



## MODELLING WEEK

## MODELLING THE PATIENTS DEMAND IN OPHTALMOLOGICAL CLINICS

#### <u>COMPANY:</u>

**Vissum Corporación** 

**INSTRUCTORS:** 

Gregorio Tirado Domínguez

Martín López García

#### **STUDENTS:**

Umberto Biccari Daniela García Rojo Isabel Palma Gisbert Elena Romero Román Jorge Toledo Díaz

## **TABLE OF CONTENTS**

| DESCRIPTION OF THE PROBLEM             |
|----------------------------------------|
| WORKING WITH THE DATA                  |
| DEPARTMENT 8: "OFTALMOLOGIA GENERAL" 6 |
| DEPARTMENT 6: "CATARATAS"9             |
| TWO DEPARTMENTS TOGETHER11             |
| SOME SPECIAL CASES                     |
| SIMULATOR                              |
| FIRST SIMULATION MODEL                 |
| VARIABLES                              |
| MODEL                                  |
| MODEL SCHEME                           |
| RESULTS                                |
| SECOND SIMULATION MODEL                |
| MODEL'S ELEMENTS                       |
| MODEL SCHEME                           |
| RESULTS                                |
| CONCLUSIONS                            |

## **DESCRIPTION OF THE PROBLEM**

The problem we were asked to deal with consists in creating a mathematical model to analyze the behaviour of patients visiting an ophthalmological clinic:

| <b>X</b> | 🔄 🖤 ▼ 🔍 -   ≠ data - Microsoft Excel 🗆 📾 🖾 |                |       |                  |              |       |                |                |                |            |             |     |                                |     |                       |          |
|----------|--------------------------------------------|----------------|-------|------------------|--------------|-------|----------------|----------------|----------------|------------|-------------|-----|--------------------------------|-----|-----------------------|----------|
| Arc      | nivo In                                    | icio Insertar  | Dise  | ño de página     | Fórmulas     | Datos | Revi           | sar Vista      |                |            |             |     |                                |     | \$                    | 🕜 🕳 📾 🖾  |
| ľ        | <b>.</b>                                   | Calibri        | × 1   | ı ĭ Aî ∧ĭ        | = = = *      | 9, -  | ÷              | General        | ¥              | ≤¢         |             |     | → Insertar → Σ<br>→ Eliminar → | Ĵ 👌 | r Ah                  |          |
| Pe       | gar 🍼                                      | NKS-           | · 🔛 • | · 👌 • <u>A</u> • |              | = 🐖   | • <b>a</b> • • | 🥞 - % 000 📩    | o° <b>→</b> °° | Formato    | Dar formato | Est | los de<br>Ida 🛪 🔛 Formato 👻 🥥  | Ord | enar Buscary          |          |
| Porta    | papeles (                                  | a 1            | uente | 5                | Alineaci     | ón    | G              | Número         | G              |            | Estilos     |     | Celdas                         | 1   | /lodificar            |          |
|          | 114800                                     | 02 🔫 🤄         |       | $f_{sc}$         |              |       |                |                |                |            |             |     |                                |     |                       | ~        |
|          | в                                          | С              | D     |                  | E            | F     |                | G              | н              |            | 1           | J   | К                              | L   | M                     |          |
| 1        | V1                                         | V2             | V3    | V4               |              | V5    | V6             |                | V7             | V8         |             | V9  | V10                            | V11 | V12                   | 1=       |
| 2        | 1330575                                    | 001PA000000    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 80             | DRA. ALV   | AREZ        | 2   | REVISIONES LARGAS              | 2   | REVISION ANUA         | AL I     |
| з        | 415600                                     | 001PA000242    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1162           | DRA IGLE   | SIAS        | 1   | PRIMERAS                       | 1   | PRIMERA VISITA        | A :      |
| 4        | 415985                                     | 001PA000242    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1162           | 2 DRA IGLE | SIAS        | 5   | <b>REVISION SEGUIMIENTO</b>    | 11  | REVISION SEGUI        | IMIENTO  |
| 5        | 432305                                     | 001PA000242    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 1098           | B DRA.CIAN | NCAS        | 4   | POSTOPERATORIOS                | 37  | REV POSTOP HA         | ASTA 1 M |
| 6        | 144856                                     | 001PA001607    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 1099           | DRA.DE B   | BENITO      | 2   | REVISIONES LARGAS              | 4   | <b>REVISION 3 MES</b> | SES      |
| 7        | 208701                                     | 001PA005798    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 803            | DRA. ALV   | AREZ        | 4   | POSTOPERATORIOS                | 37  | <b>REV POSTOP HA</b>  | ASTA 1 M |
| 8        | 1840290                                    | 001PA007647    | 20001 | VISSUM SAN       | TA HORTENSIA | 10    | BAJA VI        | SION           | 1113           | JOSE LUIS  | S HDEZ      | 5   | <b>REVISION SEGUIMIENTO</b>    | 11  | REVISION SEGU         | IMIENTO  |
| 9        | 1840695                                    | 001PA008046    | 20001 | VISSUM SAN       | TA HORTENSIA | 1     | CIRUGIA        | REFRACTIVA     | 1143           | DR.GIME    | NEZ VAL     | 4   | POSTOPERATORIOS                | 18  | REV POSTOP 24         | н        |
| 10       | 1841009                                    | 001PA008046    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 116            | 2 DRA IGLE | SIAS        | 5   | <b>REVISION SEGUIMIENTO</b>    | 11  | REVISION SEGUI        | IMIENTO  |
| 11       | 1467508                                    | 001PA008228    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 1099           | DRA.DE B   | BENITO      | 2   | REVISIONES LARGAS              | 2   | REVISION ANUA         | AL :     |
| 12       | 1442602                                    | 001PA009711    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 802            | DRA. ALV   | AREZ        | 1   | PRIMERAS                       | 1   | PRIMERA VISITA        | A :      |
| 13       | 1532656                                    | 001PA009711    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 803            | DRA. ALV   | AREZ        | 4   | POSTOPERATORIOS                | 38  | <b>REV POSTOP DE</b>  | 1 A 3M   |
| 14       | 74497                                      | 001PA010088    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 1090           | DRA.ARR    | ANZ         | 4   | POSTOPERATORIOS                | 18  | <b>REV POSTOP 24</b>  | н        |
| 15       | 172215                                     | 001PA013013    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | L 1100         | DRA.GAR    | ICIA GONZ   | 2   | REVISIONES LARGAS              | 2   | <b>REVISION ANUA</b>  | AL :     |
| 16       | 1749628                                    | 001PA014933    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 803            | DRA. ALV   | AREZ        | 5   | <b>REVISION SEGUIMIENTO</b>    | 11  | REVISION SEGUI        | IMIENTO  |
| 17       | 1787455                                    | 001PA014933    | 20001 | VISSUM SAN       | TA HORTENSIA | 7     | GLAUCO         | MA             | 109            | DRA.ARR    | ANZ         | 5   | REVISION SEGUIMIENTO           | 11  | REVISION SEGU         | IMIENTO  |
| 18       | 1811348                                    | 001PA014933    | 20001 | VISSUM SAN       | TA HORTENSIA | 7     | GLAUCO         | MA             | 109            | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES :    |
| 19       | 1437075                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1096           | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 2   | REVISION ANUA         | AL :     |
| 20       | 1440879                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 109            | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES :    |
| 21       | 1593707                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | L 1090         | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES :    |
| 22       | 1746121                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1096           | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 4   | <b>REVISION 3 MES</b> | SES :    |
| 23       | 98518                                      | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 109            | DRA.ARR    | ANZ         | 5   | REVISION SEGUIMIENTO           | 11  | REVISION SEGU         | IMIENTO  |
| 24       | 140426                                     | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | L 1090         | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES :    |
| 25       | 287581                                     | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 7     | GLAUCO         | MA             | 1096           | DRA.ARR    | ANZ         | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES :    |
| 26       | 1872530                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 6     | CATARA         | TAS            | 1145           | DR.GIME    | NEZ VAL     | 4   | POSTOPERATORIOS                | 18  | <b>REV POSTOP 24</b>  | н        |
| 27       | 1875549                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1149           | DR.GIME    | NEZ VAL     | 5   | REVISION SEGUIMIENTO           | 11  | REVISION SEGU         | IMIENTO  |
| 28       | 1888381                                    | 001PA015171    | 20001 | VISSUM SAN       | TA HORTENSIA | 7     | GLAUCO         | MA             | 1096           | DRA.ARR    | ANZ         | 5   | REVISION SEGUIMIENTO           | 11  | REVISION SEGU         | IMIENTO  |
| 29       | 133714                                     | 001PA017779    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1099           | DRA.DE B   | BENITO      | 2   | REVISIONES LARGAS              | 3   | <b>REVISION 6 MES</b> | SES 1    |
| 30       | 153710                                     | 001PA017779    | 20001 | VISSUM SAN       | TA HORTENSIA | 8     | OFTALM         | OLOGIA GENERAL | 1099           | DRA.DE E   | BENITO      | 5   | REVISION SEGUIMIENTO           | 11  | REVISION SEGU         | IMIENTO  |
| 14 4     | ► H                                        | oja1 / Hoja2 / | Hoja3 | 200 M CAN        | TA UODTENCIA | 0     | OFTAIN         |                | 1000           |            | 4           | 2   |                                | -   |                       | ►    (   |

