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1. Problem Description 

 

1.1. Introduction 

The human brain consists of around 100 billion neurons each making 1000-10,000 synaptic 

connections. The activity of the brain is electrical but the connections between neurons are 

primarily chemical, across a specialised structure called the synapse. At the synapse, vesicles 

containing neurotransmitter fuse with the cell membrane and release their contents into the 

synaptic cleft. The transmitter molecules (typically 10,000-100,000 molecules per vesicle in our 

systems) diffuse across the synaptic cleft, where some of them engage with receptors 

triggering another wave of electrical activity in the post synaptic cell, while the remainder are 

taken back up by membrane bound transporter proteins so they can be broken down or re-

packaged. It is of interest experimentally to measure how this process changes with age or 

drugs. For example, do aging or drugs affect the concentration of neurotransmitter released 

from the vesicles and the rate of re-uptake? 

 

1.2. Experimental measurements 

 

 

Figure 1 

 

This release of the neurotransmitter can be detected using microelectrodes, with a typical 

experimental set-up as shown in Figure 1. The neurotransmitter molecules are oxidised 

electrochemically at the surface of the electrode, which results in an electric current. A typical 

current profile detected from the brain of a snail (Lymnaea stagnalis) is shown in Figure 2, 



 

 

from data provided by Dr. O’Hare (Imperial College London). The spikes correspond to 

neurotransmitter-release events. 

 

  

             Figure 2 

  

 We would like to be able to relate the size of the spikes in current response back to key 

parameters of the process, such as the total concentration released from the vesicle and the 

rate of re-uptake. This requires a theoretical model. 

The scheme of work will be the following: 

 Introduction of the problem 

 Partial differential equation model of vesicle release, re-uptake and oxidation 

at the electrode: 

 Governing equation (diffusion process). 

 Boundary conditions. 

 Initial condition. 

 Problem transformations: 

 Non-dimensional problem 

 1-D problem 

 Analytical solution of the model. 

 Numerical solution of the model. 

 Comparison to experimental results. Further work. 

 



 

 

2. Introduction of the problem 

 

As we said, we want to study the current produced by neurotransmitter molecules in 

terms of key parameters of the process, such as the total concentration released from the 

vesicle and the rate of re-uptake. 

The neuron is divided in two membranes: pre-synaptic and the post-synaptic. We used an 

electrode in the post-synaptic membrane to obtain flow current data.  

In the synapse, a vesicle full of molecules of serotonin breaks when it goes through the 

pre-synaptic membrane and liberates the molecules. Most of them go to the receptor and 

some are re-up taken into the pre-synaptic membrane. 

The electrode makes a redox reaction  

 

Therefore, the serotonin is reduced and becomes another chemical substance. The 

electrons liberated in the reaction cause the electrical current. 

Our objective is to find the mathematical model which gives us this rate of current 

response. It will depend on: 

 The reuptake constant. 

 The number of molecules. 

 The chemical reaction. 

 The rate of diffusion. 

 

                 

 

                                     Figure 3: Electrical current 



 

 

h (=2.e-7) 

 

3. Mathematical model 

 

3.1. Partial differential equation. Domain definition 

The problem is analogous to a diffusion process, and therefore it can be modelled by using 

the diffusion equation: 

  

  
       

Where: 

 C is the concentration of serotonin. 

 D is the diffusion constant. 

Experimental results show that these constants can be dependent of some variables as the 

age or the use of some drugs such as antidepressants. 

Our domain will be a cylinder, whose base is the electrode and the top is the post-synaptic 

membrane. Because of the symmetry, we can consider de model as 2-Dimmensional, so we 

will not eliminate the angle θ. 

 

                3-D Model                                                   2-D Model 

 

                   

  

 

In our experiment, the distance between the pre-synaptic membrane and the electrode is 

       , and the radio of the electrode is          

After reducing the problem to a 2-D model, we obtain the following partial differential 

equation: 

 

0              r (= 7.e-6) 
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The boundaries of our domain are: 

 

𝑧 ∈ [𝑎,  𝑏]  with  𝑏 − 𝑎          

𝑟 ∈ [ ,  3 5      ] 

Once the partial differential equation is solved, we use the obtained value of C to calculate 

its partial derivate with respect to z in the base of cylinder. With this derivate we calculate the 

current intensity: 

 

𝐼  𝑛𝐹 ∫ ∫
  

 𝑧
|

  

 

 

    

𝑟𝑑𝑟𝑑𝜃 

Where F is the Faraday’s constant and n is the number of electrons transferred. 

