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INTRODUCTION 

 

We are interested in solving a CRM problem for an insurance company. The tasks to be 

achieved are: 

 Finding the ideal target, in this case, people who are more likely to contract their 

insurance products. 

 Identifying the premium we should offer to each client, that is to say, the optimal 

price that should be offered to each client. 

 Calculating the difference between offering the premium randomly and optimally, 

using the information obtained in the model. 

 

Two databases with clients’ information are available: 

 In the first one we have the information of 20.000 clients which have already been 

contacted; 9% of them have contracted the product. 

 Important data are included such as the premium offered, the number of products 

that they have already bought, the number of years that they have been clients of the 

company and the socioeconomic status (an economic and sociological measure 

combined with the person’s work experience and his or his family’s economic and 

social position in relation to others, based on income, education, and work 

occupation). 

 In the second database of non‐previously contacted clients, we have the same 

information about 10.000 clients but only 5.000 are going to be contacted due to 

practical restrictions. 

 

Is it worthwhile offering the same premium to all clients? Is it better to focus on people with 

certain characteristics rather than choosing clients randomly? 

 

The objective is, using the first database, find an optimal strategy to be able to contact to 

those clients who are more likely to buy the product we are offering. This strategy should be 

applied to the second database to get the ideal target. 
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INTRODUCTION 

 

The premium is an important variable when deciding whether to contract insurance or 

not. A high one is going to be rejected more frequently by potential clients, and a very low 

one is not going to maximize the earnings of the company. 

 

Therefore, once the ideal target is defined, an optimization problem should be 

formulated to find the optimal premium which maximizes the number of sales, 

and thus maximizes the amount of money that the company is going to earn. 

 

When the optimal premium is calculated, a comparison between the optimal earning and the 

one that we would get choosing the clients randomly can be calculated to prove the 

usefulness of the analysis. 

 

SAS, SPSS, Matlab and Excel have been used as software tools: Matlab has been used for 

the optimization model and also for ROC curves. 

 

 

OVERVIEW 

 

This section provides a brief introduction regarding the roadmap followed and provides a 

breakdown of the activities considered in the problem resolution.  

 

The study covered is split in three main blocks: data analysis, modelling and 

optimization. The areas/steps covered in each block are summarized in the following 

figure: 
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OVERVIEW 

 

Due to the amount of input variables and potential relationships between explanatory 

variables, several models could be considered. However, the analysis is driven putting the 

focus in the following initial hypothesis: 

 

 

Conceptual Framework: 

Two different models have been considered to approach the problem according to the 

class variable defined: 
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DATA ANALYSIS 
DESCRIPTIVE ANALYSIS 

 

The variables considered in the datasets are: 

Variable Name Meaning 

Obs Number of Observations 

Sales It indicates whether the client bought a product: 1 (yes), 0 (otherwise) 

Price Sensitivity It indicates the client's sensitivity to the price: 1 (less sensitive) - 6 (more sensitive)  

PhoneType Client's phone type: Fixed or Mobile 

Email It indicates whether the client's email is available: 1 (yes), 0 (otherwise) 

Tenure Client's tenure (year when the person became a client of the company) 

NumberofCampaigns Number of times the client has been called 

ProdActive Number of active products 

ProdBought Number of different products previously bought 

Premium Offered Premium offered to the client 

Phone Call Day Day the phone call is received 

CodeCategory Category of the phone call answer 

Birthdate Client's birthdate 

Product Type It indicates the type of product that the client buys 

Number of Semesters Paid Number of semesters paid 

Socieconomic Status It indicates the client's socieconomic status 

Province Province where the client lives 

Right Address It indicates whether the client's address is correct: 1 (yes), 0 (otherwise) 