Our problem consists in optimizing patients demand for an ophthalmological clinic; we have a database containing all the following information about any visit:

- 1. V1 visit ID
- 2. V2 client ID
- 3. V3 clinic ID
- 4. V4 Name of the clinic
- 5. V5 Department ID
- 6. V6 Name of the department
- 7. V7 Doctor ID
- 8. V8 Doctor Name
- 9. V9 Family ID
- 10. V10 Family Name
- 11. V11 Kind of visit ID
- 12. V12 Kind of visit
- 13. V13 Date of the visit

14. V14 - Date of the call

15. V15 - Indicates if the visit was or not performed.

The clinic has many departments (15) with several doctors (32), but all the patients have to follow almost the same procedure. The first time they come to the clinic they have to follow a FIRST VISIT protocol. Then they may have to proceed with surgery or just continue with a normal sequence of visits such as check-up or other kinds of visit. Some patients drop out of the process, because they never showed up to the visitor just because they don't need any other visit although, there are many patients that remain in the process for several years. One thing which is very important is that every type of visit has a different demand in time.

The total amount of visits is **147.992**. Vissum Corporation gave us the data in an excel file. We used them to create our model.

The company gave us this working plan:

- 1. Create a mathematical model describing the new patients demand. Ideally, the model should offer an estimate of the demand in the future.
- 2. Create a mathematical model for the behaviour of consolidated patients. This might be done using Markov Models.
- 3. Using the developed models and simulation techniques, estimate a model for the aggregated demand month by month. This final model should allow the optimization of the doctor's agendas.
- 4. Identify the asymptotic behaviour of the demand. Analyse whether the patients demand is growing or, on the other hand, we've reached a stationary state, in order to decide whether or not new doctors should be recruited.

We observed that we could identify two different problems (1-4 e 2-3). The first one is to estimate the demand and its asymptotic behaviour. This may be done by using time series. The second problem is to study the behaviour of consolidated patients, supposing to know the demand. Because of the few time we had at our disposition, we focused only on the 2 and 3.



#### **MODEL SCHEME**

Our aim was to study all the departments together but, always because of the lack of time, we were able to analyse only one of them. Each department may be studied by using two different models: an analytical one or a simulation. The analytical one is a Markov process: there is a network of queues (the departments); in each department there is a queue of patients with a Poisson arrival process; each patient is attended by a doctor, with a deterministic time of visit D. After the visit, the patient may simply exit the process or he may come back to the department; this happens in a time t with a probability p. When we add others departments, we also have a probability of transition between two departments. We indicated with s the number of services (in this case doctors); the model has an analytical solution only if s=1 and if we don't consider the transition time. This analytical model appeared to be too much complicated, so we decided to use a simulator. In order to do this, we needed to know:

- The distribution of the arrivals: we assumed it to be an exponential one;
- The probabilities of transitions between the kinds of visit: we estimated them by using a Matlab program from the data we had at disposition;
- The mean times between visits: we estimated them by using a Matlab program too.

## **WORKING WITH THE DATA**

First of all, we decided deal with the data with Matlab.

Our aim was to create a simulator for all the departments, but it became complicated and we didn't have enough time to do it. That's why we decided to begin studying two departments: "General Ophthalmology" and "Cataracts". We've chosen them because of two reasons:

- The amount of data is large enough (96.073, about 65% of the total data);
- There weren't kind of visits specific of these departments (i.e., all the kind of visits of these departments appear also in other departments).

First, we started with the study of departments one by one; in fact the simulator will use only one of them. Then we studied the two departments together.

Before focusing on these two departments, we made some general studies: we firstly made a program to count how many times each patient changes from one department to another and then we calculated how many new arrivals each doctor has. We obtained the two following sets of data.

#### **DOCTOR ID**

61080180210921094109510961098109911001101110311051106110711081112111411211128112911451146116111621182

#### NUMBER OF NEW ARRIVALS

| 0    | 256 | 599 | 769 | 0  | 0 | 1287 | 376 | 718 | 1904 | 90   |
|------|-----|-----|-----|----|---|------|-----|-----|------|------|
| 1358 | 0   | 131 | 82  | 22 | 0 | 0    | 197 | 52  | 960  | 1106 |
| 248  | 97  | 821 | 0   |    |   |      |     |     |      |      |

As we have mentioned before, we have studied the case of one department for the simulation and we've also studied two departments together, as we are going to see.

## **DEPARTMENT 8: "OFTALMOLOGIA GENERAL"**

This department is the one which contains the biggest number of visits (58.344, about the 40% of all the data). We ordered them firstly by their ID and then by the date of the visit.

We did a program to count how many times each patient change kind of visit; then we used it to calculate the probabilities of changes between kind of visits in the same department and we obtained the following matrix:

|   | 1 | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|---|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 0 | 0.1375 | 0.0291 | 0.0290 | 0.1405 | 0      | 0.0009 | 0.0004 | 0.0010 | 0.6615 |
| 2 | 0 | 0.4278 | 0.0579 | 0.0407 | 0.0915 | 0      | 0.0002 | 0      | 0.0005 | 0.3813 |
| 3 | 0 | 0.1504 | 0.3639 | 0.2017 | 0.1199 | 0      | 0.0009 | 0.0002 | 0.0011 | 0.1617 |
| 4 | 0 | 0.0797 | 0.2261 | 0.3245 | 0.2023 | 0      | 0.0002 | 0.0002 | 0.0020 | 0.1650 |
| 5 | 0 | 0.0609 | 0.0790 | 0.1489 | 0.4551 | 0.0003 | 0.0014 | 0.0010 | 0.0040 | 0.2494 |
| 6 | 0 | 0.0833 | 0.0500 | 0.2000 | 0.3333 | 0      | 0      | 0      | 0      | 0.3333 |
| 7 | 0 | 0.0270 | 0.0541 | 0.0270 | 0.4595 | 0.0495 | 0.0270 | 0.0405 | 0      | 0.3243 |
| 8 | 0 | 0.0721 | 0.0360 | 0.1081 | 0.1712 | 0      | 0      | 0.0180 | 0      | 0.5946 |
| 9 | 0 | 0.0721 | 0.0496 | 0.1322 | 0.3636 | 0      | 0      | 0      | 0.0083 | 0.3967 |

#### LEGEND

| 1 - First visit              | <b>6</b> - 24h post-operative revision        |
|------------------------------|-----------------------------------------------|
| <b>2</b> - One year revision | <b>7</b> - 1 month post-operative revision    |
| <b>3</b> - 6 month revision  | <b>8</b> - 1-3 month post-operative revision  |
| 4 - 3 month revision         | <b>9</b> - Discharged post-operative revision |
| 5 - Monitoring revision      | 10 - Patient out of the system                |
|                              |                                               |

In general, the program works as it follow: it asks Matlab to read the data from an excel sheet; looking through these data, it checks firstly if there are two or more following records for the same patient. If this happens, it controls the kind of visit: if there are two different kind of visit or if the kind is the same but is not a "first visit", it adds 1 in the corresponding position of the matrix; although, it adds one in the exit column.

If in two following records there are two different patients, if the date of visit is before 01/01/2011 the case is considered as an exit.

Then, by dividing each row by the sum of all the elements it contains, we obtain the probability requested.

