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There are many misconceptions about fuzzy logic. To begin with, fuzzy logic is not 

fuzzy. In large measure, fuzzy logic is precise. Basically, fuzzy logic is concerned with 
precisiation of imprecision. In fact, one of the most important features of fuzzy logic is its high 
power of precisiation. It should be noted that the concept of precisiation has a position of 
centrality in the new look but plays no role in the traditional views of fuzzy logic. In the 
following, fuzzy logic is looked at in a new perspective. The new look serves to clarify what 
fuzzy logic is and what it has to offer.  

The cornerstones of fuzzy logic are graduation, granulation, precisiation and the concept 
of a generalized constraint. The point of departure in fuzzy logic is the concept of a fuzzy set. 
Informally, a fuzzy set, A, in a universe of discourse, U, is a class with a fuzzy boundary. A set is 
a class with a crisp boundary. A set is precisiated through association with a characteristic 
function, cA: U     {0,1}. A fuzzy set is precisiated through graduation, that is, through 
association with a membership function µA: U        [0,1] or, more generally, a lattice, with µA(u), 
uεU, representing the grade of membership of u in A. Membership in A is a matter of degree. In 
fuzzy logic everything is or is allowed to be a matter of degree. A concept is fuzzy if its 
denotation is a fuzzy set. In large measure, concepts—both natural and synthetic—are fuzzy 
rather than crisp. In fuzzy logic, fuzzy concepts are precisiated through granulation.  

With the concept of a fuzzy set as the point of departure, one can move in various 
directions, leading to various facets of fuzzy logic. A direction which terminates on a theory, T, 
is an instance of what is referred to as FL-generalization. FL-generalization of T introduces into 
T the concept of a fuzzy set. The concept of a fuzzy set serves as a point of entry into T of other 
concepts and techniques drawn from fuzzy logic. A facet of A is a FL-generalization of a theory, 
T, or FL-generalization of a collection of related theories. The result of FL-generalization of T is 
expressed as fuzzy T. Examples: fuzzy topology, fuzzy algebra, fuzzy control, etc.  

It should be noted that usually a prefix, M, which modifies a suffix, X, has the effect of 
specializing X, as in convex set. Unusually, M generalizes X. As a modifier, fuzzy falls into this 
category. Many misconceptions about fuzzy logic stem from misinterpretation of fuzzy as a 
specializer rather than a generalizer.  

The principal facets of fuzzy logic are: the logical facet, FLl; the fuzzy-set-theoretic 
facet, FLs, the epistemic facet, FLe; and the relational facet, FLr. The logical facet of FL, FLl, is 
fuzzy logic in its narrow sense. FLl may be viewed as a generalization of multivalued logic. The 
agenda of FLl is similar in spirit to the agenda of classical logic. The fuzzy-set-theoretic facet, 
FLs, is focused on FL-generalization of set theory. Historically, the theory of fuzzy sets (Zadeh 
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1965) preceded fuzzy logic (Zadeh 1975c). The theory of fuzzy sets may be viewed as an entry 
to generalizations of various branches of mathematics, among them fuzzy topology, fuzzy 
measure theory, fuzzy graph theory and fuzzy algebra. The epistemic facet of FL, FLe, is 
concerned in the main with knowledge representation, semantics of natural languages, possibility 
theory, fuzzy probability theory, granular computing, computing with words and the 
computational theory of perceptions. The relational facet, FLr, is focused on fuzzy relations and, 
more generally, on fuzzy dependencies. The concept of a linguistic variable—and the associated 
calculi of fuzzy if-then rules—play pivotal roles in almost all applications of fuzzy logic. 

As was noted earlier, the cornerstones of fuzzy logic are graduation, granulation, 
precisiation and the concept of a generalized constraint. Graduation serves to precisiate the 
meaning of fuzzy concepts. The concept of granulation is unique to fuzzy logic. The concept of 
granulation is inspired by the way in which humans deal with complexity and imprecision. 
Basically, granulation of an object, A, partitions A into a collection of granules. Informally, a 
granule is a clump of elements drawn together by indistinguishability, proximity, similarity or 
functionality. Granulation may be viewed as a generalization of quantization and an instance of 
the principal of divide and conquer.  