Living Area (m^2) Estimated surface area of house 

House Price Estimated price of the house 

Income Estimated income 

yearBuilt It indicates when the client's house was built 

House Insurance Price of the house insurance 

Pension Plan Estimated amount of money the client would have in a pension plan 

Estimated number of cars Estimation of the number of cars owned by the client  

Probability of Second 

Residence Probability of having a second residence 

Credit Estimation of the amount of credit that could be offered to the client 

Savings Estimation of the amount of money saved by the client 

Number of Mobile Phones Number of mobile phones 

Number of Fixed Lines Number of Land Lines 

ADSL It indicates whether the client has ADSL:1 (yes), 0 (otherwise) 

3G Devices It indicates whether the client has 3G Devices:1 (yes), 0 (otherwise) 

Type of House Type of house: Urban or Rural 
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DATA ANALYSIS 
DESCRIPTIVE ANALYSIS 

 

With all the data available in the first database, it is really important to make a complete 

descriptive analysis of the variables to understand the type of information we are dealing 

with, which can give us an idea of which variables are relevant to help us solve our problem. 
 

Our dataset is composed by 34 variables, and we must know which ones are significant and 

relevant to explain the behaviour of our target variable.  

 

In order to don´t extend the length of this document we have decided to focus on the 

modelling step and from a descriptive analysis point of view we have just provided as 

examples in the document, the barcharts crossing the target variable considered with the 

most relevant explanatory variables we found. 

 

We haven´t included contigency tables for cualitative variables, neither box-plots nor 

distribution test for quantitative ones relating different variables and in case, running 

different contrast to study more deeply the input variables.  

 

By confronting each of the explicative variable against the target we might get an overall 

idea of the correlation among them. For this reason we will show some charts: 
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DATA ANALYSIS 
DESCRIPTIVE ANALYSIS 

 

 

As we can see, [prodbought] has a great discriminant power. It is obvious since a costumer 

that usually buys products tend to accept the offer more frequently.  

 

As for the others, it is not so easy to distinguish whether the sale was carried out or not. 

However, they are still good discriminant variables regarding of the proportion of 1’s and 0’s 

that has each bar of the histogram.   

 

This phase is also fundamental to know how our data is classified in detail. Principally we 

are interested in the number of 1’s and 0’s in the sample, that is, how our target is 

distributed. 

If we observe the picture we can see that a 91.43% of the customers don’t buy a product 

while a 8.58% of the sampling buys an insurance product: 

 

 

This difference between the 

proportion of 0’s and 1’s point 

out that we must do an 

undersampling in order to 

balance the sample according to 

the class variable [Sales]. 
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DATA ANALYSIS 
SAMPLING and DATA PROCESSING 

 

Sampling Phase 

As we said, the representation of the number of sales is lacking in size. This means an 

inconvenient for our model since it can happen that our model wasn’t able to extract 

patterns or rules that define this event.  

 

To solve this problem, we should equalize the sample so that the percentage of 1’s will be 

same as the number of 0’s. This method is known by under-sampling, that is, keep events of 

interest and reduce the complementary event.  

 

The technique of sampling used is the stratified sampling, so that we must select 

representative elements from the different populations not homogeneous among themselves.  

The size of the sample will be of 3600 registers more or less, consisting of 50% of 1’s and 50% 

of 0’s.  

 

Data Processing 

In this point we will apply certain transformations to our data in order that our model could 

estimate the parameters correctly. It is possible to identify two types of data treatment: one 

based on the business and other based on statistics.  

 

First, we need to deal missing values. It is necessary to recall that in our data sets we 

encountered lots of missing values.  In our case, we used three ways to achieve the purpose.  

On the one hand, we implemented a regression method to predict some of the variables. In 

concrete, “price sensitivity”. This variable has some missing values and we predicted them in 

order to fill in the empty spaces. We selected correlative variables to predict the “price 

sensitivity”. 

 

On the other hand, for socio economic status variables like “socioeconomic status”, “living 

area”, “house price”,… we took a by group average having into account the socio economic 

status.  Finally, for variables with lots of missing values (“ADSL”, “3G devices”, “number of 

fixed lines”  and “number of mobile phones”) we decided that the best way to deal with 

them was by removing the variable itself.  