Below the matrix, we've got the names of the 9 different kind of visits bellow the matrix. In each position we have the probability of change from one kind of visit to other kind of visit.

The matrix isn't square because we have added an extra column to count people who never come back to the clinic, so this column has the probability of change from one kind of visit to exit.

Also, we can see that the first column contains just zeros because a patient can not be a first visit again. In fact, we have found same special cases that we will explain later.

The lowest probabilities are in the columns 6 to 9 because we are in a clinic department, so the probability to change from any kind of visit to a post-surgery visit is very small.

The highest probabilities are in the fifth and the tenth column. For the last one is obvious because if not the system would be very busy. For the fifth column, the company told us that the monitoring check-up (number 5) is a kind of visit that doctors use a lot when they don't know well how to classify a new patient.

Then, with these probabilities we have calculated the next matrix which contains the mean times, in days, between two kind of visits.

Firstly, we've assumed that the transition time depended on the initial and final kind of visit of the patients.

|   | 1 | 2       | 3       | 4       | 5       | 6      | 7      | 8       | 9       |
|---|---|---------|---------|---------|---------|--------|--------|---------|---------|
| 1 | 0 | 545,930 | 274,480 | 194,959 | 73,494  | 0,000  | 18,571 | 75,333  | 163,750 |
| 2 | 0 | 414,993 | 285,246 | 247,453 | 148,709 | 0,000  | 43,000 | 0,000   | 160,833 |
| 3 | 0 | 377,734 | 226,104 | 211,926 | 142,017 | 0,000  | 94,250 | 191,000 | 223,000 |
| 4 | 0 | 413,774 | 239,152 | 174,884 | 122,797 | 0,000  | 11,000 | 98,000  | 186,600 |
| 5 | 0 | 480,326 | 275,117 | 189,877 | 81,821  | 37,500 | 65,706 | 63,250  | 113,813 |
| 6 | 0 | 585,800 | 638,667 | 379,000 | 125,600 | 0,000  | 0,000  | 0,000   | 0,000   |
| 7 | 0 | 682,000 | 197,500 | 147,500 | 67,706  | 33,000 | 29,333 | 36,000  | 0,000   |
| 8 | 0 | 492,000 | 589,250 | 146,583 | 256,263 | 0,000  | 0,000  | 42,000  | 0,000   |
| 9 | 0 | 508,333 | 194,167 | 191,250 | 146,955 | 0,000  | 0,000  | 0,000   | 0,000   |

These times are not that we expected, for example, the columns corresponding to the 3 month check-up (the fourth) has, in average, more than 90 days (number of days in three months). In fact, the mean times in all columns are higher than it should be because it's possible that the patients go to other departments before they come back to this one. We will check it when we see the calculations with two departments together.

Also, we have done the calculations of the mean times in a vector in order to not spend much time with the simulator. In this vector, we are supposing that the time only depends on the final kind of visit and not on the original.

| 1 | 2       | 3       | 4       | 5      | 6      | 7      | 8      | 9       |
|---|---------|---------|---------|--------|--------|--------|--------|---------|
| 0 | 435,396 | 251,164 | 195,156 | 97,319 | 36,000 | 52,914 | 66,636 | 137,423 |

### **DEPARTMENT 6: "CATARATAS"**

This department contains 37.729 visits (about the 25% of all the data). As we did for department 8, we ordered them firstly by their ID and then by the date of the visit. The program is quite similar to the one we used for department 8. Below we show the data obtained:

|   | 1 | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|---|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 0 | 0,102 | 0,023 | 0,027 | 0,093 | 0,110 | 0,078 | 0,097 | 0,009 |
| 2 | 0 | 0,371 | 0,054 | 0,045 | 0,074 | 0,062 | 0,053 | 0,023 | 0,002 |
| 3 | 0 | 0,222 | 0,142 | 0,135 | 0,091 | 0,068 | 0,055 | 0,039 | 0,004 |
| 4 | 0 | 0,110 | 0,140 | 0,195 | 0,127 | 0,074 | 0,055 | 0,046 | 0,009 |
| 5 | 0 | 0,082 | 0,053 | 0,098 | 0,258 | 0,072 | 0,093 | 0,065 | 0,009 |
| 6 | 0 | 0,051 | 0,030 | 0,045 | 0,150 | 0,186 | 0,190 | 0,102 | 0,015 |
| 7 | 0 | 0,073 | 0,027 | 0,047 | 0,192 | 0,089 | 0,178 | 0,115 | 0,018 |
| 8 | 0 | 0,119 | 0,047 | 0,086 | 0,123 | 0,085 | 0,048 | 0,115 | 0,015 |
| 9 | 0 | 0,151 | 0,095 | 0,095 | 0,147 | 0,060 | 0,030 | 0,078 | 0,026 |

#### MATRIX OF PROBABILITIES OF CHANGES BETWEEN TWO KIND OF VISIT

|   | 1 | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
|---|---|---------|---------|---------|---------|---------|---------|---------|---------|
| 1 | 0 | 538,731 | 286,358 | 233,454 | 81,699  | 67,664  | 56,275  | 80,043  | 92,605  |
| 2 | 0 | 431,916 | 303,647 | 220,457 | 127,362 | 126,700 | 87,746  | 135,478 | 151,118 |
| 3 | 0 | 423,418 | 246,980 | 223,549 | 148,558 | 155,454 | 91,759  | 130,732 | 159,800 |
| 4 | 0 | 462,670 | 262,270 | 225,645 | 135,310 | 167,380 | 91,858  | 123,910 | 163,882 |
| 5 | 0 | 456,801 | 309,464 | 196,005 | 82,470  | 103,990 | 66,072  | 88,295  | 119,778 |
| 6 | 0 | 486,718 | 362,802 | 249,688 | 91,105  | 93,264  | 31,434  | 95,570  | 53,527  |
| 7 | 0 | 451,906 | 331,207 | 224,487 | 76,735  | 96,141  | 36,000  | 64,815  | 53,517  |
| 8 | 0 | 466,409 | 290,232 | 207,495 | 111,115 | 145,044 | 103,490 | 100,675 | 104,710 |
| 9 | 0 | 388,600 | 242,500 | 170,955 | 82,294  | 112,429 | 58,143  | 79,278  | 19,833  |

#### MEAN TIMES MATRIX, IN DAYS

#### MEAN TIMES VECTOR

| 1 | 2       | 3       | 4       | 5      | 6       | 7      | 8      | 9      |
|---|---------|---------|---------|--------|---------|--------|--------|--------|
| 0 | 450,716 | 292,053 | 218,404 | 96,097 | 104,973 | 55,638 | 91,278 | 89,034 |

## **TWO DEPARTMENTS TOGETHER**

We did the calculations with these two departments together because both had the same kind of visit and we could study the transition between two departments. In this case, we will have more rows because here we are considered the kind of visit of the two departments.

Firstly, we filtered the data by selecting only the ones concerning departments 6 and 8 and we asked Matlab to read them. Then we calculated the probabilities of changes between two different kinds of visit. Firstly, the program looks through the data and separates two cases: there is the same patient ID in two following records or there isn't. In the first case it checks the kind of visit and if the patient has gone to the visit or not. If the kind of visit is "first visit" it is considerate as an exit. If the patient hasn't gone to the visit, we put 1 in the column of the exit. Otherwise, we put 1 in the corresponding column. If the kinds of visit are different, also if it is not a first visit we consider it as an exit.

In the case the ID patient are different, we check if the date of the visit is before 01/01/2011 and, in that case, we add one in the exit column.

