STRUCTURE OF THE SET OF HYPERCYCLIC FUNCTIONS FOR SOME CLASSICAL HYPERCYCLIC OPERATORS

Juan Benigno Seoane Sepúlveda

Departamento de Análisis Matemático Universidad Complutense de Madrid (Spain)

JULY 2011

イロト イポト イヨト イヨト

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

• Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.

• MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Hypercyclicity Transitivity Algebrability

Hypercyclic Operators

Let X be a separable infinite-dimensional Fréchet space.

Definition

A bounded linear operator $T : X \to X$ is said to be *hypercyclic* if there exists $x \in X$ such that its orbit under T, $Orb(T, x) := \{T^n x : n \in \mathbb{N}\}$, is dense in X.

Examples

- Birkhoff (1929): The translation operator is hypercyclic on $\mathcal{H}(\mathbb{C})$.
- MacLane (1952): The derivative operator is also hypercyclic on $\mathcal{H}(\mathbb{C})$.

The construction and properties of these hypercyclic entire functions has been studied by several authors:

Seidel & Walsh'41, Blair & Rubel'83, Duyos Ruiz'84, Grosse-Erdmann'90, Chan & Shapiro'91, Luh, Martirosian & Muller'98, Bernal & Bonilla'02.

Transitive Operators

Hypercyclicity Transitivity Algebrability

Definition

A bounded linear operator $T : X \to X$ is said to be *transitive* if for every pair of non-void open sets U, V there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$.

- Hypercyclicity \Leftrightarrow Transitivity (Baire Category Theorem).
- In fact, every hypercyclic operator has a G_{δ} dense set of hypercyclic vectors.
- Besides, the translation and the derivative operator share a G_{δ} dense set of such hypercyclic vectors.
- Godefroy & Shapiro'91: The *translation* and the *derivative* operator share a dense hypercyclic manifold.

Transitive Operators

Hypercyclicity Transitivity Algebrability

Definition

A bounded linear operator $T : X \to X$ is said to be *transitive* if for every pair of non-void open sets U, V there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$.

- Hypercyclicity ⇔ Transitivity (Baire Category Theorem).
- In fact, every hypercyclic operator has a G_{δ} dense set of hypercyclic vectors.
- Besides, the translation and the derivative operator share a G_{δ} dense set of such hypercyclic vectors.
- Godefroy & Shapiro'91: The *translation* and the *derivative* operator share a dense hypercyclic manifold.

Hypercyclicity Transitivity Algebrability

Transitive Operators

Definition

A bounded linear operator $T : X \to X$ is said to be *transitive* if for every pair of non-void open sets U, V there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$.

- Hypercyclicity \Leftrightarrow Transitivity (Baire Category Theorem).
- In fact, every hypercyclic operator has a G_{δ} dense set of hypercyclic vectors.
- Besides, the translation and the derivative operator share a G_{δ} dense set of such hypercyclic vectors.
- Godefroy & Shapiro'91: The *translation* and the *derivative* operator share a dense hypercyclic manifold.

Transitive Operators

Definition

A bounded linear operator $T : X \to X$ is said to be *transitive* if for every pair of non-void open sets U, V there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$.

Hypercyclicity Transitivity Algebrability

- Hypercyclicity \Leftrightarrow Transitivity (Baire Category Theorem).
- In fact, every hypercyclic operator has a G_{δ} dense set of hypercyclic vectors.
- Besides, the translation and the derivative operator share a G_{δ} dense set of such hypercyclic vectors.
- Godefroy & Shapiro'91: The *translation* and the *derivative* operator share a dense hypercyclic manifold.

Hypercyclicity **Transitivity** Algebrability

Transitive Operators

Definition

A bounded linear operator $T: X \to X$ is said to be *transitive* if for every pair of non-void open sets U, V there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$.

- Hypercyclicity ⇔ Transitivity (Baire Category Theorem).
- In fact, every hypercyclic operator has a G_{δ} dense set of hypercyclic vectors.
- Besides, the translation and the derivative operator share a G_{δ} dense set of such hypercyclic vectors.
- Godefroy & Shapiro'91: The *translation* and the *derivative* operator share a dense hypercyclic manifold.

Hypercyclicity Transitivity Algebrability

Algebrability

Definition (Aron, Gurariy, S.)