 

Transformation of categorical variables splitting them into the corresponding binary dummy 

variables for regression purposes and some numerical transformations for specific attributes 

(i.e., birthday) has been done. Examples of that are SOCIECONOMIC_STATUS, 

PRODUCT_TYPE,TYPE_OF_HOUSE,PHONE_TYPE,BIRTHDATE,PRICE_SENSITIVITY. 
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DATA ANALYSIS 
SAMPLING and DATA PROCESSING 

 

Regarding initial variables selection, logistic regression with stepwise and forward methods 

has been use as mechanism. Due to the different potential relationships between explanatory 

variables, several runs/models have been done, forcing in some cases some variables of 

interest to be present and therefore different results were obtained. Finally, a large enough 

set of variables has been selected as initial selection (keep in mind that considering most of 

input variables a regression ends with two or three relevant ones, for example, number of 

campaigns and product bought).  

 
CREDIT,EMAIL,NUMBEROFCAMPAIGNS,PRODACTIVE,PRODUCTBOUGHT,PROVINCE,RIGHT_AD

DRESS,SOCIOECONOMIC_STATUS,SAVINGS have been considered as input variables for model 

II variants.  
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MODELLING: Model I (binary) 
BINOMIAL LOGISTIC REGRESSION MODEL 

 

Model Definition 

 

 

 

Let Y denote a binary response variable, X a set of explanatory variables and and π(x) = 

Prob(Y=1|x). For a binary response, the regression model           is the lineal 

probability model. The linear probability model has a major problem: probabilities fall 

between 0 and 1, but linear functions take values over the entire real line. 

 

Usually, binary data result from a nonlinear relationship between π(x) and x. A fixed 

change in x often has less impact when π(x) is near 0 or 1 than when π(x) is near 0.5. 

 

In practice, nonlinear relationships between π(x) and x are often monotonic, with π(x) 

increasing continuously or π(x) decreasing continuously as x increases. These relationships 

provide S-shaped curves. The most important one corresponds with the logistic regression 

model defined by: 

 

     
     

       
 

 

 

 
As            when     and        when    . 
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MODELLING: Model I (binary) 
BINOMIAL LOGISTIC REGRESSION MODEL 

 

If we consider as new response variable π(x) and the new variable                  
    

      
  

(log for the odds of π(x)) any real value between can be taken and therefore the linear 

regression makes sense:                 , i.e., the log odds has the linear relationship. 

 

General expression for the model: 

 General Logit Equation:  

 

                
    

      
                       

                          

 

 Probabilities for response variable: 

 

 

 

for a case with two explanatory variables: 

 

 

 

Use of Binomial Logistic Regression Model in the problem 

Focusing in our problem, the aim is to predict the value of the binary variable “sales” 

regarding to the sale or not of the product. Also, we must take into account the three 

possible type of premium. 

In order to achieve this, we are building a logistic regression. It will calculate the influence of 

the different variables over the probability that the sale is done or not.    

In our model we force one of the variables to be “premium”. This is because we would like to 

obtain the probability of a customer to be a 1 conditioned to the premium offer, that is, the 

probability for each premium. Apart from that variable, other variables will be determined 

by the model to be included. 
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MODELLING: Model I (binary) 
BINOMIAL LOGISTIC REGRESSION MODEL 

 

To sum up, the relevant variables are: Premium, Socioeconomic status, Right_address and 

eMail. 

 

 

The link function used for this model of regression model is the function logit, so that the 

expression will have the next form: 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

Model Definition 

 

 
 

Let J describe the number of categories (levels) for response variable Y and {π1,…, πj} the 

probabilities for the different responses satisfying       . 

 

The probability distribution for the number of observations falling in the different J 

categories follow a multinomial distribution. This distribution models the probability of the 

different ways by which n independent observations can be spread out between the J 

categories. 