The following step is to calculate the probabilities and the time matrix. It was done in the same way as the previous programs. Below we show the results:

|    | 1 | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|----|---|-------|-------|-------|-------|-------|-------|-------|
| 1  | 0 | 0,129 | 0,023 | 0,022 | 0,115 | 0     | 0,001 | 0     |
| 2  | 0 | 0,399 | 0,048 | 0,031 | 0,070 | 0     | 0     | 0     |
| 3  | 0 | 0,129 | 0,301 | 0,163 | 0,080 | 0     | 0,001 | 0     |
| 4  | 0 | 0,068 | 0,179 | 0,247 | 0,133 | 0     | 0     | 0     |
| 5  | 0 | 0,048 | 0,054 | 0,105 | 0,331 | 0     | 0,001 | 0,001 |
| 6  | 0 | 0,067 | 0,017 | 0,050 | 0,267 | 0     | 0     | 0     |
| 7  | 0 | 0,014 | 0,041 | 0,027 | 0,378 | 0,014 | 0,027 | 0,041 |
| 8  | 0 | 0,063 | 0,009 | 0,090 | 0,108 | 0     | 0     | 0,018 |
| 9  | 0 | 0,032 | 0,048 | 0,080 | 0,224 | 0     | 0     | 0     |
| 10 | 0 | 0,021 | 0,018 | 0,022 | 0,126 | 0     | 0     | 0     |
| 11 | 0 | 0,094 | 0,029 | 0,025 | 0,096 | 0     | 0     | 0     |
| 12 | 0 | 0,073 | 0,121 | 0,099 | 0,088 | 0     | 0     | 0,001 |
| 13 | 0 | 0,033 | 0,118 | 0,149 | 0,115 | 0     | 0     | 0     |

#### MATRIX OF PROBABILITIES OF CHANGES BETWEEN TWO KINDS OF VISIT

#### MODELLING THE PATIENTS DEMAND IN OPHTALMOLOGICAL CLINICS

| 14 | 0 | 0,027 | 0,034 | 0,066 | 0,240 | 0     | 0,001 | 0 |
|----|---|-------|-------|-------|-------|-------|-------|---|
| 15 | 0 | 0,032 | 0,062 | 0,068 | 0,192 | 0     | 0,001 | 0 |
| 16 | 0 | 0,023 | 0,020 | 0,039 | 0,276 | 0,001 | 0,001 | 0 |
| 17 | 0 | 0,029 | 0,046 | 0,079 | 0,149 | 0     | 0,001 | 0 |
| 18 | 0 | 0,022 | 0,045 | 0,082 | 0,142 | 0     | 0     | 0 |

|    | 9     | 10 | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    |
|----|-------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | 0,001 | 0  | 0,010 | 0,004 | 0,004 | 0,028 | 0,015 | 0,022 | 0,014 | 0,001 | 0,612 |
| 2  | 0,000 | 0  | 0,059 | 0,009 | 0,007 | 0,017 | 0,015 | 0,015 | 0,006 | 0,001 | 0,324 |
| 3  | 0,001 | 0  | 0,041 | 0,051 | 0,038 | 0,020 | 0,038 | 0,009 | 0,010 | 0     | 0,119 |
| 4  | 0,001 | 0  | 0,031 | 0,038 | 0,060 | 0,038 | 0,049 | 0,021 | 0,015 | 0,003 | 0,116 |
| 5  | 0,003 | 0  | 0,034 | 0,016 | 0,035 | 0,080 | 0,046 | 0,044 | 0,032 | 0,005 | 0,168 |
| 6  | 0     | 0  | 0,017 | 0,017 | 0,100 | 0,067 | 0,100 | 0,017 | 0,017 | 0     | 0,267 |
| 7  | 0     | 0  | 0,027 | 0     | 0,014 | 0,108 | 0,000 | 0,027 | 0,014 | 0     | 0,270 |
| 8  | 0     | 0  | 0,108 | 0     | 0,036 | 0,054 | 0,036 | 0,063 | 0,018 | 0     | 0,396 |
| 9  | 0,008 | 0  | 0,040 | 0,016 | 0,064 | 0,056 | 0,048 | 0,080 | 0,024 | 0     | 0,280 |
| 10 | 0,001 | 0  | 0,084 | 0,015 | 0,014 | 0,077 | 0,095 | 0,065 | 0,085 | 0,007 | 0,367 |
| 11 | 0     | 0  | 0,313 | 0,038 | 0,032 | 0,054 | 0,048 | 0,040 | 0,017 | 0,002 | 0,212 |
| 12 | 0,002 | 0  | 0,157 | 0,092 | 0,085 | 0,061 | 0,043 | 0,040 | 0,026 | 0,001 | 0,111 |
| 13 | 0,002 | 0  | 0,074 | 0,086 | 0,108 | 0,078 | 0,043 | 0,036 | 0,030 | 0,005 | 0,124 |
| 14 | 0,002 | 0  | 0,058 | 0,032 | 0,056 | 0,177 | 0,048 | 0,062 | 0,042 | 0,005 | 0,150 |
| 15 | 0,003 | 0  | 0,031 | 0,011 | 0,021 | 0,107 | 0,137 | 0,163 | 0,074 | 0,011 | 0,086 |
| 16 | 0,003 | 0  | 0,044 | 0,011 | 0,020 | 0,128 | 0,058 | 0,137 | 0,092 | 0,015 | 0,134 |
| 17 | 0,003 | 0  | 0,094 | 0,030 | 0,055 | 0,078 | 0,056 | 0,029 | 0,091 | 0,011 | 0,250 |
| 18 | 0     | 0  | 0,123 | 0,063 | 0,063 | 0,108 | 0,037 | 0,019 | 0,060 | 0,022 | 0,213 |

|    | 1       | 2        | 3       | 4       | 5       | 6      | 7       | 8       |
|----|---------|----------|---------|---------|---------|--------|---------|---------|
| 1  | 0       | 544,693  | 242,067 | 169,751 | 57,472  | 0      | 17,500  | 75,333  |
| 2  | 0       | 404,925  | 255,970 | 206,974 | 106,794 | 0      | 54,500  | 0       |
| 3  | 0       | 361,202  | 199,289 | 183,579 | 89,402  | 0      | 102,000 | 191,000 |
| 4  | 0       | 398,504  | 210,537 | 140,146 | 86,498  | 0      | 11,000  | 0       |
| 5  | 0       | 456,184  | 223,058 | 151,483 | 53,328  | 15,000 | 69,083  | 63,250  |
| 6  | 0       | 603,250  | 98,000  | 159,000 | 78,688  | 0      | 0       | 0       |
| 7  | 0       | 1062,000 | 226,333 | 147,500 | 40,393  | 31,000 | 12,500  | 36,000  |
| 8  | 0       | 505,429  | 176,000 | 134,600 | 151,250 | 0      | 0       | 42,000  |
| 9  | 0       | 299,000  | 194,167 | 133,600 | 94,321  | 0      | 0       | 0       |
| 10 | 400,000 | 516,925  | 239,217 | 160,514 | 58,091  | 69,000 | 10,500  | 0       |
| 11 | 0       | 413,003  | 226,400 | 185,800 | 75,544  | 0      | 0       | 0       |
| 12 | 0       | 361,725  | 196,442 | 166,778 | 86,104  | 0      | 0       | 68,000  |
| 13 | 0       | 398,542  | 193,262 | 138,119 | 80,810  | 0      | 0       | 0       |
| 14 | 0       | 439,358  | 217,142 | 141,370 | 58,111  | 33,000 | 21,600  | 35,500  |
| 15 | 0       | 409,090  | 227,060 | 173,694 | 50,838  | 0      | 9,333   | 98,000  |
| 16 | 0       | 426,684  | 230,739 | 155,947 | 47,006  | 14,000 | 41,000  | 0       |
| 17 | 0       | 413,697  | 220,683 | 147,033 | 72,293  | 0      | 13,667  | 0       |
| 18 | 0       | 542.000  | 178,917 | 153.727 | 64.184  | 0      | 0       | 0       |