A set *A* is *algebrable* if there is an algebra $\mathcal{B} \subset A \cup \{0\}$ so that \mathcal{B} has an infinite minimal system of generators. We say that $S = \{z_{\alpha}\}_{\alpha}$ is a minimal system of generators of an algebra $\mathcal{A}(S)$ for every $\alpha_{0}, z_{\alpha_{0}} \notin \mathcal{A}(S \setminus \{z_{\alpha_{0}}\})$.

Aim

Study the behaviour of the powers of the hypercyclic functions of each one of these classical operators: Birkhoff's and MacLane's.

Hypercyclicity Transitivity Algebrability

Algebrability

Definition (Aron, Gurariy, S.)

A set A is *algebrable* if there is an algebra $\mathcal{B} \subset A \cup \{0\}$ so that \mathcal{B} has an infinite minimal system of generators.

We say that $S = \{z_{\alpha}\}_{\alpha}$ is a minimal system of generators of an algebra $\mathcal{A}(S)$ if for every α_0 , $z_{\alpha_0} \notin \mathcal{A}(S \setminus \{z_{\alpha_0}\})$.

Aim

Study the behaviour of the powers of the hypercyclic functions of each one of these classical operators: Birkhoff's and MacLane's.

Hypercyclicity Transitivity Algebrability

Algebrability

Definition (Aron, Gurariy, S.)

A set A is *algebrable* if there is an algebra $\mathcal{B} \subset A \cup \{0\}$ so that \mathcal{B} has an infinite minimal system of generators.

We say that $S = \{z_{\alpha}\}_{\alpha}$ is a minimal system of generators of an algebra $\mathcal{A}(S)$ if for every α_0 , $z_{\alpha_0} \notin \mathcal{A}(S \setminus \{z_{\alpha_0}\})$.

Aim

Study the behaviour of the powers of the hypercyclic functions of each one of these classical operators: Birkhoff's and MacLane's.

Hypercyclicity Transitivity Algebrability

Algebrability

Definition (Aron, Gurariy, S.)

A set A is *algebrable* if there is an algebra $\mathcal{B} \subset A \cup \{0\}$ so that \mathcal{B} has an infinite minimal system of generators.

We say that $S = \{z_{\alpha}\}_{\alpha}$ is a minimal system of generators of an algebra $\mathcal{A}(S)$ if for every α_0 , $z_{\alpha_0} \notin \mathcal{A}(S \setminus \{z_{\alpha_0}\})$.

Aim

Study the behaviour of the powers of the hypercyclic functions of each one of these classical operators: Birkhoff's and MacLane's.

Birkhoff Operator MacLane Operator

Birkhoff Operator

Theorem (Birkhoff, 1929)

The translation operator

is hypercyclic.

Theorem (Aron, Conejero, Peris and S., 2007)

Let $1 , <math>f \in HC(\tau_1)$, and $g \in \mathcal{H}(\mathbb{C})$. If the order of each zero of g is a multiple of p, then $g \in \overline{\mathrm{Orb}(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Birkhoff Operator

Theorem (Birkhoff, 1929)

The translation operator

is hypercyclic.

Theorem (Aron, Conejero, Peris and S., 2007)

Let $1 , <math>f \in HC(\tau_1)$, and $g \in \mathcal{H}(\mathbb{C})$. If the order of each zero of g is a multiple of p, then $g \in \overline{Orb(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm_i for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\tilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} \left(z/a_i \right)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_{\mathcal{K}} \longrightarrow 0$, and $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\tilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} \left(z/a_i \right)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_{\mathcal{K}} \longrightarrow 0$, and $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm_i for some $m \in \mathbb{N}_0$.

By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\tilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} \left(z/a_i \right)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_{\mathcal{K}} \longrightarrow 0$, and $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i}(z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\widetilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_K \longrightarrow 0$, and $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i}(z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$ilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^\infty E_{p_i} \left(z/a_i
ight)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_K \longrightarrow 0$, and $g \in Orb(\tau_1, f^p)$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\widetilde{g}(z) = z^m e^{\varphi(z)/\rho} \prod_{i=1}^\infty E_{
ho_i} \left(z/a_i
ight)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0$$
 as $j
ightarrow\infty$

It follows that $\|f^p(z+n_j)-g(z)\|_K \longrightarrow 0$, and $g \in Orb(\tau_1, f^p)$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\widetilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} \left(z/a_i \right)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0 \quad \text{as} \quad j
ightarrow \infty$$

It follows that $\|f^p(z+n_j)-g(z)\|_{\mathcal{K}}\longrightarrow 0$, and $g\in\overline{\mathrm{Orb}(au_1,f^p)}$.