 

3.2. Boundary conditions 

The boundary conditions are: 

 We have       when  𝑧  𝑎  because the potential of the electrode is high enough to 

make the reaction only in one direction. Therefore, at that boundary the concentration 

of serotonin is zero. 

 We have        when    𝑟   .  That’s because we considerer the release of vesicle 

is produced in 𝑟   , 𝑧  𝑏 so it doesn’t get to the farthest points. We can make this 

assumption because the high of the cylinder is much smaller than its radious. 

 We have    −
  

  
      when   𝑧  𝑏   because we assume the reuptake rate is 

proportional to the concentration (first order chemical reaction).  

 We have  
   

  
   because of the symmetry.   

 

 



 

 

3.3. Initial condition 

Our initial condition will be the following one: 

 

 (𝑟, 𝑧,  )  
  𝛿(𝑟)𝛿(𝑧 − 𝑏)

𝑟
,  

 

where delta is the Dirac delta function, and Q is the number of moles of serotonin released 

from the vesicle. 

 This means that, at the initial time, all the serotonin is concentrated at one single point and 

it is all released from this point at t=0. We can make this assumption because the size of the 

vesicle is so much smaller than the size of the electrode, and the release process is so much 

faster than the diffusion process. 

 

3.4. Problem transformations 

3.4.1. Non-dimensional problem 

We make the following changes of variables to construct an equivalent non-dimensional 

problem: 

   
  

 (   ) 
 ̂ 
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After the changes of variables described before, we obtain a new problem that is 

dimensionless: 
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With the following boundary conditions: 

 
   ̂

  ̂
            𝑟̂     

  ̂                  𝑧̂    

  ̂                  𝑟̂    

 
  ̂

  ̂
  ̂ ̂        𝑧̂    

 

In this dimensionless model we can consider that 𝑟 ∈ [0, ∞) because the horizontal 

dimension is much bigger than the vertical one. 

Our non-dimensional initial condition is: 

 

 ̂(𝑧̂,  )  𝜋
𝛿(𝑟̂)

𝑟̂
𝛿(𝑧̂ −  ) 𝑖𝑓  ̂    

 

And the current has is defined by the following expression: 
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The two main reasons we transform the problem are: 

 We reduce the number of parameters. 

 

 We make it robust to changes of sizes, and we can easily see what are the variables 

that have an actual influence in the system. 

 



 

 

3.4.2. 1-D Problem 

We can define a new function  ̅ that does not depend on r but just on the height z and on 

time by integrating along r and using the boundary condition     as 𝑟   .  

 ̅(𝑧̂,  ̂)  ∫ ∫  ̂
  

 

 

 
(𝑟̂, 𝑧̂,  ̂)𝑟̂𝑑𝑟̂𝑑𝜃 

The new unknown,  ̅, satisfies the one-dimensional equation with just two boundary 

conditions – the ones related to  𝑧̂, and a simpler initial condition. 

Then our expression of the main equation becomes: 

  ̅

  ̂
 

   ̅

 𝑧̂ 
 

 

And the boundary conditions become: 

  ̅       𝑖𝑓      𝑧̂    

 −
  ̅

  ̂
  ̂ ̅     𝑖𝑓     𝑧̂    

 

We can get rid of the 
 ( )

 
 part in the initial condition: 

 ̅(𝑧̂,  )  𝜋𝛿(𝑧̂ −  )          ̂    

Derivating along 𝑧̂ we found the new expression for the current: 
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4. Analytical solution 

 

By using the method of separation of variables, we can find the analytical solution of the 

one-dimensional problem. We consider  ̅(𝑧̂,  ̂)as a product of two functions, each depending 

in only one variable: 

 ̅(𝑧̂,  ̂)   (𝑧̂) ( ̂) 

 

Thus we can represent the main equation of the problem 

𝛿 ̅

𝛿 ̂
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as 

         

We divided each term by ZT so we can separate it in two problems, one related to Z and 

one related to T. 

