


Master en IM MODELING WEEK Sergio Ruiz

NEUTRALIZATION OF ACID WASTEWATERS

Intro

The system is described by the evolution of the overall ion concentration and the radii
of the spheres (we consider water particles as small spheres). We give some analytical results
and display some numerical simulations to show the behavior of the solutions. The main
practical application of this model is the flow of acid solution through neutralizing cartridges in
which solid particles of CaCO; are used to neutralize a given flow of an acid mine drainage.

Acid mine drainage (AMD) and Acid rock drainage (ARD) represent a serious
environmental hazard all around the world, especially since they can cause long term damages
to waterways and biodiversity. AMD is mainly originated by the exposition of sulfide ores,
chiefly iron pyrite, to water and oxygen and it usually refers to the generation of acidic streams
from abandoned mines.

Once a mine site begins to produce acid mine drainage, it will continue to release
acidic waters, even long after the mine plant has ended its activity. The consequences of AMD
can be tremendous for aquatic life, the first one to come into contact with the acidic outflow.
The extinction of entire fish population has been repeatedly reported, but the danger occurs
also for plants and animals living along the acid stream. The impact on human health can also
be very high, on account of the AMD capability to leach metals from mine ore, thus making
these metals bioavailable.

Although the prevention of acid mine drainage formation would be the best option, it
is certainly not feasible in the vast majority of the locations where the phenomenon is found.
As a consequence, in such cases suitable processes to collect and treat acid waters must be set
up, in order to avoid environmental pollution. Many different options are suitable for AMD
remediation purposes, the main being the ones based on chemical reactions and/or the
exploitation of biological mechanism to neutralize and remove metals from the solution. One
of the possible options to the neutralization process involves the use of a basic chemical
compound, such as sodium hydroxide, calcium hydroxide or calcium carbonate. The process
basically consists in the addition of a base to the acidic water or in the flow of the acid solution
through a basic bulk, in order to raise the pH of the solution. The process triggers the oxidation
and precipitation of the dissolved heavy metals as hydroxides too. In this context any carbon
carbonate waste is an ideal neutralizing agent since it is cheap, mainly formed by calcium
carbonate CaCOs;, and it can be particularly effective when available in crushed or pulverized
form, because of the large accessible reaction surface.

Potential source of calcium carbonate waste are marble industries, paper industries,
sugar industries, hatcheries and food processing factories, limestone and a lot more.

The chemical reactions occurring are the following:

CaCO; + 2H" &> Ca** + H,0 + CO,
CO, + H,0 € H,CO3 <> H' + HCO;
CaCO; + H,CO; &> Ca®* + 2HCO;
CaCO; + H,0 &> Ca** + HCO*+ OH

The final effect is a pH increase until an equilibrium value is reached, the equilibrium
being function of the chemical and physical environmental parameters (temperature, pH initial
value, CO, partial pressure...).

We define the solid, ¢, and liquid, ¢, volume fractions supposing that at each point
liguid and solid phases co-exist. Assuming saturation we write ¢; = 1-¢,. So, to keep notation
simple, here and in the sequel ¢ represents the solid volume fraction and (1 —¢) the porosity,
or liquid volume fraction. Once the main physical quantity are defined (such as the
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concentration of ions H* or, equivalently, the solution pH), we write the mass balances for solid
skeleton (for the CaCO3 spheres) and for H+, obtaining to a system of two coupled equations.

The Model

The aim of this section is to model the dynamics of the solid-liquid mixture whose
constituents are subject to a chemical reaction. We consider a portion of a porous medium

. e O (T * ) B
whose volume is AV . The quantity 'L\"' -0 ) provides the volume of the liquid
within AV'. Because of saturation, the volume of the solid contained in AV s AV*S =
-r.-'_\.l-'* [1 — (& ’TtJJ d3z*

If the liquid saturating the pores is an acid solution, we introduce:

number of moles of H ions dissolved into the water

c, = - . , ¢, | = mol/tt.
oh volume occupied by water = AV { Ph} /

The concentration of H" ions can be also expressed in terms of pH, where:

e Cph
pH = —logyo (1 mol /{1

We assume that the solid matrix is constituted by n families of CaCO; spheres with radii
r'y, I [ o uniformly mixed, so that the total solid volume fraction is given by:
R S N w3 A= . i N
l—¢=gm) ;. ;7 °N;, where N,

’

coni=1, 2, ..., n, is the granulometric distribution.

We assume:
N*|, i=1,2,.. n,are given and constant in time. Moreover the spheres do not compact.