 

Given a nominal measure scale, the order betweeen categories is not relevant. A category is 

taken as base response and a logit model is defined with respect to it. 

 

      
  

  
         

where j = 1,...,J-1. The model has J-1 equations with their own parameters and the effects 

vary with respect to the base category. When J=2, the model contains just one equation 

and corresponds with the standard logistic regression model: log(π1/ π2)=log(π1). 

General expression for the model: 

Main characteristics: 

 As many equations as categories Y has. 

 For each variable, as many parameters as Y categories minus one are estimated. 

 It is required to use a category as a reference. 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

 General Logit Equation: with respect to a base category J, determines the logit for 

any pair of categories. Given any two categories 1 and 2: 

    
  
  
      

     
     

      
  
  
      

  
  
   

                                   

 Probabilities for the different responses: 

 

 

 

 

 

 

For a response variable with three categories and two explanatory variables 

(predictors) we would have: 

 

 

 

 

 

 

 

Like ordinary regression, logistic regression extends to include qualitative 

explanatory variables, often called factors. For that purpose, dummy variables 

are used. A factor with I categories needs I-1 dummy variables. 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

Use of Multinomial Logistic Regression Model in the problem 

Keeping in mind that Premium is a key variable in our problem and following the hypothesis 

done regarding relevant explanatory variables, the following multinomial model has been 

built using SAS: 

 

      
  

  
          

                                                                                       

 

 

SAS Code 

proc logistic data=&_train; 

model target_model2(ref='1')= right_address numberofcampaigns 

socieconomic_status prodactive/link=glogit; 

output out=pred predprobs=(I); 

run; 

 

proc print data=pred; 

title 'Predicted probabilities'; 

run; 

 
 

In the following paragraphs, the SAS outputs for the model built are described: 

 

Goodness of Fit:  

 
                               Testing Global Null Hypothesis: BETA=0 
  
                       Test                 Chi-Square       DF     Pr > ChiSq 
 
                       Likelihood Ratio      1525.5060       12         <.0001 
                       Score                 1690.2636       12         <.0001 
                       Wald                   655.0424       12         <.0001 

 

 

Global null hypothesis tests the fit of the current model against a null or intercept-only 

model. The null model has three parameters (one for each logit equation). The test is highly 

significant, indicating that at least one of the covariates has an effect on response variable 

(customer_type). 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

Type III analysis of effects: 

 
                                     Type 3 Analysis of Effects 
  
                                                            Wald 
                       Effect                   DF    Chi-Square    Pr > ChiSq 
 
                       right_address             3       13.2788        0.0041 
                       NumberofCampaigns         3      334.9377        <.0001 
                       socieconomic_status       3      143.3798        <.0001 
                       ProdActive                3      199.5426        <.0001 

 

This section shows the change in fit resulting from discarding any one of the covariates —

right_address, numberOfCampaigns, socioeconomic_status, prodActive— while keeping the 

others in the model. Judging from these tests (p-values obtained) , we see that all the 

explanatory variables considered have an effect on customer_type (class/response/target 

variable). 

 

Estimated Coefficients by Maximum Likelihood: 