Birkhoff Operator MacLane Operator

Proof. Let $(a_i)_i$ be the non-null zeros of g with multiplicity pm_i with $m_i \in \mathbb{N}_0$, and let 0 be a zero of g with multiplicity pm, for some $m \in \mathbb{N}_0$. By Weierstrass' Theorem, there is $(p_i)_i \subset \mathbb{N}_0$, and $\varphi \in \mathcal{H}(\mathbb{C})$, such that

$$g(z) = z^{pm} e^{\varphi(z)} \prod_{i=1}^{\infty} E_{p_i} (z/a_i)^{pm_i},$$

with $E_0(z) := 1 - z$, $E_p(z) := (1 - z) \exp(z + z^2/2 + \ldots + z^p/p)$, for $p \ge 1$. Define

$$\widetilde{g}(z) = z^m e^{\varphi(z)/p} \prod_{i=1}^{\infty} E_{p_i} \left(z/a_i \right)^{m_i}.$$

Next, since $f \in HC(\tau_1)$, for any compact $K \subset \mathbb{C}$, there is $(n_j)_j \in \mathbb{N}$ with

$$\|f(z+n_j)- ilde{g}(z)\|_{\mathcal{K}}\longrightarrow 0 \quad \text{as} \quad j \rightarrow \infty$$

It follows that $\|f^p(z+n_j)-g(z)\|_{\mathcal{K}}\longrightarrow 0$, and $g\in\overline{\mathrm{Orb}(au_1,f^p)}.$

イロト 不得 トイヨト イヨト

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\mathrm{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_j)_j \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \to g(z)$ when $j \to \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{P}(z+n_{j})) = \#Z(g(z)).$

イロト イ押ト イヨト イヨト

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_i)_i \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \to g(z)$ when $j \to \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{P}(z+n_{j})) = \#Z(g(z)).$

イロト 不得下 イヨト イヨト

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_i)_i \subset \mathbb{N}$ verifies

 $f^{p}(z+n_{j}) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on *D*.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{p}(z+n_{j})) = \#Z(g(z)).$

イロト 不得 トイヨト イヨト

-

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_i)_i \subset \mathbb{N}$ verifies

 $f^{p}(z + n_{j}) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on *D*.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{P}(z+n_{j})) = \#Z(g(z)).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_j)_j \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{p}(z+n_{j})) = \#Z(g(z)).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_j)_j \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

 $\dot{p} = \#Z(f^{p}(z+n_{j})) = \#Z(g(z)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_j)_j \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

$$\dot{p} = \#Z(f^{p}(z+n_{j})) = \#Z(g(z)).$$

イロト 不得下 不良下 不良下

-

Let $1 , <math>f, g \in \mathcal{H}(\mathbb{C})$. If $g \in \overline{\operatorname{Orb}(\tau_1, f^p)}$, then the order of each zero of g is a multiple of p.

Proof. Suppose z_0 is a zero of order q of g with $q/p \notin \mathbb{N}$. In fact z_0 is the unique zero in some bounded region D. Suppose that $(n_j)_j \subset \mathbb{N}$ verifies

 $f^p(z+n_j) \rightarrow g(z)$ when $j \rightarrow \infty$, uniformly on D.

By Hurwitz's theorem, there is $n_j \in \mathbb{N}$ such that

$$\dot{p} = \#Z(f^{p}(z+n_{j})) = \#Z(g(z)).$$

イロト 不得下 不良下 不良下

-

Corollary

Let $1 < p, q \in \mathbb{N}$, and $f \in HC(\tau_1)$. Then

$$z^q \in \overline{\mathrm{Orb}(au_1, f^p)} \Longleftrightarrow q/p \in \mathbb{N}.$$

Corollary

Let

$$B_k := \{ f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(\tau_1) \}.$$

We have that $B_k = \emptyset$ for every k > 1. Thus, $HC(\tau_1)$ is not algebrable.