A singular variable is a variable which takes singletons as values, while a granular 
variable is a variable which takes granules as values. A linguistic variable is a granular variable 
with linguistic labels of granular values. The results of precisiation and granulation of p are 
denoted as p* and *p, respectively. Granulation may be applied to objects of arbitrary 
complexity. In particular, granulation may be applied to variables, functions, relations, 
dynamical systems, etc. Granulation transforms a singular value of a variable, X, into a granular 
value, *X, with the granular value, *X, representing the state of information about the singular 
value, X. Summarization and aggregation of information may be viewed as forms of granulation.  

The concept of precisiation has a position of centrality in fuzzy logic. In fuzzy logic, a 
basic differentiation is made between precision of value (v-precision) and precision of meaning 
(m-precision). A further differentiation is made between two modalities of m-precisiation: 
human-oriented m-precisiation (mh-precisiation) and machine-oriented mm-precisiation (mm-
precisiation), with the understanding that mm-precisiation is mathematically well-defined. In this 
perspective, a dictionary definition involves mh-precisiation.  

The object of precisiation, p, and the result of precisiation, p*, are referred to as 
precisiend and precisiand, respectively. Modelization may be viewed as a form of precisiation, 
with m-precisiend playing the role of the object of modelization and m-precisiand being the 
result of modelization. In the context of modelization, mh-precisiand and mm-precisiand are 
referred to as the h-model and m-model, respectively.  

In general, a precisiend, p, has a multiplicity of precisiands, p*. An important attribute of 
p* is the proximity of the meaning of p* to the meaning of p. A qualitative measure of this 
proximity is referred to as cointension. The choice of the term cointension to describe proximity 
of meanings is related to the fact that in logic the term intension is employed to label attribute-
based meaning. An m-precisiation of p as p* is cointensive if the cointension of p* in relation 
to p is high.  

In defining a concept, cointensive mm-precisiation is an important desideratum. The 
same applies to m-modelization. Viewed as an mm-precisiation language, one of the most 
important contributions of fuzzy logic is its high power of cointensive mm-precisiation.  

A m-model of p, p*, is associated with two important metrics: cointension and 
computational complexity. In general, cointension and computational complexity are covariant in 
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the sense that an increase in cointension is associated with an increase in computational 
complexity. A good model is one which achieves a desired compromise between high 
cointension and low computational complexity.  

Precision carries a cost. In many real-world settings there is a tolerance for imprecision—
a tolerance which may be exploited to achieve lower cost. An effective tool which is provided by 
fuzzy logic for this purpose is referred to as the fuzzy logic gambit, or FLG, for short. FLG 
involves a deliberate imprecisiation of a system, S, through granulation, followed by mm-
precisiation of granular variables which are associated with *S. A system, S, is granulated 
through representation of its input-output relations as fuzzy if-then rules—rules which involve 
linguistic variables. In one form or another, FLG is employed extensively in the realm of 
consumer products—a realm in which cost is an important consideration.  

A basic question which arises is: Given p, how can p be mm-precisiated? A key idea in 
fuzzy logic is that of employing for this purpose the concept of a generalized constraint (Zadeh 
l996, l999).  

The concept of a constraint is high on the list of basic concepts in science.  There is an 
extensive literature. A basic assumption which is commonly made in the literature is that 
constraints are hard (inelastic) and are precisely defined. This assumption is not a good fit to 
reality.  In most realistic settings, constraints have some elasticity and are not precisely defined. 
This applies, in particular, to the meaning of words, predicates and propositions drawn from 
natural language. In large measure, the concept of a generalized constraint is intended to provide 
a basis for construction of a maximally expressive meaning precisiation language for natural 
languages. A generalized constraint is an expression of the form X isr R, where X is the 
constrained variable, R is the constraining relation and r is an indexical variable which defines 
the modality of the constraint, that is, its semantics.  The principal modalities are: possibilistic (r 
= blank), probabilistic (r = p), veristic (r = v), usuality (r = u) and group (r = g). The primary 
constraints are possibilistic, probabilistic and veristic. The standard constraints are bivalent 
possibilistic, probabilistic and bivalent veristic. In large measure, scientific theories are based on 
standard constraints. 