#### MATRIX OF MEAN TIMES

|    | 9       | 10 | 11      | 12      | 13      | 14      | 15      | 16     | 17     | 18     |
|----|---------|----|---------|---------|---------|---------|---------|--------|--------|--------|
| 1  | 79,250  | 0  | 571,066 | 226,000 | 176,471 | 55,362  | 53,496  | 45,817 | 74,596 | 60,500 |
| 2  | 104,600 | 0  | 401,981 | 272,713 | 191,375 | 114,507 | 144,946 | 43,642 | 87,377 | 96,833 |
| 3  | 123,667 | 0  | 327,510 | 186,528 | 169,335 | 111,152 | 129,257 | 34,951 | 93,778 | 70,000 |
| 4  | 123,143 | 0  | 397,994 | 176,831 | 128,212 | 90,722  | 110,386 | 71,888 | 81,684 | 90,706 |
| 5  | 99,156  | 0  | 432,941 | 228,328 | 138,041 | 56,283  | 86,439  | 38,332 | 74,607 | 84,509 |
| 6  | 0       | 0  | 206,000 | 189,000 | 206,667 | 69,250  | 118,667 | 42,000 | 63,000 | 0      |
| 7  | 0       | 0  | 512,000 | 0       | 178,000 | 54,250  | 0       | 33,000 | 91,000 | 0      |
| 8  | 0       | 0  | 581,833 | 0       | 133,250 | 47,833  | 130,000 | 39,429 | 51,000 | 0      |
| 9  | 0       | 0  | 361,600 | 323,000 | 152,500 | 219,286 | 204,167 | 22,200 | 40,667 | 0      |
| 10 | 54,000  | 0  | 530,645 | 234,727 | 163,466 | 65,900  | 50,498  | 39,401 | 69,977 | 76,135 |

| 11 | 142,667 | 0 | 411,664 | 256,097 | 173,826 | 91,516 | 80,700  | 46,606 | 92,803 | 117,429 |
|----|---------|---|---------|---------|---------|--------|---------|--------|--------|---------|
| 12 | 121,333 | 0 | 370,754 | 179,707 | 160,239 | 89,253 | 99,225  | 49,446 | 86,721 | 70,000  |
| 13 | 95,000  | 0 | 421,716 | 185,112 | 142,924 | 84,246 | 84,617  | 43,718 | 78,758 | 148,818 |
| 14 | 83,800  | 0 | 440,679 | 240,034 | 136,891 | 51,094 | 56,644  | 34,052 | 63,593 | 73,240  |
| 15 | 75,455  | 0 | 471,419 | 242,048 | 151,148 | 58,121 | 43,965  | 17,424 | 55,586 | 50,419  |
| 16 | 52,583  | 0 | 399,227 | 236,459 | 159,271 | 45,448 | 52,472  | 19,962 | 46,858 | 46,400  |
| 17 | 104,667 | 0 | 435,009 | 217,735 | 152,766 | 69,331 | 100,709 | 48,758 | 71,893 | 74,000  |
| 18 | 0       | 0 | 385,970 | 208,588 | 136,118 | 51,345 | 71,400  | 38,200 | 65,313 | 19,833  |

As we can see in the matrix of the mean times, the times are lower than the cases studied independently as we have mentioned before, because in this case we have considered the transitions between these two departments. As more departments are considered better results we will obtain.

Finally, we have calculated the vector of mean times although we didn't use it for the simulator.

#### VECTOR OF MEAN TIMES

| 1       | 2       | 3       | 4       | 5      | 6      | 7      | 8      | 9      |
|---------|---------|---------|---------|--------|--------|--------|--------|--------|
| 400,000 | 423,536 | 216,535 | 158,873 | 63,614 | 26,556 | 40,619 | 64,200 | 91,057 |

## **SOME SPECIAL CASES**

The next point in our project was to study some special cases. Dealing with the data and the output of some calculations that we did, we got some apparently strange cases, so we analysed them in order to improve the code and understand the output. As a first example we see the following table in which we collect the number of changes in patient between kind of visit:

|   | 1   | 2    | 3    | 4    | 5    | 6 | 7  | 8  | 9  |
|---|-----|------|------|------|------|---|----|----|----|
| 1 | 261 | 1054 | 223  | 222  | 1077 | 0 | 7  | 3  | 8  |
| 2 | 0   | 5135 | 695  | 488  | 1098 | 0 | 3  | 0  | 6  |
| 3 | 0   | 662  | 1602 | 888  | 528  | 0 | 4  | 1  | 5  |
| 4 | 0   | 393  | 1114 | 1599 | 997  | 0 | 1  | 1  | 10 |
| 5 | 0   | 730  | 947  | 1784 | 5454 | 4 | 17 | 12 | 48 |

Here we see that there are 261 transitions from the kind '1st visit' to the same kind '1st visit', and that cannot occur since a patient cannot be a first visit patient twice. So we are counting transitions in a bad way. What's happening here is that maybe a patient made an appointment but never showed up, and the made an appointment again. So for us, this is considered like two visits. We will see this in the next part considering two different departments.

#### 1) In 'General Ophtalmology':

We have considered a special kind of patients: those who went out of the process because they didn't show up in his/her first visit. With that we mean patients that have made a first-visit appointment but never showed up. In practice, the doctor had reserved the time for attending this patient. This is an exit of the system even though he/she has made a new appointment and he/she has actually showed up. For example, we have the next table for a patient:

| 001PA65<br>3634 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>29 | DRA.DRAKE           | 1 | PRIMERAS                | 1      | PRIMERA<br>VISITA       | 20120<br>307 | 20120<br>224 | Р |
|-----------------|---|-------------------------|----------|---------------------|---|-------------------------|--------|-------------------------|--------------|--------------|---|
| 001PA65<br>3634 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>00 | DRA.GARCI<br>A GONZ | 1 | PRIMERAS                | 1      | PRIMERA<br>VISITA       | 20120<br>315 | 20120<br>308 | R |
| 001PA65<br>3634 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>00 | DRA.GARCI<br>A GONZ | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 20120<br>417 | 20120<br>403 | R |
| 001PA65<br>3634 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>00 | DRA.GARCI<br>A GONZ | 2 | REVISIONES<br>LARGAS    | 4      | REVISION 3<br>MESES     | 20121<br>015 | 20120<br>417 | Р |

For us, the second row of this table is a new arrival, because the first one didn't happen.

Likewise, we consider that one patient has gone out of the process if the date of his/her last appointment is before 01/01/2011 (no matter if that appointment was or not made). For example:

| 001PA6003<br>86 | 8 | OFTALMOLOGIA<br>GENERAL | 1129 | DRA.DRAK<br>E | 1 | PRIMERA<br>S | 1 | PRIMER<br>A<br>VISITA | 2010112<br>4 | 2010101<br>3 | R |
|-----------------|---|-------------------------|------|---------------|---|--------------|---|-----------------------|--------------|--------------|---|
|-----------------|---|-------------------------|------|---------------|---|--------------|---|-----------------------|--------------|--------------|---|

| 001PA59<br>3675 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>45 | DR.GIMENEZ<br>VAL  | 5 | REVISION<br>SEGUIMIENT<br>O | 11 | REVISION<br>SEGUIMIENT<br>O | 20101015 | 20100<br>930 | R |
|-----------------|---|-------------------------|----------|--------------------|---|-----------------------------|----|-----------------------------|----------|--------------|---|
| 001PA59<br>3675 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>00 | DRA.GARCIA<br>GONZ | 2 | REVISIONES<br>LARGAS        | 2  | REVISION<br>ANUAL           | 20120213 | 20120<br>210 | R |

#### 2) In 'Cataracts':

As before, we consider that first and second rows are patients that went out of the process, in spite of being the same patient, because he/she never came to the clinic.

| 001TM7809<br>25 | 6 | CATARAT<br>AS | 109<br>2 | DR.TEUS           | 1 | PRIMER<br>AS | 2<br>9 | PRIMERA<br>MAYORES 65 | 20110726 | 201107<br>22 | Р |
|-----------------|---|---------------|----------|-------------------|---|--------------|--------|-----------------------|----------|--------------|---|
| 001TM7809<br>25 | 6 | CATARAT<br>AS | 116<br>1 | DR. PAZ<br>MORENO | 1 | PRIMER<br>AS | 2<br>9 | PRIMERA<br>MAYORES 65 | 20120217 | 201202<br>09 | Р |

The same with the first row of the following table:

| 001PA65032<br>5 | 6 | CATARATA<br>S | 109<br>2 | DR.TEU<br>S | 1 | PRIMERA<br>S | 2<br>9 | PRIMERA MAYORES<br>65 | 2012021<br>3 | 2012013<br>0 | Р |
|-----------------|---|---------------|----------|-------------|---|--------------|--------|-----------------------|--------------|--------------|---|
| 001PA65032<br>5 | 6 | CATARATA<br>S | 109<br>2 | DR.TEU<br>S | 1 | PRIMERA<br>S | 2<br>9 | PRIMERA MAYORES<br>65 | 2012022<br>4 | 2012021<br>4 | R |

