condition on a r.i. space A such
that the set of functions

G = {f ∈ L0 : g(t) = t−α[f∗∗(t)− f∗(t)] ∈ A, f∗(∞) = 0},
with arbitrary fixed α ∈ (0, 1), becomes r.i. space too with the norm

‖f‖G ∼ ‖t−α[f∗∗(t)− f∗(t)]‖A.

Such sets G attracted my attention due to their important role in the theory of
Sobolev type embedding. Namely, in the paper by M.Milman and E.Pustylnik
(2004) it was shown that, for any f ∈ Cm(Rn) vanishing at infinity together with
all its derivatives up to the order m− 1, one has that

‖t−m/n[f∗∗(t)− f∗(t)]‖A . ‖ |Dmf | ‖A

for any m = 1, 2, . . . , n− 1, provided that πA ≥ m/n.

Here I denote by πA the lower Boyd index and ρA, in what follows, will mean
the upper index:

πA = lim
s→0

ln dA(s)
ln s

, ρA = lim
s→∞

ln dA(s)
ln s

,

where

dA(s) = sup
f∈A

‖f(t/s)‖A

‖f(t)‖A
.

It was also shown in the same paper that the set G with α = m/n is smaller than
any r.i. space B such that ‖f‖B . ‖ |Dmf | ‖A. This immediately implies that if G
itself is a r.i. space, then it gives an optimal Sobolev type embedding Wm

A ↪→ G
among all r.i. spaces.

The problem of linearity and normability of the set

G = {f : g(t) = t−α[f∗∗(t)− f∗(t)] ∈ A, f∗(∞) = 0}
is rather simple if πA > α, since in this case

‖t−α[f∗∗(t)− f∗(t)]‖A ∼ ‖t−αf∗∗(t)‖A

and the right-hand term here is obviously a norm. Thus we may restrict the problem
to the limiting case πA = α alone. Remark that, in general, the Boyd indices πA

and ρA can be rather different and some conditions on ρA may be needed even for
the fixed πA = α.

Unfortunately, all my attempts of a direct solution of the problem in the remain-
ing limiting case πA = α were unsuccessful. Moreover, the set G turned out to be
nonlinear even for the simplest classical space Lp with p = 1/α. A bit later I proved
that G is nonlinear for any r.i. space A with the fundamental function ϕA(t) ∼ tα,
except for the Lorentz space Lp1, p = 1/α that gives G = L∞, and for a long time I
conjectured that this space is unique. (By the way, another extreme Lorentz space,
Lp∞, gives G = weak-L∞, the famous r.i. hull of BMO, introduced by Bennet, De
Vore and Sharpley.)
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The first indirect method, that I applied to obtaining the desired spaces A, was
the use of some other criteria of optimal Sobolev type embeddings. For example,
it is known that

Wm
A ↪→ B ⇐⇒ Qm/nA ↪→ B,

where
Qαg(t) =

∫ ∞

t

sαg(s)
ds

s
, 0 ≤ α < 1.

The set G satisfies this condition: if g = t−α(f∗∗ − f∗), then

Qαg =
∫ ∞

t

sαs−α(f∗∗ − f∗)
ds

s
=

∫ ∞

t

(−f∗∗)′ds = f∗∗(t) ∈ B

for any r.i. space B with ρB < 1. Thus if we define ‖g‖A = ‖Qαg‖B , we obtain
that G = B.

Unfortunately, the space A, thus obtained, is not r.i. And the replacement of
‖Qαg‖B by a r.i. counterpart ‖Qαg∗‖B gives essentially smaller space, cancelling
the proof of coincidence G = B.

The proof, but not the fact!

The norms ‖Qαg‖B and ‖Qαg∗‖B , that for arbitrary functions satisfy only in-
equality ‖Qαg‖B . ‖Qαg∗‖B , appeared to be equivalent on the set of functions
g = t−α(f∗∗ − f∗), which alone is used in the definition of the set G. This follows
from a rather subtle property of rearrangements, stated in the monograph by Krein,
Semenov and Petunin:

If a function x(t) is non-negative and increasing, γ > −1, γ + δ < −1, then∫ ∞

0

tγ [tδx(t)]∗ dt ≤ C

∫ ∞

0

tγ+δx(t) dt.

This inequality can be easily changed to the form∫ ∞

t

sγ [sδx(s)]∗ ds ≤ C

∫ ∞

t

sγ+δx(s) ds ,

and after taking γ = α− 1, δ = −α− 1,
x = t(f∗∗(t)− f∗(t)), g = t−α(f∗∗(t)− f∗(t)),

we obtain that ∫ ∞

t

sα−1g∗(s) ds .
∫ ∞

t

sα−1g(s) ds.