   

 
 

  

 
 −   

The two problems are: 

  +                  ̅    

   +                𝑧̂  ∈ [ ,  ] 

 

First we solve the problem in Z, obtaining: 

  (𝑧̂)      (  𝑧̂) 

 

And then we solve the problem in T: 

  ( ̂)       
  ̂ 



 

 

So we can write  ̅(𝑧̂,  ̂) as an infinite Fourier series: 

 ̅  ∑      (  𝑧̂)   (  
  ̂)

 

   

 

If we take into account the boundary conditions in 𝑧̂    and substitute them in the new 

expression: 

−
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An expression for    is easily found: 

   − ̂      (  ) 

We can find the value of    making  ̂    in the expression for  ̅(𝑧̂,  ̂) and imposing the 

initial condition: 
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The whole expression for  ̅(𝑧̂,  ̂) becomes: 
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We derive to find the expression for the current: 
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In order to represent the current, we want to calculate the minimum number of terms from 

the series we need to do so. Having the equality    − ̂     (  ), we intersect the 

functions 𝑓( )  −
 

 ̂
 and  ( )      ( ) to have a general idea of the intervals in which the 

roots will move.  

We choose  ̂    to draw the intersection in GeoGebra: 
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The only thing left is fixing a precision to represent the current, e.g. 108, and imposing the 

following equality: 

𝑛𝜋 
(  

 
 
)
 
         

Solving it will give us the minimal number of roots we need to represent the current. For 

example, for k=1, the number of necessary roots is at least 50. After that, we substitute to 

obtain the expression of the current. 

The following graph represents the current for different values of K. As we can see, as k 

decreases, the current increases. 

 

Experimental data show that the rate of the reaction is smaller in old age, so you need 

bigger vesicles that can contain larger amounts of molecules to counter the decreasing rate of 

uptake to the pre-synaptic membrane. For example, k=0.25 could correspond to an old person 

or to someone who has use drugs such as antidepressants. 
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5. Numerical solution  

 

By using finite differences and the Euler implicit method, we can find a numerical 

approximation of the solution for the 2‐dimensional problem: 
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To do this we do a discretization of the domain into a mesh of equidistant points and we 

use the boundary equations we defined earlier 
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and approximation of the partial derivates at the points in the mesh 
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We also have to take into account the Neumann boundary conditions in the main matrix 

which are more complicated. We implement them as it follows: 

 

 r = 0; z ≠ 0  

In this case, the boundary condition is   
  

  
= 0  and it becomes this equation  
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 r ≠ 0; z = 1  

In this case, the boundary condition is   −
  

  
=   and it becomes this equation 
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           We can see k in the matrix. 

 

 r = 0; z = 1  

And finally, in this case, the boundary condition are 
  

  
= 0 and −

  

  
=   and it becomes 

this equation 
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           We can see k in the matrix too. 

        

We implement the rest of points in the main matrix using normal finite differences as it 

follows: 
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Our initial condition  
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is hard to implement numerically, so we use the Green Function of this expression  
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to define it in an equivalent way. 

With our Matlab code we can see that in this system our initial condition is 

 

 

 

Figure 4 

 

Although we have found troubles with small step seizes, our numerical solution is quite 

similar to the analytical one. The following graph represents current calculated analytically and 

numerically with k=1. 

 



 

 

 

Figure 5 

 

To complete, the next graphs represents the concentration of serotonin (C) 

 

 

Figure 6 

 

We can see how vesicle breaks and release serotonin molecules in the point z=1, r=0. 

That’s why the points close to that “breaking points” are higher than the rest. 

After the initial time and due to the diffusion process, serotonin goes to the rest of points 

and the graph decreases. 

In order it solve it we have to choose a finite maximum value of r. We chose    

file:///C:/Users/Guille/AppData/Local/Microsoft/Windows/Temporary Internet Files/Content.IE5/XNQ8PZCJ/Difusion.m


 

 

 

 

 

We consider 0 ≤ r  ≤ R,  

 

 

 

 

 

where R is defined by the before equation. It means that there is no time for the serotonin 

molecules to arrive to the point  r = R, so in this boundary the concentration of serotonin is 

zero. 

6. Conclusions 

 

 We can adapt a model based on the diffusion equation to this problem. 

 We can simplify the model to solve it both analytically and numerically 

 The analytical and numerical solutions agree 

 

7. Further Work. Comparison to experimental results  

 

For further work we would have wanted to fit the model to actual experimental data. For 

that we would have to go back to the model with the parameters: 
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We would need to fit the diffusion constant D, the number of moles of serotonin Q, the 

separation between the membrane and the electrode (b-a) (which can be easily measured) 

and the reuptake rate k. 

