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MOTIVATIONS 

1) INDUSTRIAL APPLICATIONS – WATER FILTERS 
 
Modern water depuration modules consist of a container housing a large number of 
hollow fibers whose lateral membranes is permeable to water, but not to “large” 
particles. 
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2) MEDICAL APPLICATIONS – DYALISIS 

In medicine, dialysis is a method for removing waste products such as urea, as well as 
excess water from the blood and is used primarily to provide an artificial replacement for lost 
kidney function in people with renal failure. 
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A widely used irrigation technique consists in delivering water by letting it filtrate 
through permeable pipes laid down or suspended over the ground. Several types 
of plants are used, according to the size of the fields to be irrigated. 

3) AGRICULTURE APPLICATIONS 



The above mentioned applications have a common characteristic: the ratio between 
the pipe length and the pipe radius is small. 
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The radial length scale and the longitudinal length scale are well separated. Hence, 
the so-called upscaling (or double scale) procedure can be used. Upscaling 
consists in the following steps: 
 
(i) Writing the governing equations  
 
(ii) Introducing the asymptotic expansions of the main physical quantities in power of 
the small parameter ε 
 
(iii) Matching the terms of equal order in ε in the governing equations as well as 
boundary conditions at the microscopic scale. 
 
(iv) Averaging the relevant quantities over the fibers cross section. 



PROBLEM DESCRIPTION 

 
1) To model the dynamics of a solution whose components are a 
Newtonian liquid (water) and a single solute within a tube whose 
wall (membrane) prevents to the solute molecules to be 
transported across it.  
 
2) To simulate the process considering different working 
conditions. 
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AN IMPORTANT EFFECT TO CONSIDER:  
                        OSMOSIS 

The fundamental characteristic of the membrane is to be semipermeable, i.e. it allows  
water cross-flow but prevents the lateral flux of the solute. The latter therefore 
increases its concentration within the channel thus giving rise to an osmotic pressure that can 
become not negligible.  
 
The lateral flow is driven by the pressure difference between the channel and the exterior, the 
so-called transmebrane pressure -TMP. The latter is then countered by osmotic pressure 
(which can even cause the stopping of the lateral flow).  
 
If cs

* is the concentration (expressed in mol/ℓt) of the solute, the Morse equation 
gives the corresponding osmotic pressure 

where R∗ = 0.082 ℓt atm/mol oK, is the ideal gas constant and T∗ is the 
absolute temperature. 



MODELLING  STEPS 

1.  DEFINITION OF THE GEOMETRICAL SETTING 
 - Cylindrical geometry 

 
2.  DEFINITION OF THE DEPENDENT VARIABLES 

 - Solute concentration 
 - Fluid velocity in the inner channel 
 - Liquid discharge through the membrane 
 - Pressure 

 
3. POSSIBLE SIMPLIFICATIONS 

 - The density of the solution does not depend on the solute concentration 
  - The rheological properties of the solution do not depend on 

    the solute concentration 
 
4. FUNDAMENTAL EQUATIONS DESCRIBING: 

 - Flow within the channel (Navier Stokes equation) 
 - Flow through the membrane (Darcy’s law) 
 - Evolution equation for the solute concentration 
 - Osmotic pressure  
 - Boundary conditions (no-slip, flux continuity, pressure jump) 

 
 



5. SCALINGS AND CHARACTERISTIC PARAMETERS 
 
6.  ASYMPTOTIC EXPANSION - UPSCALING 

 - Definition of the approximated model  
 - Definition of the macroscopic  quantities  

 
7.  QUALITATIVE PROPERTIES OF THE MODEL 
 
8.  SIMULATIONS 

9.  PHYSICAL INTERPRETATION OF THE RESULTS 
 



TEAM TASKS 

1. Define a mathematical model aimed at describing the  
 process. 

 
2. Introduce a double scale procedure. 
 
3. Define the corresponding mathematical problem 
    (BVP problem). 
 
4. Possible qualitative properties. 
 
5. Perform numerical simulations. 
 


