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NEUTRALIZATION OF ACID WASTEWATERS 

Intro 

 The system is described by the evolution of the overall ion concentration and the radii 

of the spheres (we consider water particles as small spheres). We give some analytical results 

and display some numerical simulations to show the behavior of the solutions. The main 

practical application of this model is the flow of acid solution through neutralizing cartridges in 

which solid particles of CaCO3 are used to neutralize a given flow of an acid mine drainage.  

Acid mine drainage (AMD) and Acid rock drainage (ARD) represent a serious 

environmental hazard all around the world, especially since they can cause long term damages 

to waterways and biodiversity. AMD is mainly originated by the exposition of sulfide ores, 

chiefly iron pyrite, to water and oxygen and it usually refers to the generation of acidic streams 

from abandoned mines.  

 Once a mine site begins to produce acid mine drainage, it will continue to release 

acidic waters, even long after the mine plant has ended its activity. The consequences of AMD 

can be tremendous for aquatic life, the first one to come into contact with the acidic outflow. 

The extinction of entire fish population has been repeatedly reported, but the danger occurs 

also for plants and animals living along the acid stream. The impact on human health can also 

be very high, on account of the AMD capability to leach metals from mine ore, thus making 

these metals bioavailable.  

Although the prevention of acid mine drainage formation would be the best option, it 

is certainly not feasible in the vast majority of the locations where the phenomenon is found. 

As a consequence, in such cases suitable processes to collect and treat acid waters must be set 

up, in order to avoid environmental pollution. Many different options are suitable for AMD 

remediation purposes, the main being the ones based on chemical reactions and/or the 

exploitation of biological mechanism to neutralize and remove metals from the solution. One 

of the possible options to the neutralization process involves the use of a basic chemical 

compound, such as sodium hydroxide, calcium hydroxide or calcium carbonate. The process 

basically consists in the addition of a base to the acidic water or in the flow of the acid solution 

through a basic bulk, in order to raise the pH of the solution. The process triggers the oxidation 

and precipitation of the dissolved heavy metals as hydroxides too. In this context any carbon 

carbonate waste is an ideal neutralizing agent since it is cheap, mainly formed by calcium 

carbonate CaCO3, and it can be particularly effective when available in crushed or pulverized 

form, because of the large accessible reaction surface. 

Potential source of calcium carbonate waste are marble industries, paper industries, 

sugar industries, hatcheries and food processing factories, limestone and a lot more. 

The chemical reactions occurring are the following: 

 

CaCO3 + 2H
+
 ↔ Ca

2+
 + H2O + CO2 

CO2 + H2O ↔ H2CO3 ↔ H
+
 + HCO3 

CaCO3 + H2CO3 ↔ Ca
2+

 + 2HCO3 

CaCO3 + H2O ↔ Ca
2+

 + HCO
3-

+ OH
- 

 

The final effect is a pH increase until an equilibrium value is reached, the equilibrium 

being function of the chemical and physical environmental parameters (temperature, pH initial 

value, CO2 partial pressure…). 

We define the solid, φs, and liquid, φl, volume fractions supposing that at each point 

liquid and solid phases co-exist. Assuming saturation we write φs = 1−φl. So, to keep notation 

simple, here and in the sequel φ represents the solid volume fraction and (1 −φ) the porosity, 

or liquid volume fraction. Once the main physical quantity are defined (such as the 
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concentration of ions H
+
 or, equivalently, the solution pH), we write the mass balances for solid 

skeleton (for the CaCO3 spheres) and for H+, obtaining to a system of two coupled equations. 

 

The Model 

 

 The aim of this section is to model the dynamics of the solid-liquid mixture whose 

constituents are subject to a chemical reaction. We consider a portion of a porous medium 

whose volume is ΔV
*
. The quantity  provides the volume of the liquid 

within ΔV
*
. Because of saturation, the volume of the solid contained in ΔV

*
 is ΔV

*
s = 

. 

If the liquid saturating the pores is an acid solution, we introduce: 

 
The concentration of H

+
 ions can be also expressed in terms of pH, where:  

 . 