 

  



 

 

Annex: MATLAB code 

% Numerical 2-Dimensional 
clear all 
close all 
clc 
% For example: 
dt=0.01; h=0.05; Time=1; 

  
% Parameters: 
t0=0.001; 
K=1; 
R=6*floor(sqrt(Time)); 

  
% By finite differences 
n=(Time-t0)/dt; 
n2=1/h; 
n3=R/h; 

  
% Temporal discretization 
t=linspace(t0,Time,n); 

  
% Spatial discretization 
X=linspace(0,R,n3+1); 
Y=linspace(0,1,n2+1); 

  

  
% Initial conditions (u0) 
for i=1:(n3) 
    for j=2:n2+1 
        AUX1=2*pi/(4*pi*t0)^(3/2); 
        u0(i,j-1)=AUX1*exp(1/(4*t0)*(-X(i)^2-(Y(j)-1)^2)); 
    end; 
end; 
figure(1) 
surf(u0) 
u0=reshape(u0',1,(n2)*(n3)); 
axis off 
pause 

  
% Matrix A 

  
for i=1:n2 
    aii(i)=-6; 
    aij(i)=1; 
    aij_(i)=1; 
    aij1(i)=4; 
    aij2(i)=0; 
end; 
for i=n2+1:n2*n3 
    aii(i)=-4; 
    aij(i)=1; 
    aij_(i)=1; 
    aij1(i)=1; 
    aij2(i)=1; 
end; 
for i=2*n2:n2:n2*n3 

 



 

 

    aii(i)=-2*(2+h*K); 
    aij_(i)=2; 
    aij(i)=0; 
    aij1(i)=1; 
    aij2(i)=1; 
end; 

  
for i=(n2+1):n2:(n2*n3-n2+1) 
    aij_(i)=0; 
end 

  
A = spdiags([[aij2((n2+1):end) ones(1,n2)]' ... 
    [aij_(2:end) 1]' aii' [1 aij(1:end-1)]' ... 
    [ones(1,n2) aij1(1:end-n2)]'], [-n2 -1:1 n2],n2*n3,n2*n3); 

  
A(n2,:)=0; 
A(n2,n2)=-6-2*h*K; 
A(n2,n2-1)=2; 
A(n2,2*n2)=4; 

  
unos = ones(1,n2*n3); 

  
Aaux = spdiags([-unos' unos'], [-n2 n2], n2*n3,n2*n3); 
Aaux(1:n2,:)=0; 

  
for i=n2+1:n2*n3 
    module=ceil(i/n2); 
    Aaux(i,:)=Aaux(i,:)*(1/X(module)); 
end 

  
A = 1/h^2*A+1/(2*h)*Aaux; 

  
u=u0; 

  
for k=1:n+1 
    % Implicit euler method 
    u=(eye(n2*n3)-dt*A)\u'; 
    u=u'; 
    matrizu0=reshape(u,n2,n3); 

     
    figure(1) 
    surf(Y(2:end), X(2:end), matrizu0'); 
    ylabel('Radio r','FontSize',14) 
    xlabel('z','Fontsize',14) 
    title('Concentration of Serotonine','FontSize',14) 
    axis([0 1 0 6 0 25]) 

     
    % Current 
    for i=1:n3 
        Derivada(i)=-(matrizu0(2,i)-4*matrizu0(1,i))/(2*h); 
    end 

     
    Corriente(k)=h*trapz(Derivada.*X(1:end-1)); 

     



 

 

pause(0.0001) 
end; 

  
% current variation (t) 
figure(3) 
hold on 
plot(t,Corriente(1:end-1)) 
title('I(t)', 'FontSize', 14 ) 

  
% Analytical solution 
k=1; 
n=fzero(@(m) m*pi*exp(-pi^2*(m-1/2)^2*0.001)... 
    -10^(-8),1/sqrt(0.001)); 
epsilon=1e-10; 
x0=(pi/2):pi:(pi/2)+(n)*pi; 
for i=1:n 
    Lambda(i)=fzero(@(lambda) lambda+k*tan(lambda),... 
        [x0(i)+epsilon,x0(i)+pi/2+epsilon]); 
end 
Lambda=sort(Lambda); 

  
t = linspace(0.001,1,100); 
suma = zeros(1,length(t)); 
for i=1:n 
    suma=suma-(Lambda(i)^2*sin(Lambda(i))/... 
        (cos(Lambda(i))*sin(Lambda(i))-Lambda(i)))... 
        *exp(-Lambda(i)^2*t); 
end 

  
plot(t,suma,'r'); 

 

 