Of course, all the previous results also hold for any translation operator on $\mathcal{H}(\mathbb{C}).$

イロト イポト イヨト イヨト

Let $1 < p, q \in \mathbb{N}$, and $f \in HC(\tau_1)$. Then

$$z^q \in \overline{\mathrm{Orb}(au_1, f^p)} \Longleftrightarrow q/p \in \mathbb{N}.$$

Corollary

Let

$$B_k := \{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(\tau_1)\}.$$

We have that $B_k = \emptyset$ for every k > 1.

Thus, $HC(\tau_1)$ is not algebrable.

Of course, all the previous results also hold for any translation operator on $\mathcal{H}(\mathbb{C}).$

イロト イポト イヨト イヨト

Let $1 < p, q \in \mathbb{N}$, and $f \in HC(\tau_1)$. Then

$$z^q \in \overline{\mathrm{Orb}(au_1, f^p)} \Longleftrightarrow q/p \in \mathbb{N}.$$

Corollary

Let

$$B_k := \{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(\tau_1)\}.$$

We have that $B_k = \emptyset$ for every k > 1. Thus, $HC(\tau_1)$ is not algebrable.

Of course, all the previous results also hold for any translation operator on $\mathcal{H}(\mathbb{C}).$

イロト イポト イヨト イヨト

Let $1 < p, q \in \mathbb{N}$, and $f \in HC(\tau_1)$. Then

$$z^q \in \overline{\mathrm{Orb}(au_1, f^p)} \Longleftrightarrow q/p \in \mathbb{N}.$$

Corollary

Let

$$B_k := \{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(\tau_1)\}.$$

We have that $B_k = \emptyset$ for every k > 1. Thus, $HC(\tau_1)$ is not algebrable.

Of course, all the previous results also hold for any translation operator on $\mathcal{H}(\mathbb{C}).$

イロト イポト イヨト イヨト

Birkhoff Operator MacLane Operator

MacLane Operator

Theorem (MacLane, 1952)

The derivative operator

$$egin{array}{rcl} D&:&\mathcal{H}(\mathbb{C})&\longrightarrow&\mathcal{H}(\mathbb{C})\ &&f(z)&\mapsto&f'(z) \end{array}$$

is hypercyclic.

Theorem (Aron, Conejero, Peris and S., 2007)

For every $k\in\mathbb{N},\ M_k:=\{f\in\mathcal{H}(\mathbb{C})\,:\,f^k\in\mathcal{HC}(D)\}$ is a G_δ dense set.

イロト イポト イヨト イヨト

Birkhoff Operator MacLane Operator

MacLane Operator

Theorem (MacLane, 1952)

The derivative operator

$$egin{array}{rcl} D&:&\mathcal{H}(\mathbb{C})&\longrightarrow&\mathcal{H}(\mathbb{C})\ &&f(z)&\mapsto&f'(z) \end{array}$$

is hypercyclic.

Theorem (Aron, Conejero, Peris and S., 2007)

For every $k \in \mathbb{N}$, $M_k := \{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(D)\}$ is a G_δ dense set.

There exists $f \in \mathcal{H}(\mathbb{C})$ such that $f^k \in HC(D)$ for every $k \in \mathbb{N}$.

Moreover, the following set is residual

 $\{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(D) \text{ for every } k \in \mathbb{N}\}.$

Corollary

Notice that $B_1 \cap \left(\bigcap_{i=1}^{\infty} M_k \right)$ is a G_{δ} dense set as well.

イロト イポト イヨト イヨト

There exists $f \in \mathcal{H}(\mathbb{C})$ such that $f^k \in HC(D)$ for every $k \in \mathbb{N}$. Moreover, the following set is residual

 $\{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(D) \text{ for every } k \in \mathbb{N}\}.$

Corollary

Notice that $B_1 \cap \left(\bigcap_{i=1}^{\infty} M_k \right)$ is a G_{δ} dense set as well.

イロト イポト イヨト イヨト

There exists $f \in \mathcal{H}(\mathbb{C})$ such that $f^k \in HC(D)$ for every $k \in \mathbb{N}$. Moreover, the following set is residual

 $\{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(D) \text{ for every } k \in \mathbb{N}\}.$

Corollary

Notice that $B_1 \cap \left(\bigcap_{i=1}^{\infty} M_k \right)$ is a G_{δ} dense set as well.