#### 3) First visits in departments 'General ophtalmology' and 'Cataracts':

Here, we take into account that we can have the **two first-visit kind in the same patient** ('FIRST VISIT' and 'FIRST VISIT OVER 65'). If the first one wasn't made, we consider it as an exit of the system. This can be possible because one patient made an appointment in 'General Ophtalmology' but never came to the clinic. Then, he/she made a new appointment but for something more specific (for example, for 'Cataracts'), so the new appointment is classified in that department as 'First visit over 65' (also, it could be the reverse situation):

| 001PA513 | 8 | OFTALMOLOGIA | 110 | DRA.IBA | 1 | PRIMER | 1 | PRIMERA VISITA | 200909 | 200908 | Р |
|----------|---|--------------|-----|---------|---|--------|---|----------------|--------|--------|---|
|----------|---|--------------|-----|---------|---|--------|---|----------------|--------|--------|---|

#### MODELLING THE PATIENTS DEMAND IN OPHTALMOLOGICAL CLINICS

| 999             |   | GENERAL   | 3        | RZ      |   | AS           |        |                       | 16           | 14           |   |
|-----------------|---|-----------|----------|---------|---|--------------|--------|-----------------------|--------------|--------------|---|
| 001PA513<br>999 | 6 | CATARATAS | 109<br>2 | DR.TEUS | 1 | PRIMER<br>AS | 2<br>9 | PRIMERA<br>MAYORES 65 | 200909<br>23 | 200909<br>18 | Р |

| 001PA624<br>862 | 6 | CATARATAS               | 109<br>2 | DR.TE<br>US | 1 | PRIMER<br>AS | 2<br>9 | PRIMERA<br>MAYORES 65 | 201105<br>06 | 201104<br>11 | Р |
|-----------------|---|-------------------------|----------|-------------|---|--------------|--------|-----------------------|--------------|--------------|---|
| 001PA624<br>862 | 8 | OFTALMOLOGIA<br>GENERAL | 109<br>2 | DR.TE<br>US | 1 | PRIMER<br>AS | 1      | PRIMERA VISITA        | 201206<br>25 | 201202<br>06 | Р |

| 001PA51<br>4672 | 8 | OFTALMOLOGIA<br>GENERAL | 10<br>92 | DR.TEUS       | 1 | PRIMERAS             | 1      | PRIMERA VISITA        | 20090<br>909 | 20090<br>828 | Р |
|-----------------|---|-------------------------|----------|---------------|---|----------------------|--------|-----------------------|--------------|--------------|---|
| 001PA51<br>4672 | 6 | CATARATAS               | 10<br>92 | DR.TEUS       | 1 | PRIMERAS             | 2<br>9 | PRIMERA<br>MAYORES 65 | 20111<br>202 | 20111<br>130 | R |
| 001PA51<br>4672 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>29 | DRA.DR<br>AKE | 2 | REVISIONES<br>LARGAS | 4      | REVISION 3<br>MESES   | 20120<br>529 | 20120<br>507 | R |

| 001PA52<br>1164 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>03 | DRA.IBARZ         | 1 | PRIMERAS             | 1      | PRIMERA VISITA          | 20090<br>930 | 20090<br>828 | Р |
|-----------------|---|-------------------------|----------|-------------------|---|----------------------|--------|-------------------------|--------------|--------------|---|
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>03 | DRA.IBARZ         | 1 | PRIMERAS             | 2<br>9 | PRIMERA<br>MAYORES 65   | 20091<br>110 | 20091<br>001 | R |
| 001PA52<br>1164 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>03 | DRA.IBARZ         | 2 | REVISIONES<br>LARGAS | 4      | REVISION 3<br>MESES     | 20100<br>218 | 20100<br>209 | R |
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>03 | DRA.IBARZ         | 4 | POSTOPERAT<br>ORIOS  | 1<br>8 | REV POSTOP<br>24H       | 20100<br>317 | 20100<br>315 | R |
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>03 | DRA.IBARZ         | 4 | POSTOPERAT<br>ORIOS  | 3<br>7 | REV POSTOP<br>HASTA 1 M | 20100<br>405 | 20100<br>317 | R |
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>03 | DRA.IBARZ         | 4 | POSTOPERAT<br>ORIOS  | 3<br>7 | REV POSTOP<br>HASTA 1 M | 20100<br>503 | 20100<br>405 | R |
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>03 | DRA.IBARZ         | 2 | REVISIONES<br>LARGAS | 2      | REVISION<br>ANUAL       | 20110<br>221 | 20100<br>922 | R |
| 001PA52<br>1164 | 6 | CATARATAS               | 11<br>61 | DR. PAZ<br>MORENO | 2 | REVISIONES<br>LARGAS | 2      | REVISION<br>ANUAL       | 20111<br>221 | 20111<br>116 | Р |
| 001PA52<br>1164 | 8 | OFTALMOLOGIA<br>GENERAL | 11<br>61 | DR. PAZ<br>MORENO | 2 | REVISIONES<br>LARGAS | 2      | REVISION<br>ANUAL       | 20120<br>427 | 20120<br>417 | R |

| 001PA455<br>290 | 6 | CATARATAS               | 109<br>2 | DR.TEUS        | 1 | PRIMER<br>AS | 2<br>9 | PRIMERA<br>MAYORES 65 | 200902<br>18 | 200901<br>07 | Р |
|-----------------|---|-------------------------|----------|----------------|---|--------------|--------|-----------------------|--------------|--------------|---|
| 001PA455<br>290 | 8 | OFTALMOLOGIA<br>GENERAL | 110<br>6 | DR.VLEMI<br>NG | 1 | PRIMER<br>AS | 1      | PRIMERA VISITA        | 200904<br>24 | 200903<br>06 | R |

Another situation that is in our database is patients that have two first appointments for different doctors and different departments:

| 001PA56<br>0140 | 6 | CATARATAS               | 80<br>2  | DRA.<br>ALVAREZ | 1 | PRIMERAS                | 2<br>9 | PRIMERA<br>MAYORES 65   | 20100<br>415 | 20100<br>325 | R |
|-----------------|---|-------------------------|----------|-----------------|---|-------------------------|--------|-------------------------|--------------|--------------|---|
| 001PA56<br>0140 | 8 | OFTALMOLOGIA<br>GENERAL | 10<br>96 | DRA.ARR<br>ANZ  | 1 | PRIMERAS                | 1      | PRIMERA VISITA          | 20100<br>415 | 20100<br>325 | R |
| 001PA56<br>0140 | 8 | OFTALMOLOGIA<br>GENERAL | 10<br>96 | DRA.ARR<br>ANZ  | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 20100<br>617 | 20100<br>415 | Р |

| 001PA659<br>496 | 6 | CATARAT<br>AS | 802      | DRA.<br>ALVAREZ | 1 | PRIMERAS             | 2<br>9 | PRIMERA<br>MAYORES 65 | 201205<br>30 | 201205<br>08 | R |
|-----------------|---|---------------|----------|-----------------|---|----------------------|--------|-----------------------|--------------|--------------|---|
| 001PA659<br>496 | 6 | CATARAT<br>AS | 109<br>2 | DR.TEUS         | 1 | PRIMERAS             | 2<br>9 | PRIMERA<br>MAYORES 65 | 201205<br>30 | 201205<br>08 | R |
| 001PA659<br>496 | 6 | CATARAT<br>AS | 802      | DRA.<br>ALVAREZ | 2 | REVISIONES<br>LARGAS | 4      | REVISION 3<br>MESES   | 201211<br>27 | 201205<br>30 | Р |

#### 4) In general:

We firstly thought that the transitions between the general kind of visits (first check-up, 3 month check-up, 6 month check-up, 1 year check-up, monitoring check-up) could be stochastic in the sense that we could have any combination. Then, the company told us that maybe the process that a patient follows when he/she undergoes surgery is deterministic in the following way:

- 24 hour post-surgery check-up
- Until 1 month post-surgery check-up
- 1-3 months post-surgery check-up
- Final post-surgery check-up
- Monitoring check-up