We assume that the solid matrix is constituted by n families of CaCO3 spheres with radii 

r
*

1, r
*

2, r
*

n, uniformly mixed, so that the total solid volume fraction is given by: 

 ,  

con i=1, 2, …, n, is the granulometric distribution. 

 

We assume: 

N
*

I,  i = 1, 2, …, n, are given and constant in time. Moreover the spheres do not compact.  

Of course each r
*

i , will depend on . We have:  

. 

Introducing , the granulometric fractions  

and the dimensionless radii (r
*
 is a reference radius), we have 

. 

In case n = 1 (just one family of spheres), we have . 

The radius of the CaCO3 spheres varies (decreases) in time because of the chemical reaction 

occurring on their surface. So, following an Eulerian formalism, the continuity equation for the 

molar concentration of H
+
 is  

. 

With: 

• : liquid discharge, volume of solution passing through the unit surface in the unit time, 

[ ] =cm/s. 

• Γ
*
: number of moles of H

+
 consumed in the unit time per unit volume of the porous medium 

as an effect of the chemical reaction, [Γ
*
] = mol/s cm3. Assuming a first order kinetics  
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Γ
*
 = γ

* 
(total reaction surface per unit volume)(c

*
ph- c

*
ph, 0)+= 

= ,  

where γ
*
 is a constant usually referred as reaction rate [γ

*
] = cm/s, c

*
ph, 0 is the equilibrium 

concentration (the concentration at neutralization), and where (·)+ denotes the positive part. 

In general c
*

ph, 0 depends on the reaction. Here we assume that c
*

ph, 0 corresponds to pH = 7, 

c
*

ph, 0 = 10
-7

 mol/ℓt. 

 

The equation can be rewritten as 

 ,  

where  

, 

with c
*

ph, ref reference concentration (to be selected) and r
*
 is the characteristic radius. 

 

If only one family is present (namely n = 1), we may express Γ
*
 in terms of φ. Indeed, we have: 

. 

 

Concerning , we assume that it is given and constant. In general, if boundary pressure is 

given, an additional equation should be written representing mass conservation of the liquid 

coupled with Darcy’s law: 

 , 

where K
*
(φ) is the medium hydraulic conductivity (whose dependence on φ should be 

prescribed through an experimental law) and P
*
 is the liquid pressure. 

 

One dimension case 

 

We consider a cylinder whose length is L
*
. The axial coordinate is denoted by x

*
. The 

discharge is prescribed,  with q0
*
 given constant. We introduce  

 
where t

*
ref is a reference time that has to be selected. Next, we set c

*
ph, ref=c

*
A, where c

*
A is the 

supremum of the inlet H
+
 concentration c

*
ph, in, namely . We take  

 
which corresponds to a strongly acid solution. We also have c = 10

2-pH
. 

We also define the following quantities: 

• , characteristic convective time. 

• , characteristic time for the CaCO3 consumption (when the 

solution is strongly acid). 

• , characteristic reaction time, namely the H
+
 reaction time. 
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We can write the continuity equation and the consumption equation as follows: 

 

 
 

As initial conditions we take ri(x, 0) = ri, o(x), i = 1, 2, ... , n, and c(x, 0) = co(x), while the only 

boundary condition is the one for c, c(0, t) = cin(t).  

We assume the compatibility condition co(0)=cin (0). Of course, by definition, the inlet H
+
 ions 

concentration c
*

in does not exceed the reference concentration (the inlet pH is always not 

smaller than pHA), so that 0 < cin(t) ≤ 1 for all times. Concerning δ, we get δ = 10
-5

, because, as 

mentioned, c
*

ph, 0 = 10
-7

 mol/ℓt. Finally, concerning the initial porosity, we have 

 
We define 

 
 

and we evaluate them using the values  

 

 
 

We have 

 
 

So that 

 
 

And 

. 

We write 

. 

 

Two time scale approach 

 

 We select t
*

CaCO3 as reference time setting t
*

ref = t
*

CaCO3 meaning that we are interested 

in analyzing the lifetime of the cartridge. So, the system can be rewritten as: 
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The system has two natural time scales. The slower, represented by t, is the one of the 

CaCO3 spheres consumption (in presence of a strongly acid solution). Then we have the fast 

time scale (the reaction time scale) given by: 

 . 