There exists $f \in \mathcal{H}(\mathbb{C})$ such that $f^k \in HC(D)$ for every $k \in \mathbb{N}$. Moreover, the following set is residual

 $\{f \in \mathcal{H}(\mathbb{C}) : f^k \in HC(D) \text{ for every } k \in \mathbb{N}\}.$

Corollary

Notice that $B_1 \cap \left(\bigcap_{i=1}^{\infty} M_k \right)$ is a G_{δ} dense set as well.

Question

Is HC(D) algebrable? spaceable?

Theorem (Shkarin, 2010)

HC(D) is spaceable.

Theorem (Aron, Conejero, Peris, Seoane, 2007)

HC(D) is algebrable.

イロト 不同下 不同下 不同下

Question

Is HC(D) algebrable? spaceable?

Theorem (Shkarin, 2010)

HC(D) is spaceable.

Theorem (Aron, Conejero, Peris, Seoane, 2007)

HC(D) is algebrable.

・ロト ・ 同ト ・ ヨト ・ ヨト

Question

Is HC(D) algebrable? spaceable?

Theorem (Shkarin, 2010)

HC(D) is spaceable.

Theorem (Aron, Conejero, Peris, Seoane, 2007)

HC(D) is algebrable.

イロト イポト イヨト イヨト

Algebrability and related topics

Theorem (Aron, Conejero, Peris and S., 2007)

The set of everywhere surjective functions on $\mathbb C$ contains an uncountably generated algebra $\mathcal A.$

Theorem (Aron, Pérez–García and S., 2006)

Given a set $E \subset \mathbb{T}$ of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point $t \in E$ is *dense–algebrable*, i.e. there exists an infinite dimensional, infinitely generated dense subalgebra of $\mathcal{C}(\mathbb{T})$ every non-zero element of which has a Fourier series expansion divergent in E.

< 🗇 🕨

Algebrability and related topics

Theorem (Aron, Conejero, Peris and S., 2007)

The set of everywhere surjective functions on $\mathbb C$ contains an uncountably generated algebra $\mathcal A.$

Theorem (Aron, Pérez–García and S., 2006)

Given a set $E \subset \mathbb{T}$ of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point $t \in E$ is *dense–algebrable*, i.e. there exists an infinite dimensional, infinitely generated dense subalgebra of $\mathcal{C}(\mathbb{T})$ every non-zero element of which has a Fourier series expansion divergent in E.

Algebrability and related topics

Theorem (Aron, Conejero, Peris and S., 2007)

The set of everywhere surjective functions on $\mathbb C$ contains an uncountably generated algebra $\mathcal A.$

Theorem (Aron, Pérez–García and S., 2006)

Given a set $E \subset \mathbb{T}$ of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point $t \in E$ is *dense-algebrable*, i.e. there exists an infinite dimensional, infinitely generated dense subalgebra of $\mathcal{C}(\mathbb{T})$ every non-zero element of which has a Fourier series expansion divergent in E.

・ロト ・周ト ・ヨト ・ヨト

Bounded linear (non)-absolutely summing operators

A Banach space *E* is said to have the "*two series property*" provided there exist unconditionally convergent series $\sum_{i=1}^{\infty} f_i$ in E^* and $\sum_{i=1}^{\infty} x_i$ in *E* such that

$$\sum_{i=1}^{\infty} \left[\sum_{j=1}^{\infty} \frac{|f_j(x_i)|^2}{\|f_j\|} \right]^{\frac{1}{2}} = +\infty.$$

Theorem (Puglisi and Seoane, 2008

Let E be a Banach space with the two series property. Then

 $\mathcal{L}(E,\ell_2)\setminus \Pi_1(E,\ell_2)$

is lineable.

Bounded linear (non)-absolutely summing operators

A Banach space *E* is said to have the "*two series property*" provided there exist unconditionally convergent series $\sum_{i=1}^{\infty} f_i$ in E^* and $\sum_{i=1}^{\infty} x_i$ in *E* such that

$$\sum_{i=1}^{\infty} \left[\sum_{j=1}^{\infty} \frac{|f_j(x_i)|^2}{\|f_j\|} \right]^{\frac{1}{2}} = +\infty.$$

Theorem (Puglisi and Seoane, 2008)

Let E be a Banach space with the two series property. Then

 $\mathcal{L}(E,\ell_2)\setminus \Pi_1(E,\ell_2)$

is lineable.