 
                              Analysis of Maximum Likelihood Estimates 
  
                             target_                      Standard          Wald 
      Parameter              model2     DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
      Intercept              0           1      2.2398      0.3813       34.5135        <.0001 
      Intercept              2           1     -1.1474      0.3616       10.0668        0.0015 
      Intercept              3           1     -4.7951      0.7197       44.3867        <.0001 
      right_address          0           1     -0.8060      0.2641        9.3135        0.0023 
      right_address          2           1     -0.0760      0.2348        0.1047        0.7463 
      right_address          3           1      0.1724      0.4622        0.1391        0.7091 
      NumberofCampaigns      0           1      0.7712      0.0802       92.5445        <.0001 
      NumberofCampaigns      2           1      0.7264      0.0795       83.5540        <.0001 
      NumberofCampaigns      3           1      1.0219      0.0812      158.2618        <.0001 
      socieconomic_status    0           1     -0.8631      0.0849      103.3610        <.0001 
      socieconomic_status    2           1     -0.0618      0.0781        0.6246        0.4293 
      socieconomic_status    3           1     -0.3283      0.1956        2.8176        0.0932 
      ProdActive             0           1     -4.4853      0.3248      190.7363        <.0001 
      ProdActive             2           1     -0.1548      0.1329        1.3570        0.2441 
      ProdActive             3           1     -0.0797      0.2605        0.0937        0.7596 

 

According to the logit general equation:       
  

  
          there are three logit equations 

to predict the log-odds of: 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

 Customer does not buy versus customer buys low-premium. 

 

 

      
  
  
          

                                                          
                                           

 

 

 

 Customer buys medium-premium versus customer buys low-premium. 

 

 

      
  
  
          

                                                            
                                           

 

 

 

 Customer buys high-premium versus customer buys low-premium. 

 

 

      
  
  
          

                                                            
                                           

 

 
Note: (customer_type = 1, i.e., customer buys low-premium is taken as reference category). 
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MODELLING: Model II (multinomial) 
MULTINOMIAL LOGISTIC REGRESSION MODEL 

 

From the weights of the coefficients and p-values obtained for each covariate/explanatory 

variable and response/target level we can conclude that the most relevant explanatory 

variables according to the response levels are: 
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MODELLING: Model II (multinomial) 
DECISION TREE MODEL 

 

A classification tree for the categorical target variable customer_type (model 2) has been 

built according to the following characteristics: 

 

Main Tree Parameters/Characteristics 

 

Parameter/Criteria Value 

Splitting criterion 

(select useful inputs) 

Uncertainty measure: Shannon Enthropy 

Min number of observations in a leaf 

(reduce partitions for each input) 

6 

Min observations required for a split search 

(reduce partitions for each input) 

24 

Assessment 

 Model Assessment criterion 

 Subtree 

 

(decision/ranking assessment & 

pruning/ opt.complexity) 

 

Average profit according to the profit/losses matrix. 

Best assessment value. 

In many cases, the value of making a true (or false) 

positive decision differs from the value of making true 

(or false) negative decision. In such a situation, the 

concept of accuracy is generalized to profit and the 

concept of misclassification is generalized to loss. 

 

Profit Matrix associated with Assessment criterion 

 

The following profit matrix has been defined: 

 

 predicted 

3 2 1 0 

r 

e 

a 

l 

3 3 -1 -1 -3 

2 -1 3 1 -2.8 

1 -1 1 3 -2.5 

0 2 2 2 3 

The idea with this matrix is to penalize the 

cases where the predicted customer type is 

lower than the observed one (the company 

would lose incomes in case either a premium is 

not offered to a potential customer or the 

premium expected to be offered is lower than 

the real one). 

 

Highlight that whenever the predicted category is 2 and the observed 3 the penalty is higher than the 

case where moves from 1 to 2 for predicted and observed respectively. That has to do with the fact 

that the difference between premiums is greater in the first case than in the second one. 
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MODELLING: Model II (multinomial) 
DECISION TREE MODEL 

 

Customer Type Tree 

The classification tree obtained according to the parameters/characteristics described above 

is the following (only four levels of the tree are shown): 

 

 
 

The first column of each node shows the customer type category, the second column shows 

the percentage of cases falling in the corresponding target category in the training set and 

the third column the percentage for the validation set. Finally, the decision statement 

provides the best choice according the percentages distribution. 