But with the data we saw that this process is really stochastic since sometimes a patient just goes to one post-surgery revision, or not all of them. We can observe the following examples:

| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 18 | REV POSTOP 24H          | 20090519 | 2009051<br>3 | R |
|-----------------|---|---------------|---------|---------------------|---|---------------------|----|-------------------------|----------|--------------|---|
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 38 | REV POSTOP DE 1<br>A 3M | 20090811 | 2009072<br>0 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 18 | REV POSTOP 24H          | 20091020 | 2009100<br>5 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 38 | REV POSTOP DE 1<br>A 3M | 20100521 | 2010040<br>9 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 18 | REV POSTOP 24H          | 20100713 | 2010052<br>1 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 37 | REV POSTOP<br>HASTA 1 M | 20101209 | 2010120<br>2 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 38 | REV POSTOP DE 1<br>A 3M | 20110509 | 2011030<br>9 | R |
| 001PA341<br>005 | 6 | CATARAT<br>AS | 80<br>2 | DRA.<br>ALVARE<br>Z | 4 | POSTOPERATO<br>RIOS | 37 | REV POSTOP<br>HASTA 1 M | 20120323 | 2012022<br>9 | R |

We can guess that this patient underwent surgery three times, but the postsurgery check-ups were different (sometimes a '24 hours post-surgery check-up'<'1-3 month post-surgery check up' and others, '24 hours post-surgery check-up'<'Until 1 month post-surgery check-up'). Similarly, we can analyze the following:

| 5               |   |                         |                  |                  | _ |                         | _      |                         |              | -            | - |
|-----------------|---|-------------------------|------------------|------------------|---|-------------------------|--------|-------------------------|--------------|--------------|---|
| 001PA3<br>41005 | 5 | RETINA-VITREO           | 1<br>0<br>9<br>4 | DRA.<br>FIGUEROA | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2009<br>0107 | 2008<br>1215 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2009<br>0116 | 2008<br>1209 | R |
| 001PA3<br>41005 | 5 | RETINA-VITREO           | 1<br>0<br>9<br>4 | DRA.<br>FIGUEROA | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2009<br>0204 | 2009<br>0107 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 1<br>8 | REV POSTOP<br>24H       | 2009<br>0519 | 2009<br>0513 | R |
| 001PA3<br>41005 | 5 | RETINA-VITREO           | 1<br>0<br>9<br>4 | DRA.<br>FIGUEROA | 2 | REVISIONES<br>LARGAS    | 4      | REVISION 3<br>MESES     | 2009<br>0601 | 2009<br>0204 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 3<br>8 | REV POSTOP DE<br>1 A 3M | 2009<br>0811 | 2009<br>0720 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 2 | REVISIONES<br>LARGAS    | 3<br>9 | REV POSTOP<br>PARA ALTA | 2009<br>0925 | 2009<br>0811 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 1<br>8 | REV POSTOP<br>24H       | 2009<br>1020 | 2009<br>1005 | R |
| 001PA3<br>41005 | 5 | RETINA-VITREO           | 1<br>0<br>9<br>4 | DRA.<br>FIGUEROA | 2 | REVISIONES<br>LARGAS    | 4      | REVISION 3<br>MESES     | 2009<br>1130 | 2009<br>0601 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2010<br>0115 | 2009<br>1020 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2010<br>0330 | 2010<br>0209 | Р |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 3<br>8 | REV POSTOP DE<br>1 A 3M | 2010<br>0521 | 2010<br>0409 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 1<br>8 | REV POSTOP<br>24H       | 2010<br>0713 | 2010<br>0521 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 2 | REVISIONES<br>LARGAS    | 3<br>9 | REV POSTOP<br>PARA ALTA | 2010<br>0924 | 2010<br>0729 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2010<br>1122 | 2010<br>1102 | R |
| 001PA3<br>41005 | 6 | CATARATAS               | 8<br>0<br>2      | DRA.<br>ALVAREZ  | 4 | POSTOPERATO<br>RIOS     | 3<br>7 | REV POSTOP<br>HASTA 1 M | 2010<br>1209 | 2010<br>1202 | R |

| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2011<br>0309 | 2011<br>0128 | R |
|-----------------|---|-------------------------------|------------------|-------------------|---|-------------------------|--------|-------------------------|--------------|--------------|---|
| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 4 | POSTOPERATO<br>RIOS     | 3<br>8 | REV POSTOP DE<br>1 A 3M | 2011<br>0509 | 2011<br>0309 | R |
| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2011<br>0613 | 2011<br>0518 | R |
| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2011<br>0802 | 2011<br>0704 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL       | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0111 | 2011<br>1018 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL       | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0229 | 2012<br>0130 | R |
| 001PA3<br>41005 | 9 | CIRUGIA<br>PLASTICA<br>OCULAR | 1<br>0<br>9<br>5 | DRA.SANZ<br>LOPEZ | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0229 | 2012<br>0130 | R |
| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 4 | POSTOPERATO<br>RIOS     | 3<br>7 | REV POSTOP<br>HASTA 1 M | 2012<br>0323 | 2012<br>0229 | R |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL       | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0418 | 2012<br>0323 | R |
| 001PA3<br>41005 | 9 | CIRUGIA<br>PLASTICA<br>OCULAR | 1<br>0<br>9<br>5 | DRA.SANZ<br>LOPEZ | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0418 | 2012<br>0418 | R |
| 001PA3<br>41005 | 6 | CATARATAS                     | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0523 | 2012<br>0418 | Р |
| 001PA3<br>41005 | 8 | OFTALMOLOGIA<br>GENERAL       | 8<br>0<br>2      | DRA.<br>ALVAREZ   | 5 | REVISION<br>SEGUIMIENTO | 1<br>1 | REVISION<br>SEGUIMIENTO | 2012<br>0606 | 2012<br>0425 | Р |

Since we had these cases, and we can have any combination between the kind of visits, we had to calculate the probabilities of changing between any kind of visit.

## **SIMULATOR**

## **FIRST SIMULATION MODEL**

In this part we are going to explain the simulation model. At first, we consider a single department and a single queue, and we will not consider people who do not return to the doctor.

#### VARIABLES

These are the variables that we use in this simulation:

#### **1. STATE VARIABLES**

The state variables give information about the state of the system:

**TPD**: kind of patient who is being attending for each doctor.

**TP**: vector of the kind of patient in the queue.

**NP**: number of patients in the queue.

NDO: number of busy doctors

#### 2. EVENT VARIABLES

An event variable represents the instant when an event happens:

**TD**: next final of doctor consultation.

**TL**: arrival time.

**MTP**: matrix of the next time revision.

**TF**: vector of final time of each doctor consultation.

#### **3. OTHERS VARIABLES**

**i**: type of visit.

j: doctor.

- **DL**: time between arrivals.
- TM: simulation time.

#### 4. DATA

**TC**: vector of consultation times.

**Tmax**: maximal simulation time.

lambda: arrival rate of new customers.

#### **MODEL**

#### **MAIN PROGRAM**

First of all we initialize the variables that we are going to use in the simulation model and we generate the first arrival. Then we have to update the simulation time. Now we have to check if the next event is an arrival or an end of service. If it is an arrival, we go to the arrival subroutine and if it is a final doctor service we go to the subroutine end of service. When the subroutine has finished, we check if the simulation time has arrived to the final simulation time. In that case, the process ends. If not, we update the simulation time and we continue in the same way.

#### **ARRIVALS SUBROUTINE**

We have to identify the type of visit and we have to study 2 cases:

If there are not patients in the queue and there are some free doctors, then we update the variables NOD (number of busy doctors) and TF (the time when this doctor is going to be free again). Otherwise, the patient goes to the queue. Then we update number of patients in the queue NP.

Afterwards, if it's the first visit of this patient, we generate another new first visit arrival.

Otherwise, we update the matrix with the arrivals that are not first visit.

#### **END OF DOCTOR SERVICE SUBROUTINE**

When a doctor service ends, the patient can become in a new type of patient. So, in this subroutine, we are changing the type of the patient.

After doing this, if there are patients in the queue, a new patient starts his consult. In this case we update the kind of patient who is being attending for each doctor (TPD) and the number of patients in the queue (NP).

Otherwise, we update the number of busy doctors NDO.

#### **MODEL SCHEME**

#### MAIN PROGRAM





#### **ARRIVALS SUBROUTINE**

#### END OF DOCTOR SERVICE SUBROUTINE



#### **RESULTS**

We have obtained that, with lambda and the number of doctors fixed, we have 2 possibilities:

If there are not enough doctors, the queue size grows all the time. Otherwise, we have a stationary state with a number of patients near to 0.

Then, it seems we are using too many or too few doctors.

The interesting question should be, How can we adjust the number of doctors for a given arrival rate  $\lambda$ ? Because lambda is fixed in this model.