All this discussion may be considered as an introduction, allowing us to replace
the initial problem by the equivalent one: to describe all r.i. spaces A such that
‖g‖A ∼ ‖Qαg∗‖B for some r.i. space B. Just at this place we will need the K-
monotonicity of couples of Lorentz spaces that are close (and even equal) to the
space L1. In particular, we will use the couple L1, Lp1 with p > 1.

At the beginning I was sure that that this fact is known. Moreover, I met a
paper, where the K-monotonicity of the couple L1, Lp1 was explicitly used with
the reference to the monograph by Bergh and Löfström. But Bergh and Löfström
only mentioned this fact in some remark without proof and with rather vague
explanation. I proceeded to seek the proof in various papers and monographs, but
vainly. Moreover, the biggest experts in this topic M.Cwikel and Yu.Brudnyi said
me that the K-monotonicity of such couples of Lorentz spaces does not follow from
their results and apparently is not proved.

2



The Lorentz space Λα with fundamental function α(t) is defined by the norm

‖f‖Λα
=

∫ ∞

0

|f∗(t)|dα(t).

Passing to equivalent function, we may always suppose that α(t) is differentiable
with positive derivative α′(t). If α(t) = t1/p, we obtain that Λα = Lp1. For α(t) = t
we get the space L1. Obviously ‖f‖Λα = ‖f∗‖L1(α′), where L1(α′) means the space
L1 with the weight α′(t).

In our problem it is enough to consider only Lorentz spaces with positive Boyd
indices, so that α′(t) ∼ α(t)/t. In this case the similarity between Lorentz and L1

spaces extends to their sums:

‖f‖Λα+β
∼ ‖f∗‖L1(α′)+L1(β′) ,

and moreover,
K(t, f, Λα, Λβ) ∼ K(t, f∗, L1(α′), L1(β′)) .

Theorem 1. Let Λα, Λβ be Lorentz spaces with positive Boyd indices. Then inter-
polation in this couple can be described only by the real method.

Proof. Let f, g ∈ Λα + Λβ be such that

K(t, f, Λα, Λβ) ≤ K(t, g, Λα, Λβ),

then
K

(
t, f∗, L1(α′), L1(β′)

)
. K

(
t, g∗, L1(α′), L1(β′)

)
.

But the couple L1(α′), L1(β′) is well known as a Calderón one, hence there exists a
linear operator T bounded on the spaces L1(α′) and L1(β′) and such that T (g∗) =
f∗. Moreover, T : Λα → L1(α′) and T : Λβ → L1(β′), since ‖h‖L1(α′) ≤ ‖h‖Λα

and ‖h‖L1(β′) ≤ ‖h‖Λβ
for any function h.

Consider now the Hardy operator

Qh(t) =
∫ ∞

t

h(s)
ds

s
.

If h(t) ≥ 0 then (Qh)∗ = Qh and thus

‖Qh‖Λα = ‖Qh‖L1(α′), ‖Qh‖Λβ
= ‖Qh‖L1(β′).

Since Q is bounded on L1(α′) and L1(β′), we obtain that

‖QTh‖Λα ≤ ‖Q|Th| ‖Λα = ‖Q|Th| ‖L1(α′) ≤ ‖Th‖L1(α′) . ‖h‖Λα

and similarly ‖QTh‖Λβ
. ‖h‖Λβ

for any h(t). This implies that ‖QTh‖A . ‖h‖A

for any space A which is interpolation in the couple Λα,Λβ . For our initial functions
f, g this means that ‖Q(f∗)‖A . ‖g‖A.

But

Q(f∗)(t) =
∫ ∞

t

f∗(s)
ds

s
≥

∫ 2t

t

f∗(s)
ds

s
≥ f∗(2t) ln 2,

thus
‖f‖A ∼ ‖f∗(2t)‖A . ‖Q(f∗)‖A . ‖g‖A,

and the theorem is proved. ¤
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Theorem 2. Let A be a r.i. space interpolation in the couple L1, Lp1, p = 1/α.
Then the set

G = {f ∈ L0 : g(t) = t−α[f∗∗(t)− f∗(t)] ∈ A, f∗(∞) = 0},

is r.i. space with the norm equivalent to ‖t−α[f∗∗(t)− f∗(t)] ‖A.