 

Having a look to the path where the percentages for customer types 1 to 3  (customer buys a 

premium) increase as long as we go deeper in the tree it can be seen that the following 

decision rule: 

 

[ProdBoughts > 0] and [NumberOfCampaigns] < 3 

 

provides the greater probability to capture potential customers. According to this rule, for 

the validation set, the following premiums are captured (percentages for the corresponding 

number of cases of the leaf node): 
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MODELLING: Model II (multinomial) 
DECISION TREE MODEL 

 

Validation Set 

Product bought > 0 

Number of Campaigns < 3 

1032 cases 

230 cases 

58 cases 

Premium % captured Number of cases 

1 51.8% 30 

2 48.2% 28 

3 0% 0 

Training Set 

Product bought > 0 

Number of Campaigns < 3 

2388 cases 

529 cases 

136 cases 

Premium % captured Number of cases 

1 50.7% 69 

2 49.1% 67 

3 0.1% 0 

 

 

Customer Type Characterization: number of tree leaves vs events captured. 

 

According to the 

assessment criterion used, 

with 10 leaves in the tree, 

the percentage of events 

captured is 2.85%  (event 

means the cases where 

customer_type  is greater 

than 0, i.e., the customer 

buys a premium).  
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MODELLING: Model II (multinomial) 
DECISION TREE MODEL 

 

Model Assessment: Classification Tree Diagnostics - confusion matrix 

 

The information provided for the confusion matrix refers to the training set and is the 

following: 

 Rows represent the predicted categories for target variable customer_type. 

 Columns represent the real categories for target variable customer_type. 

 Each cell contains 4 values consisting of: 

o Number of cases matching the corresponding predicted and observed category. 

o Accuracy: % of true positives and negatives with respect to the total. 

o Precision: % of predicted positives by the classifier that are really positive: the 

higher the precision is, the lower the number of false positives will be. (idem 

with negative cases). 

o Recall (sensitivity): % of positive/negative cases properly predicted by the 

classifier. The higher the sensitivity is, the lower the number of wrong positive 

cases will be. 

 

 

With the tree built, the 

percentage of success/hits 

obtained is a 78.12%: 

49.71% for category 0 

(customer does not buy) and 

the remaining 23.41% for 

categories corresponding to 

premiums offered to the 

customer.  

 

Highlight that the higher % of 

0´s properly detected has to do 

with the fact that the original 

proportion of events 

(frequencies for the categories 

of target variable) is kept). 
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MODELLING: Model II (multinomial) 
DECISION TREE MODEL 

 

Model Assessment: Profit Chart (Sensitivity) 

 

For a 70% of the highest scores obtained 

we get an expected profit of 3. From this 

70% till complete the 100% of cases, the 

average profit decrease sharply till a value 

of 2.86. This result is in accordance with 

the values obtained in the confusion 

matrix. 

Blue function represents a random model 

and red function represents the tree model.  
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MODELLING: Model II (multinomial) 
NEURAL NETWORK 

 

Introduction 

 

A Neural Network has been used as third variant for the multinomial model (model II). The 

following table provides a summary of some of the main advantages and disadvantages of 

neural networks as classifiers: 

 

Advantages Disadvantages 

High Accuracy:  

Neural networks are able to approximate  

complex non-linear mappings. 

Transparency: 

Neural networks operate as “black boxes”, 

therefore, lack of transparency 

Noise Tolerance:  

Neural networks are very flexible with  

respect to incomplete, missing and noisy  

data 

May converge to local minima in the error 

surface. 

Independence from prior assumptions:  

Neural networks do not make a priori  

assumptions about the distribution of the 

data, or the form of interactions between  

factors. 

Totally dependent on the quality and 

amount of data available. 

Flexible: Non-linear model making, flexible for 

real applications. 

Rule extraction is difficult. 