So we decided to do a new simulation model.

## **SECOND SIMULATION MODEL**

In this new simulation program model we have added a new event related to recruit a new doctor. In order to decide if it is necessary to increase the number of doctors, we calculate the utilization factors for each doctor that represents the proportion of time the doctor is actually working.

This is checked at the end of each month when we evaluate these factors and then we decide if a new doctor is recruiting.

#### **MODEL'S ELEMENTS**

#### **1. STATE VARIABLES**

TPD: kind of patient who is being attending for each doctor.TP: vector of the kind of patient in the queue.NP: number of patients in the queue.NDO: number of busy doctorsNAB: number of patients that exit the system.

#### 2. EVENT VARIABLES

TD: next final of doctor consultation.
TL: arrival time.
MTP: matrix of the next time revision.
TF: vector of final time of each doctor consultation.
TCD: recruiting a new doctor.

#### 3. OTHERS VARIABLES

i: type of visit.
j: doctor.
DL: time between arrivals.
TM: simulation time.
UF: utilization factor of each doctor (time working over total time).
WT: working time of each doctor.
cont: auxiliary variable to count a month
mes: number of month that elapse
Tant: last simulation time
NPM: auxiliary varible of average number of patients during a month
NPCM: vector of average number of busy doctors

**GFU**: auxiliary vector of minimum utilization factors of all the doctors in the system during a month

**perc**: minimum utilization factor that all the doctors have to overstep for recruiting a new doctor next month

ind: auxiliary index for the number of patient in the queue

**ind2**: auxiliary vector for each kind of patient that we keep the next column index in matrix MTP.

 ${\bf f}:$  auxiliary vector for each kind of patient that we keep the last column index in matrix  ${\sf MTP}$ 

#### 4. DATA

ND: number of doctors.
TC: vector of consultation times.
Tmax: maximal simulation time.
p(i,j): probability to become from patient i to patient j.
PV(i): vector of elapsed times until the next visit of patient i.
v: number of type of patients.
lambda: arrival rate of new customers.

#### 5. EVENTS

These are the possible events that could occur:

- **New doctor**: if the utilization factors of all the doctors is enough higher, we have to add a new doctor in the system.
- **New Arrival**: the same as in the first model.
- **End of doctor's service**: the same as in the first model.

#### 6. MODEL

#### MAIN PROGRAM

#### 0. Initialize variables:

TF=INF; TD=INF; TPD=INF; MTP=INF; MD=INF; TCD=INF; N=0; NDO=0; TM=0; NP=0; NAB=0; TP=0; DO=0; WT=zeros(1,ND); ind2 = ones(v,1); ind=1; f(i)=0, i=2,...,9 Generate DL; MTP(1,1)=DL; TL = MTP(1,1);

#### 1. Next event time:

TD=min(TF); TM=min(TL,TD,TCD);

2. Event identification:
If TM=TCD → call to: New doctor subroutine.
If TM=TD → call to: End of doctor's service subroutine.
If TM=TL → call to: New arrival subroutine.

# 3. Check point: Recruiting doctors: If a month has passed → calculate utilization factors for each doctor. If all the utilization are greater than the coefficient perc → add a new doctor →TCD=TM

**4.** Check point: Stop: If TM<Tmax → Go to 1. If not, Stop.

#### **SUBROUTINES**

#### New doctor:

- 1. ND=ND+1;
- 2. TF=[TF,INF];
- 3. TPD=[TPD,INF];
- 4. If NP>0  $\rightarrow$  Go to 5. If not, go to 10;
- 5. I=TP(ind);
- 6. TF(ND)=TM+TC(i);
- 7. TPD(ND)=i;
- 8. NP=NP-1;
- 9. ind=ind+1;
- 10. TCD=INF;
- 11. WT=[WT,0];
- 12. EXIT: Go to main program.

New arrival: the same as in the first simulation model.

End of doctor's service: the same as in the first simulation model.

#### **MODEL SCHEME**



#### MAIN PROGRAM



**ARRIVALS SUBROUTINE** 



#### END OF DOCTOR SERVICE SUBROUTINE



#### **NEW DOCTOR SUBROUTINE**



## **RESULTS**

We have developed some numerical results, only for the "One-department model", to show which kind of numerical experiments could be performed for the whole clinic model.



The figure above shows what we have already said, if there is only one doctor, then for our arrival rate we obtained an explosion in the number of patients in the system.

Now the interesting study is to obtain the appropriate number of doctors for a given arrival rate. So, we start with one doctor in the system and we recruit new doctors depending on different criteria based on the utilization factors of all the doctors.

For example, the criteria 0.8 means that a new doctor is recruited if all the doctor's utilization factors are greater than 0.8.

In the following figure we show the mean number of patients that are in the queue at the end of each month during 10 years. When the number of patients in the queue decreases suddenly, that means that a new doctor has been recruiting.



In that figure we see that the recruiting instants for each criterion are different and how they determined the number of patients in the queue.

In the table below, we show the average number of patients in the queue –  $1^{st}$  column- and the number of recruited doctors -2<sup>nd</sup> columns- at the end of each period for different criteria.

|                | U. Factor | 1 mon | nth | 1 yea | ar | 2 yea | ars | 3 yea | rs | 4 yea | rs | 5 yea | rs | 6 yea | rs | 7 yea | rs | 8 yea | rs | 9 yea | rs | 10 yea | Irs |
|----------------|-----------|-------|-----|-------|----|-------|-----|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|--------|-----|
| Criterion 1    | 0.8       | 44.70 | 1   | 0.44  | 2  | 1.17  | 2   | 0.21  | 3  | 0.35  | 3  | 0.29  | 3  | 0.51  | 3  | 0.33  | 3  | 0.65  | 3  | 0.56  | 3  | 0.60   | 3   |
| Criterion 2    | 0.9       | 44.70 | 1   | 0.44  | 2  | 1.17  | 2   | 2.21  | 2  | 8.72  | 2  | 0.37  | 3  | 0.45  | 3  | 0.43  | 3  | 0.60  | 3  | 0.47  | 3  | 0.55   | 3   |
| Criterion 3    | 0.95      | 44.70 | 1   | 0.44  | 2  | 1.17  | 2   | 2.21  | 2  | 8.72  | 2  | 0.38  | 3  | 0.48  | 3  | 0.32  | 3  | 0.58  | 3  | 0.82  | 3  | 0.56   | 3   |
| Criterion 4    | 0.98      | 44.70 | 1   | 0.44  | 2  | 1.17  | 2   | 2.21  | 2  | 8.72  | 2  | 6.80  | 2  | 0.43  | 3  | 0.35  | 3  | 0.52  | 3  | 0.46  | 3  | 0.42   | 3   |
| Criterion 5    | 0.99      | 44.70 | 1   | 0.44  | 2  | 1.17  | 2   | 2.21  | 2  | 8.72  | 2  | 6.80  | 2  | 0.43  | 3  | 0.35  | 3  | 0.52  | 3  | 0.46  | 3  | 0.42   | 3   |
| Criterion 6    | >1        | 44.70 | 1   | 1.32  | 1  | 5.37  | 1   | 10.43 | 1  | 15.58 | 1  | 20.95 | 1  | 26.57 | 1  | 31.85 | 1  | 37.10 | 1  | 42.55 | 1  | 47.36  | 1   |
| (In thousands) |           |       |     |       |    |       |     |       |    |       |    |       |    |       |    |       |    |       |    |       |    |        |     |

However, as expected, the final number of doctors and patients are the same order in the stationary state -as you can see in the tenth year-.

| Utilization Factors |
|---------------------|
| 0.590407062         |
| 0.575726807         |
| 0.560456648         |
| 0.5550857           |
| 0.5550857           |
| 1                   |

Here we are also showing the utilization factors in the stationary state.

## **CONCLUSIONS**

Our problem, the study of the patient arrivals to an ophthalmological clinic, and their behaviour in the system –coming back to the system or going definitively out, should become in a complex network of queues, which seems to be intractable from an analytical point of view. For this reason, we have proposed a simulation model.

In order to deal with the data, we have decided to start with a "One-department model2, using the data of the "General Ophthalmology" department, that joins about a 40% of all visits.

The numerical results presented, obtained for only one department, show the kind of experiments that could be performed with a multi-department version of the simulator representing the whole clinic.