* . = % e 3
Of course each r;, will dependon & t* We have:

_ T Y
$@E* ) =1—zr > (F@" )M

3
i=1
N
A A Ni=7, i=12...0
Introducing i=1""1 the granulometric fractions ‘
r¥
=ty i=L2..., n
. . . * . i
and the dimensionless radii (r is a reference radius), we have

1 4 #* 3 p ¥ - 3ar
o=1-— g?l’?' N Z ri"'l\"-"

1=1

4w .
. . d=1—-mr*3N* & 1=
In case n =1 (just one family of spheres), we have 3

The radius of the CaCO; spheres varies (decreases) in time because of the chemical reaction
occurring on their surface. So, following an Eulerian formalism, the continuity equation for the

molar concentration of H' is
J

v (i @) =—V*=(chy, @*)—T"
With:
—* %
'q. : liquid discharge, volume of solution passing through the unit surface in the unit time,
(771 =cm/s.

o I": number of moles of H* consumed in the unit time per unit volume of the porous medium
as an effect of the chemical reaction, [F*] = mol/s cm3. Assuming a first order kinetics
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* * . . * *
I =y (total reaction surface per unit volume)(c ph- C pn, 0)+=
n

4y N* Z.ﬁ\fﬂ--}‘f ) (e —in)..
= i=1 ,
where y* is a constant usually referred as reaction rate [v*] = cm/s, c*ph, o is the equilibrium
concentration (the concentration at neutralization), and where (-), denotes the positive part.
In general c*ph, o depends on the reaction. Here we assume that c*ph, o corresponds to pH = 7,

c*ph,() =10 mol/8t.

The equation can be rewritten as
d (("‘(‘-‘TI):] * — % y Fo 3 W T ) - £ v
o TV (€d7) =—4ny" N ;,mir,. (c—8).

where

’

C.*; .
c=—"— &=

("ph.ref C’ph.ref
’

Cﬁah 0

with c*ph, f reference concentration (to be selected) and r’ is the characteristic radius.

If only one family is present (namely n = 1), we may express ™ in terms of . Indeed, we have:

| D= ’:r'* W(l = @)2;3 (C*

ph ;h.o)+ .

Concerning ‘T*, we assume that it is given and constant. In general, if boundary pressure is
given, an additional equation should be written representing mass conservation of the liquid
coupled with Darcy’s law:
d(prd i

Wio) _ g (K*(¢) v P*) =0,

dt.«
where K'(¢) is the medium hydraulic conductivity (whose dependence on ¢ should be
prescribed through an experimental law) and P” is the liquid pressure.

’

One dimension case

We consider a cylinder whose length is L. The axial coordinate is denoted by x". The

discharge is prescribed, 4 Y =4, €x with qo* given constant. We introduce
T* ‘I.H

* . . * * *
where t ¢ is a reference time that has to be selected. Next, we set ¢ ,, r=C o, Where ¢ , is the
. . * &G = 8UDy S0 €p o (F

supremum of the inlet H" concentration ¢ oh, in, NAMely 4 Pt >0 Cph,in ( }. We take

. . &,
¢t =10"2 mol /0, = H, = —log ol - S

2 (%, L e (1 -mol/ft)
which corresponds to a strongly acid solution. We also have c = 10>,
We also define the following quantities:

N L»:

beonw = — _— S

. 95, characteristic convective time.

*

e
'pC' aCOg

t:‘i. . —
CaCOg = % H Lo . .
o S ¢4 Mcacoy -“*, characteristic time for the CaCO; consumption (when the

solution is strongly acid).
treae = (Amy*N*r=2) ™

o “reac

, characteristic reaction time, namely the H" reaction time.
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We can write the continuity equation and the consumption equation as follows:

1 9(co) 1 e

_ - — = N;r? ) (e—46). HT ions,
t:f:f ot beonv dr L eac (Z ' })
1 o 1 X
; 'c)t? = (e—4d), = TP CaCO3 spheres
¥ CaCOs

As initial conditions we take ri(x, 0) = r; o(x),i=1, 2, ...,
boundary condition is the one for ¢, ¢(0, t) = c¢;,(t).

Sergio Ruiz

n, and c(x, 0) = c,(x), while the only

We assume the compatibility condition co(0)=c;, (0). Of course, by definition, the inlet H" ions
concentration c*in does not exceed the reference concentration (the inlet pH is always not
smaller than pH,), so that 0 < cis(t) < 1 for all times. Concerning &, we get 6 = 10”, because, as

mentioned, c*ph,o =107 mol/8t. Finally, concerning the initial porosity, we have
n

s ;
6o () =1~ gmr” SN*Y R, N
i=1
We define
g - t:ﬂﬂl ?."lI]L'l o — t:‘E‘ﬂF
tCacos tCaco,

and we evaluate them using the values

40em | 0.15em/s | 1 [ 10%em™ | 2-107° em/s
We have
t::"me ~ 10 s, e 10,. J tE'aC'Og ~ 10" s
So that

Q~1072% e~1073

And

b = g ~ 10

We write _

§=0s, with 6=0 (10)