Proof. As we already know, it is enough to show that ‖g‖A ∼ ‖Qαg∗‖B for some
r.i. space B. From Theorem 1 we have that the couple L1, Lp1 is a Calderón couple,
hence

A = (L1, Lp1)K
Φ for some parameter space Φ.

Let us define

B = (Lq1, L∞)K
Φ with q = p/(p− 1) and the same Φ.

The norms in spaces A,B can be written more explicitly if we use the known
formulas for K-functional in considered couples:

K(t, f, L1, Lp1) ∼
∫ tp/(p−1)

0

f∗(s) ds + t

∫ ∞

tp/(p−1)
s1/pf∗(s)

ds

s
,

K(t, f, Lq1, L∞) ∼
∫ tq

0

s1/qf∗(s)
ds

s
.

For our p, q, we obtain

K(t,Qα(g∗), Lq1, L∞) ∼
∫ tq

0

s1/q

(∫ ∞

s

τ1/pg∗(τ)
dτ

τ

)
ds

s

=
∫ tq

0

τ1/pg∗(τ)
(∫ τ

0

s1/q ds

s

)
dτ

τ
+

∫ ∞

tq

τ1/pg∗(τ)

(∫ tq

0

s1/q ds

s

)
dτ

τ

∼
∫ tq

0

g∗(τ) dτ + t

∫ ∞

tq

τ1/pg∗(τ)
dτ

τ
∼ K(t, g, L1, Lp,1).

Consequently,

‖g‖A = ‖K(t, g, L1, Lp1)‖Φ ∼ ‖K(t,Qα(g∗), Lq1, L∞)‖Φ = ‖Qα(g∗)‖B ,

which gives the desired representation for the space A. ¤

Theorem 2 gives full description of all spaces A solving our problem. For example,
we may take any space with Boyd indices less than α. But at the very beginning
I explained that the only important case is just when πA = α. Examples of such
spaces A are not simple for constructing. I can propose the space A of functions
f : (0, 1) 7→ R with the norm

‖g‖A =
∥∥∥∥

t−α

ln(e/t)

∫ 1

t

sα−1g∗∗(s)ds

∥∥∥∥
Lp

, p =
1
α

.
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This space is interesting, because defines as B the famous Hansson-Brézis-Wainger
space with the norm

‖f‖B =
∥∥∥∥
(

1
t

ln
e

t

)α

f∗∗(t)
∥∥∥∥

Lp

, p =
1
α

.

Remark. An assertion, converse to Theorem 2, is also true, namely, linearity
and normability of the space

G = {f ∈ L0 : g(t) = t−α[f∗∗(t)− f∗(t)] ∈ A, f∗(∞) = 0}

implies interpolation property of the space A in the couple L1, Lp1. The proof
is rather standard, using maximal Calderón operator for the couples L1, Lp1 and
Lq1, L∞. Unfortunately, we obtain thus an additional condition on A, namely,
ρA < 1.

Having direct and converse assertions together, we get a possibility to construct
the minimal r.i. space, containing the given set G, when it itself is not such. As
an example I recall the space A = Lp∞, which gives a nonlinear set G = weak-
L∞. Using some results on optimal interpolation in ultrasymmetric spaces, we
immediately obtain that the minimal r.i. extension of the set weak-L∞ (and thus
of the space BMO) is the Zygmund space exp L.

The set of functions g(t) = t−α[f∗∗(t)− f∗(t)] forms a rather special part of any
r.i. space, even not a cone. Nevertheless, the totality of their norms defines any r.i.
space up to equivalence of norms. More precisely, if the norms of two r.i. spaces
B1, B2 are equivalent on these functions, then B1 = B2. This follows from a rather
surprising fact that for any non-increasing nonnegative function h(t), there exists
a function g(t) of the above mentioned form, such that

∫ t

0

h(s)ds ∼
∫ t

0

g∗(s)ds

with the equivalent constant independent of h.

Indeed, passing (if needed) to equivalent function, we may consider only the
functions h(t) of the form

h(t) =
∞∑

k=−∞
ckχ(0,λk)(t), ∀ ck ≥ 0,

∞∑

k=0

ck ≤ 1,

where a two-sided monotone sequence {λk} is such that

lim
k→−∞

λk = 0 and lim
k→∞

λk = ∞.

Then the proclaimed g(t) = t−α(f∗∗ − f∗) will be obtained if we take

f(t) =
∞∑

k=−∞
ck(λα

k − tα)χ(0,λk)(t).
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