Actually, there is also the convective time scale θ which can be considered simply multiplying 

the time scale τ by a factor θ. Next, we look for c, φ, of the form c (x, t) = C (x, t/ε, t), ri (x, t) = Ri 

(x, t/ε, t), i = 1, 2…n. Thus, we have: 

.  

 

We introduce the asymptotic expansion for the unknowns C, Ri 

 f = f 
(0)

 + εf 
(1)

 + ε
2
f 

(2)
 + ... . 

Inserting the above expansions in the dimensionless system, we obtain initial-boundary value 

problems at successive order of ε. Here we consider only the leading order (the zero order), 

neglecting convergence issues. 

 

Stationary solution 

 

We observe that, φ = 1 entails ri = 0, i = 1, 2 . . . n. So, if φ (x, t) is analytic, then for 

every x ∈ [0, 1], ∂
n
 φ/∂t

n
 = 0, when φ = 1, ∈ n ∈ N. 

This means that if at some point x and at some time t
*
 we have φ (x

*
, t

*
) = 1, then φ (x

*
, t) = 1 

for all t ≥ t
*
. Once the solid fraction has disappeared, it can never be formed again! 

The stationary solution is given by the solution of 

 

that is (spheres completely consumed). Two different 

situations may arise: 

( i ) φ = 1 is reached in a finite time (possibly depending on x). 

( ii ) φ = 1 is reached in an infinite time. 

Suppose that φ|x=0 becomes 1 in a finite time t
*
 at x = 0. Then, we can introduce ti, i = 1, 2, … n, 

such that 

 
We thus estimate t

*
, setting t

*
 = max i=1, 2, …, n {ti}. 

 

Zero order approximation 

 

 We can rewrite de system in terms of C: 

 
 

We can insert the expansion introduced before, getting (at the zero order): 

 
We thus conclude that R

(0)
I = r

(0)
I i=1, 2, …, n so: 
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We got: 

 
Since n=1, this equation has the form: 

 
Or, in terms of pH,  

 
 

Now, we consider the characteristics originating from the boundary x=0, namely  

 
Then, we can estimate the “transit time” Ttr, the time needed for the water to reach the outlet, 

namely 

 
 

Considering now t=0, we have 
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Well posedeness of the mathematical problem 

 

 We will omite the “
(0)

” to have a lighter notation. We will consider the following 

system:  

 
 

We got a pair of functions (c(x,t), φ(x, t)) which will be a solution of the problem for some 

T>0 and if the following conditions hold true: 

1. c(x, t), φ(x, t) in C1 (ΩT). 

2. δ < c(x, t) ≤ 1, and 0 < φ(x, t) ≤ 1 for all (x, t) in ΩT. 

3. φ(x, 0) = φ0(x), and c(0, t) = cin(t), with supt≥0 |cin(t)|≤ 1.  
4. c(x, t) and φ(x, t) fulfill the system for all (x, t) in ΩT

. 

 

Introducing:  

,  

system can be rewritten as:  

 
Where  

. 

 

Suppose that φ0(x) and cin(t) satisfy the hypotheses of the solutions (c(x,t), φ(x, t)) and 

 
 Where 

 . 

 

Then, for 0 < t ≤ T, there exists one and only one solution (u, ψ) in the sense of the last 

4 conditions defined before.  
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Numerical solutions of the system 

 

 We will present some numerical results for the system presented. We will write the 

system in terms of pH:  

 

 
 

 To solve numerically, a forward explicit mode has been used, namely 
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So, in the next figures, we see the behavior of pH and φ, considering  

pHin(t)=2, φ0(x)=0.3+0.1x,  pH0=7. 
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PRACTICE WITH MATLAB 

 

 We made several simulations with Matlab, depending on the time scale, as we show:  

 

Reaction time scale: 

 