Two time scale approach

* . . * * . .
We select t c,co3 as reference time setting t o = t cacos mMeaning that we are interested

in analyzing the lifetime of the cartridge. So, the system can be rewritten as:
d(eg) , 18c  1(~ron i N
Bt +EE——; (ZJ\;,I?- (E—O}+ x H

i=1
il U — , 8

ions,

01",‘
ot

=—(c—9d), CaCO5 spheres,
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The system has two natural time scales. The slower, represented by t, is the one of the
CaCO; spheres consumption (in presence of a strongly acid solution). Then we have the fast

time scale (the reaction time scale) given by:
t

£

T

Actually, there is also the convective time scale 8 which can be considered simply multiplying
the time scale t by a factor 8. Next, we look for ¢, ¢, of the form ¢ (x, t) = C (x, t/g, t), ri(x, t) = R
(x, t/g, t),i=1, 2..n. Thus, we have:

d d 10

ot ot =or,

We introduce the asymptotic expansion for the unknowns C, R;
f=fO+efM4ef? s
Inserting the above expansions in the dimensionless system, we obtain initial-boundary value
problems at successive order of €. Here we consider only the leading order (the zero order),
neglecting convergence issues.

Stationary solution

We observe that, d =1 entailsr;,=0,i=1,2...n.So, if ¢ (x, t) is analytic, then for
every x@[0, 1], 0" ¢/0t" =0, when b =1, EnEN.
This means that if at some point x and at some time t” we have ¢ (x,t) =1, then ¢ (x, t) = 1
forall t >t". Once the solid fraction has disappeared, it can never be formed again!
The stationary solution is given by the solution of
a_( =0, C(O) = Cin
ox '
that is Coo(Z) = €in > 1, and ¢ () = 1(spheres completely consumed). Two different
situations may arise:
(i) ¢ =1isreached in a finite time (possibly depending on x).
(ii) d =1 isreached in an infinite time.
Suppose that ¢ |-obecomes 1 in a finite time t atx=0. Then, we can introduce t,i=1, 2, ..n,
such that

t;
Tia (0) — / (Cén (” . ‘5}4- dt = 0.
Jo
We thus estimate t*, setting t" = max i=1, 2, ..., n{t;}.
Zero order approximation

We can rewrite de system in terms of C:

= \i=1

ot e Ot Oz Ox
dR; 10R;

_——— = — i s )

adt s Ot (C=0)

We can insert the expansion introduced before, getting (at the zero order):
4 p0)
dRE ;

or

We thus conclude that R(O). = r(°)| i=1, 2, ..., n so:

=0, = R"=R%@,1t), i=12,...,n

]
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time t* (sec) 0 0

length x* (cm)

We got:

n 5 -
C[O}(:f:, to,7) =0+ [C(z,t0,0) — ] exp — N; T.E{U) (m,15) —_—
; ( ) ¢ (z,to)
Since n=1, this equation has the form:

CO(z,t,,7) =6+ [C(x,1,,0) — 8] exp { —(1 — ¢ (z, 1)) ———
¢ (z, t,)
Or, in terms of pH,

B R ‘ ,(0) (. 2/ ik |
pH = pH, —log;g {0 +[C(2,1,,0) — d] exp [_(1 = 90(@,t0)) aqﬁ(oh(x,to}] J

Now, we consider the characteristics originating from the boundary x=0, namely

T () =c+éf¢f0}(s,t)ds.

]

Then, we can estimate the “transit time” T, the time needed for the water to reach the outlet,
namely

1
T = f & (s,1)ds
0

Considering now t=0, we have
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T:Q/gbo(s}ds, D Exzl, Exwpgl,
J £

z N
% =64 (e, (&) — exp{ / \’2 )ds} Ol £L£a<

Well posedeness of the mathematical problem

We will omite the “9” to have a lighter notation. We will consider the following
system:
( dc & ; 2/3 -

T —0(1 —¢(x,t))" (c—9), O<z<l, 0<t,

ar

dd¢ .
? 1—¢)2B(e—0), 0<z<l, 0<t,

ot

€l,og=¢Cn(t), &o=0,(z),

We got a pair of functions (c(x,t), d(x, t)) which will be a solution of the problem for some
T>0 and if the following conditions hold true:

1. c(x, t), d(x, t) in C1 (Qy).

2. 8<c(x,t)<1,and0< P(x, t) <1 forall (x, t)in Q.

3. (%, 0) = do(x), and ¢(0, t) = ci,(t), with supwo |Cin(t) | 1.