Bounded linear (non)-absolutely summing operators

A Banach space *E* is said to have the "*two series property*" provided there exist unconditionally convergent series $\sum_{i=1}^{\infty} f_i$ in E^* and $\sum_{i=1}^{\infty} x_i$ in *E* such that

$$\sum_{i=1}^{\infty} \left[\sum_{j=1}^{\infty} \frac{|f_j(x_i)|^2}{\|f_j\|} \right]^{\frac{1}{2}} = +\infty.$$

Theorem (Puglisi and Seoane, 2008)

Let E be a Banach space with the two series property. Then

 $\mathcal{L}(E,\ell_2)\setminus \Pi_1(E,\ell_2)$

is lineable.

Question

If E is a superreflexive Banach space and $p \ge 1$, is it true that the set

 $\mathcal{L}(E;F)\setminus \Pi_{p}(E;F)$

is lineable for every Banach space F?

- In 2009, Botelho, Diniz, and Pellegrino gave a positive answer to the above question for large families of Banach spaces (they considered *E* to be a superreflexive Banach space containing a complemented infinite dimensional subspace with unconditional basis, and *F* a Banach space having an infinite unconditional basic sequence.)
- In 2010, Kitson and Timoney also studied lineability and (even!) spaceability of these types of subsets of operators.

イロト イポト イラト イラト

If *E* is a superreflexive Banach space and $p \ge 1$, is it true that the s $\mathcal{L}(E;F) \setminus \prod_{p}(E;F)$

is lineable for every Banach space F?

- In 2009, Botelho, Diniz, and Pellegrino gave a positive answer to the above question for large families of Banach spaces (they considered *E* to be a superreflexive Banach space containing a complemented infinite dimensional subspace with unconditional basis, and *F* a Banach space having an infinite unconditional basic sequence.)
- In 2010, Kitson and Timoney also studied lineability and (even!) spaceability of these types of subsets of operators.

イロト イポト イラト イラト

Question

If *E* is a superreflexive Banach space and $p \ge 1$, is it true that the set

 $\mathcal{L}(E;F) \setminus \Pi_p(E;F)$

is lineable for every Banach space F?

- In 2009, Botelho, Diniz, and Pellegrino gave a positive answer to the above question for large families of Banach spaces (they considered *E* to be a superreflexive Banach space containing a complemented infinite dimensional subspace with unconditional basis, and *F* a Banach space having an infinite unconditional basic sequence.)
- In 2010, Kitson and Timoney also studied lineability and (even!) spaceability of these types of subsets of operators.

イロト イポト イラト イラト

Question

If E is a superreflexive Banach space and $p \ge 1$, is it true that the set

 $\mathcal{L}(E;F) \setminus \prod_{p}(E;F)$

is lineable for every Banach space F?

- In 2009, Botelho, Diniz, and Pellegrino gave a positive answer to the above question for large families of Banach spaces (they considered *E* to be a superreflexive Banach space containing a complemented infinite dimensional subspace with unconditional basis, and *F* a Banach space having an infinite unconditional basic sequence.)
- In 2010, Kitson and Timoney also studied lineability and (even!) spaceability of these types of subsets of operators.

Question

If E is a superreflexive Banach space and $p \ge 1$, is it true that the set

 $\mathcal{L}(E;F) \setminus \prod_{p}(E;F)$

is lineable for every Banach space F?

- In 2009, Botelho, Diniz, and Pellegrino gave a positive answer to the above question for large families of Banach spaces (they considered *E* to be a superreflexive Banach space containing a complemented infinite dimensional subspace with unconditional basis, and *F* a Banach space having an infinite unconditional basic sequence.)
- In 2010, Kitson and Timoney also studied lineability and (even!) spaceability of these types of subsets of operators.

THANK YOU

FOR YOUR ATTENTION !!!

Juan Benigno Seoane Sepúlveda Lineabilty, Operator theory, and Hypercyclicity

イロト イポト イヨト イヨト