∂ф/∂t-ln10.(∂pH/∂t)-(t
*

reac/t
*

conv).ln(10∂pH/∂x)=-(1-ф)
2/3

 

 

∂ф/∂t=(t
*

reac/t
*

CaCO3).(1-ф)
2/3

.10
2-pH

   ф=ф0(x) 

 

Initial and boundary conditions: 

 

ф (x, 0)=ф0(x) 

pH(x, 0)=pH0(x) 

 

Solution: Reaction time scale 

 

pH(x, t)=pH0(x)+(1/ln10).(1- ф0(x))
2/3

/ ф0(x),   t≈O(1) 

 

Plot: Reaction time scale 
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Convective time scale: 

 

∂ф/∂t-ln10.(∂pH/∂t)- ln10.(∂pH/∂x)=-t
*

conv/t
*

reac(1-ф)
2/3

 

 

∂ф/∂t=(t
*

conv/t
*

CaCO3).(1-ф)
2/3

.10
2-pH

   ф=ф0(x) 

 

Initial and boundary conditions: 

 

ф (x, 0)=ф0(x) 

pH(x, 0)=pH0(x) 

pH(0, t)=pHin(t) 

 

Solution: Convection time scale 

 

pH(x, t)=pH
ext

0(x-t/ф0)+ t
*

conv/t
*

reac.(1- ф0(x))
2/3

/ ln10ф0(x),   t≈O(1) 

 

  pH0(u)      u>0 

pH
ext

0(u)= 

  pHin(-ф0u)+t
*

conv/t
*

reac.(1- ф0(x))
2/3

/ ln10ф0(x) u<0 

 

Plot: Convection time scale 
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Consumption time scale: 

 

(t
*

conv/t
*

CaCO3).[(∂ф/∂t-ln10.(∂pH/∂t)]-ln10.(∂pH/∂x)=-t
*

conv/t
*

reac(1-ф)
2/3

 

 

∂ф/∂t=(1-ф)
2/3

.10
2-pH

    

 

Initial and boundary conditions: 

 

ф (x, 0)=ф0(x) 

pH(x, 0)=pH0(x) 

pH(0, t)=pHin(t) 

 

Finite difference scheme: 

 

pH
j
i≈pH(xi, tj),   ф

j
i= ф(xi, tj) 

 

(pH
j
i+1- pH

j
i)/∆x=t

*
conv/t

*
reac.(1/ln10).(1- ф

j
i)

2/3
 

 

10
pHji

(ф
j+1

i- ф
j
i)/∆t=100.(1- ф

j
i)

2/3
 

 

Finite difference grid: 

 

 
 

Plot: Convection time scale 
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Advanced model: 

 

In practice, we know ∆P
*
, not q

*
. By Darcy’s law: q

*
-(k

*
/µ

*
)(∂p

*
/∂x

*
) 

where k
* 

is permeability, µ
*
 is viscosity and p

*
 is pressure.  

 

If k
*
, µ

* 
constant, then because of incompressibility we have q

*
x* = 0.  

 

∂
2
p

*
/∂x

*2
=0 ↔ ∂

2
p

*
/∂x

*
=∆p

*
(t

*
)/L

*
 

 

If ∆p
*
 is constant, then q

*
is constant and our model is consistent with Darcy’s law. 

 

Really: 

 

ф=0    k
*
=0, no permeability 

ф increasing   k
*
, increasing 

 

Use some correlation k
*
( ф)=k(ф) k

*
ref 

 

(1/t
*

ref).∂ф/∂t+(∆p/t
*

conv)(∂c/∂x)(∫0
1
k

-1
(ф)dx)

-1
=-1/t

*
reac(1-ф)

2/3
.c 

 

(1/t
*

ref).∂ф/∂t=1/t
*

CaCO3(1-ф)
2/3

.c   

 

Plot: Advanced model 

 

  
 

 

 

 

Conclusions 

 

1. We know the behaviour of the system in the relevant time scales. 

2. We can determine the lifetime of the cartridges using a basic or an advanced model. 

3. We could develop a more precise study of K
*
(φ) using experimental data based on Δp

*
 

and K
*
 instead of q

*
.   