* ¢(x, t) and d(x, t) fulfill the system for all (x, t) in Qr

Introducing:
u=c—9, and Y= (1-— qé)l-"’g
system can be rewritten as:
5 ,\
f—u:—ﬂz‘frgu, O<ae<l, 0<t,
dr
{
— = —u, 0SBl 0 %
ot
L u‘|;r,:|3 = Uin {” s EI!|1:D = u."o (I] f

Where
Uin = € — J, and 'L';!o = (1- @0)1;’3

Suppose that ¢y(x) and c;,(t) satisfy the hypotheses of the solutions (c(x,t), d(x, t)) and
1

20B|v,||
Where
B = sup;>q |tin (t)|

Then, for 0 < t < T, there exists one and only one solution (u, Y) in the sense of the last
4 conditions defined before.
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Numerical solutions of the system

We will present some numerical results for the system presented. We will write the

system in terms of pH:

To solve numerically, a forward explicit mode has been used, namely

-

i+1.7 1,7
pH"™ 7 — pH"/ [ ipan2f3 HY —nH
- 1= ¢4) " (1 107 i)

Az 1o (L~ ¢) (

2

— . 1oPHa gt
(1— é?.))2f3 = [(1— @;)1'“?3 _ / |_10(.‘II £) _ ]_Opl-lo]dc
J0

3
+
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So, in the next figures, we see the behavior of pH and ¢, considering
PHin(t)=2, Po(x)=0.3+0.1x, pHo=7.

Plot of pH(x",t") at the slow time scale 7

pH(X* t¥)

g

;hl‘ /

Sy

Y

Sl
.t‘.i!‘.u“t‘,;;l‘,q,

““"'n“‘;:._s‘:.:a"h‘ iy

o

length x* (em) time t* (sec)

Plot of a(x* t*) at the slow time scale

H(x*t%)

2

length x* (cm 0
o (e time t* (sec)

10
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PRACTICE WITH MATLAB

We made several simulations with Matlab, depending on the time scale, as we show:
Reaction time scale:
d¢/0t-In10.(ApH/t)-(t cac/t cony)-IN(103pH/Ax)=-(1-d)*
O0G/Ot=(t reac/t cacos)-(1-0)”210"™  ————> p=tho(x)
Initial and boundary conditions:

¢ (x, 0)=do(x)
pH(x, 0)=pHo(x)

Solution: Reaction time scale

PH(X, t)=pHo(x)+(1/In10).(1- do(x))**/ do(x), t=0(1)

Plot: Reaction time scale

pHx 1)
w
i

11
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Convective time scale:

dd/0t-In10.(0pH/dt)- In10.(0pH/AX)=-t com/t reac(1-$)*>
Od/At=(t conu/t cacos)-(1-9)72.207P"  ———» d=dpo(x)
Initial and boundary conditions:

¢ (x, 0)=do(x)

pH(x, 0)=pHo(x)

pH(0, t)=pHix(t)

Solution: Convection time scale

pH(X; t)=pHEXtO(X't/¢O)+ t*conv/t*reac-(:l-' d)O(X))ZB/ |n10¢o(x), tzo(l)
pHo(u) u>0

pHEXtO(U)=
pHin('d)ou)+t*conv/t*reac-(1' ¢O(X))2/3/ |n10¢o(X) u<0

Plot: Convection time scale

pH(x L)

12
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Consumption time scale:

(t*conv/t*CaC03)-[(O(:I)/Ot'ln:I-O-(de/dt)]'ln10-(6pH/GX):'t*conv/t*reac(:I-'d))Z/3
dd/dt=(1-¢)”%.10*""
Initial and boundary conditions:

¢ (x, 0)=do(x)

pH(x, 0)=pHo(x)

PH(O, t)=pHin(t)

Finite difference scheme:

pH=pH(x; ), ¢'= dlx, )
(iji+1' iji)/Ax=t*conv/t*reac-(l/lnlo)-(l' ¢ji)2/3
107" (¢ - ¢)/Bt=100.(1- ¢')**

Finite difference grid:

Plot: Convection time scale
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Advanced model:

In practice, we know AP, not q". By Darcy’s law: q"-(k /i )(dp /0x’)
where k" is permeability, u* is viscosity and p* is pressure.

If k', u* constant, then because of incompressibility we have q*x* =0.
%p /ox?=0 o 9%p /ox =0p (t))/L"

If Ap” is constant, then qis constant and our model is consistent with Darcy’s law.

Really:
¢=0 — k’=0, no permeability
¢ increasing ———> kK, increasing

Use some correlation k'( $)=k() k't
(1/t*ref)-dd)/dt'l'(Ap/t*conv)(dc/dx)(folk-l(d))dx)-1='1/t*reac(1'¢)2/3'c
(1/t ). 00/0t=1/t cacos(1-0) .

Plot: Advanced model

Conclusions

1. We know the behaviour of the system in the relevant time scales.

We can determine the lifetime of the cartridges using a basic or an advanced model.

3. We could develop a more precise study of K*(d>) using experimental data based on Ap*
and K’ instead of q*.

N
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