 

The application of Neural Networks in Insurance industry has to do with: 

 Profit and growth 

 Understanding customer retention patterns (renewal/termination) 

 Direct marketing campaigns 

 Price setting. 
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MODELLING: Model II (multinomial) 
NEURAL NETWORK 

 

Modelling 

 

The main characteristics of the neural network defined are: 

 Multilayer perceptron model 

 2 hidden-layers feed forward neural network with 17 neurons each one:  

o with two hidden layers we make possible to capture non-linear relationships. 

o input layer contains as many neurons as explanatory variables considered (8) 

o according to Lipman rule, the number of neurons for hidden layer are 17. 

 Hyperbolic Tangent as activation function 

o due to the fact we have dichotomous variables, we need this activation 

function. 

 Generic Linear  combination function 

 Selection criterion: profit/loss matrix for back propagation with descend gradient (the 

one already used for de classification tree). 

 

 

 
 

Explanatory variables (neurons on input layer) have been standardized by average and 

standard deviation: in this way, hyperbolic tangent function transforms inputs in (-1,1). 
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MODELLING: Model II (multinomial) 
NEURAL NETWORK 

 

Results 

 

 
Confusion matrix 

 

 

Rows in the table represent predicted categories and columns the real/observed categories. 

Having a look to the diagonal it is observed that a 72.3% of hits (let say “true positives”, 

i.e., % of properly classified cases) are achieved by the model: 44.39% of 0´s contribution, 

3.56% of 1´s contribution, 21.52% of 2´s contribution and 2.89% of 3´s contribution. 

 

On the other hand, it is observed that: 

 Categories 0 and 2 are well predicted: 88.5% (1060/1198) for 0´s and 80.2% (514/641) 

for 2´s.  

 It seems the model confuse 2´s with 1´s. However that´s not really important because 

both levels of premiums differs only slightly in the price. 

 Categories 1 and 3 are worse classified than categories 0 and 2: 19.9%  (85/427) for 

1´s and 56.55% (69/122) for 3´s: 1´s have the worst prediction power. 
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MODELLING: Model II (multinomial) 
NEURAL NETWORK 

 
 

With approximately 85 iterations the average profit stops to increase in parallel for training 

and validation sets and this point is fixed for the optimal generalization. An average profit of 

2.9 and 2.8 are obtained for training and validation sets respectively. Considering the profit 

matrix defined, the values achieved by the model are high and that brings the classification 

done is good enough.   
 

 
Average profit by Neural Network iterations number for training and validation 

datasets 
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OPTIMIZATION 
OPTIMAL MODEL AS COMBINATION OF MODELS 

 

For model II, three variants have been built: 

 
Multinomial model (model II) variants 

MTREE 

(m1) 
Tree model variant 

MMLR 

(m2) 
Multinomial logistic regression model variant 

MNN 

(m3) 
Neural Network model variant 

 

In order to optimize our multinomial model a convex linear combination of previous models 

has been used. It can be seen as: 

 

                          

 

where Mxxx refers to the model variant. The following figure summarize the idea of models 

combination and provide as well the resulting coefficients: 

 

Next paragraphs explain how the optimal model has been built. 
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OPTIMIZATION 
OPTIMAL MODEL AS COMBINATION OF MODELS 

 

First of all let’s define the variable and indexes to be considered in the combination of 

models: 

 
var description 

i index i:0..3 for: customer does not by; low premium; medium premium; high 

premium  

j index j:1..3 for models: tree, multinomial reg.,neural network 

k index k:1..dataset size (number of cases) 

ppi_mj(k) Probability of category “i” for customer_type obtained by model j for case k. 

pp_mj(k) Maximum probability obtained by model “j” for case k (probability associated 

to the most likely category according to model “j”) 

tp_mj(k) Target category predicted by model “j” for case “k” 

to(k) Target category observed (real) for case “k” 

op(k) Optimal probability for case “k” 

ot(k) Optimal target category for case “k” 

 

The following steps explain the combination process: 

 

 For each case of our training and validation sets, four predicted probabilities are 

obtained: each one corresponds to the different levels of our class/target variable 

customer_type (the scoring calculated by SAS provides us this data). 
 