Generalized constraints may be combined, projected, qualified, propagated and 
counterpropagated.  The set of all generalized constraints, together with the rules which govern 
generation of generalized constraints from other generalized constraints, constitute the 
Generalized Constraint Language (GCL).  Actually, GCL is more than a language—it is a 
language system.  A language has descriptive capability.  A language system has descriptive 
capability as well as deductive capability.  

The concept of a generalized constraint plays a key role in fuzzy logic. In particular, it 
serves two major functions. First, as a means of representing the meaning of words, predicates 
and propositions as generalized constraints; and second, through representation of words, 
predicates and propositions as generalized constraints it serves as a means of dealing with words, 
predicates and propositions as objects of computation. A linkage between the concept of a 
generalized constraint and mm-precisiation derives from the fundamental thesis of fuzzy logic: 
information = generalized constraint. A consequence of the fundamental thesis is the meaning 
postulate: mm-precisiated meaning = generalized constraint. What this implies is that the 
Generalized Constraint Language, GCL, may be viewed as a meaning precisiation language. 
More importantly, GCL provides a basis for computation with information described in natural 
language. This is the province of computing with words, CW. The point of departure in CW is an 
information set, I, and a question, q. The information set consists of a system of propositions 
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drawn from a natural language, I = (p1, …, pn, pwk), where p1, …, pn are given and pwk is drawn 
from world knowledge. The problem is to derive an answer to q, ans(I/q), given I. Computation 
of q involves two phases. In Phase 1, the pi are precisiated as generalized constraints. In Phase 2, 
the generalized constraints serve as objects of computation and deduction. The rules governing 
computation/deduction are, in the main, the rules which govern propagation and 
counterpropagation of generalized constraints. The principal computation/deduction rule is the 
extension principle (Zadeh 1965, 1975). There are many versions of the extension principle. In 
the basic version of the extension principle, the premise is a possibilistic constraint, f(X) is A, 
where f is a given function from U to V and A is a fuzzy set in V. The problem is to find the 
induced possibilistic constraint on g(X), g(X) is B, where g is a given function from U to W and 
B, a fuzzy set in W, is the result of computation. Computation of B is reduced to the solution of a 
variational problem. The methodology of computing with words and the related methodology of 
granular computing are among the major contributions of fuzzy logic. 

In summary, underlying the new look is a simple idea—using the concept of a fuzzy set 
as the nucleus of fuzzy logic. This idea is the point of departure for FL-generalization. FL-
generation of a theory, T, involves introduction of the concept of a fuzzy set into T, followed by 
entry into T of other concepts and techniques drawn from fuzzy logic. In coming years, FL-
generalization is likely to be applied to a growing number of scientific theories, including 
various branches of mathematics.  

A major contribution of fuzzy logic is its high power of cointensive precisiation. The 
high power of cointensive precisiation enhances the capability of fuzzy logic to serve as a basis 
for the analysis and design of systems in which imprecision, uncertainty, human judgment and 
perceptions play important roles. This applies in particular to systems which do not lend 
themselves to realistic analysis through the use of methods based on bivalent logic. Such systems 
are common in the realms of economics, medicine, law, linguistics and decision analysis.  

The fuzzy-logic-based methodologies of computing with words and granular computing 
open the door to computation with information described in natural language. Much of human 
knowledge is described in natural language. In coming years, computing with words and 
granular computing are likely to lead to a wide-ranging enlargement of the role of natural 
languages in scientific theories.   

 
   
 
 