 

probabilities considered by the models 

M1 pp0_m1 pp1_m1 pp2_m1 pp3_m1 pp_m1= 

max(pp0_m1, pp1_m1, pp2_m1, pp3_m1) 
M2 pp0_m2 pp1_m2 pp2_m2 pp3_m2 pp_m2= 

max(pp0_m2, pp1_m2, pp2_m2, pp3_m2) 
M3 pp0_m3 pp1_m3 pp2_m3 pp3_m3 pp_m3= 

max(pp0_m3, pp1_m3, pp2_m3, pp3_m3) 
 

 For each case, the maximum of these probabilities (pp_mj(k)) provides the most likely 

classification for the customer_type, i.e., the predicted premium to be offered (in 

case). 
 

 Considering the three models, we can get for each case of the set, the predicted 

customer_type category together with the associated probability and get the 

maximum of these three probabilities and therefore the most likely customer_type 

category according to the three models. 
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OPTIMIZATION 
OPTIMAL MODEL AS COMBINATION OF MODELS 

 

 

Higher probability for each case according to models max.probs. 

(and therefore most likely target category) 

Case 1  pp_m1(1) pp_m2(1) pp_m3(1) pp(1)=max(pp_m1, pp_m2, pp_m3) 
… - - - -… 

Case k pp1_m3(k) pp2_m3(k) pp3_m3(k) pp(k)=max(pp_m1, pp_m2, pp_m3) 
… - - - - 

 

 Once customer_type is set for each case according to previous steps, the probabilities 

for this category in each model are available. 

 

 Finally a function in charge of minimize the absolute error between observed and 

predicted customer_type categories  for each case considering a linear combination of 

the three models is defined: 

 

                                                              

 

  

       
 

    

 

In order to solve this model and get the values of αj a genetic algorithm has been 

used in MatLab (gob library).  

 

As result, the α vector obtained is: (0.5247;0.2347;0.1352) 
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VALIDATION OF MODELS 
 

ROC curves for model-I & model-II variants and optimal 
 

According to the shape of the ROC curves (area under curve) obtained for multinomial 

model (model II) we can see that optimal, Decision Tree and Neural Network models provide 

better prediction power than multinomial logistic regression model.  

 

Keep in mind that no decision matrix (profit/loss) is used by this model. Optimal and 

Decision Tree models overlap due to the fact that the tree is the most accurate and the 

weight of the tree in the optimal model is the highest. 

 

 
 

 

For model I similar results are obtained althought the area under ROC curve seems to be 

lower than optimal or decision tree in model II. Therfore model II is prefered than model I to 

predict buyer/not buyer. 

 
 

  

Model-1 
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VALIDATION OF MODELS 
 

Merge of Optimum & Model-1 selection: Why? 

 
 The number of buyers catched by model II is lower than the ones catched by model 1 

and in both of them lower than the required. 

 Way to proceed: Catch buyers with model II, complete with model I and take no buyers 

from model I offering the premium detected by this model. 
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CONCLUSIONS, REMARKS and NEXT STEPS 
 

Having a look to the profit analysis, we can conclude that: 

 First insight: we have found the optimal number of customers to call should be less 

than 5000. 

 Second insight: the benefits with optimal model are much higher than the obtained 

with the random model: around 20000 euros if we call the optimal number of 

potential customers in the first case versus around 4500 euros calling to 5000 in the 

second case (random model).  

 

 

 
 

 

Remarks 

 
• Followed two research lines. They converged in some aspects. They shed light about 

the drivers and the forecasting ability 

• Saved some difficulties:  

• Missing values 

• Ideate the models 

• Decide the most relevant aspects 

 

Next Steps 
• More time to know the insurance company interests about the model 

• Analyze the relationship among the explanatory variables in depth, non linearities 

and so on… 

• Analyze robustness of all the models more carefully. 

• With more information about costs, to build a better benefit function. 

 


