

Supervised
Information Retrieval
PROBLEM NO. 6
proposed by Neometrics/Accenture

VI UCM Modelling Week, Madrid June 11-15 2012

Instructor: José Miguel
García-Santesmases Martín-Tesorero

(UCM)
Students: Inmaculada Flores García
Ángel Manuel González Rueda Javier

Palacios BermejoJuan Sampedro Ruiz
Patricia Vicente Merino

Instructor:

José Miguel García-Santesmases

Students:

Inmaculada Flores García

Ángel Manuel González Rueda

Javier Palacios Bermejo

Juan Sampedro Ruiz

Patricia Vicente Merino

 2

CONTENTS

1. PROBLEM DESCRIPTION 3

2. MATHEMATICAL TREATMENT 3

3. FREQUENCY MODEL 5

4. FILTERED FREQUENCY MODEL 6

5. K-Nearest Neighbors 6

6. Neural Network 7

7. SVM 8

8. DOCUMENT-DOCUMENT DISTANCE 11

9. DIFFICULTIES 13

10. CONCLUSIONS& FURTHER WORK 14

REFERENCES 14

 3

1. PROBLEM DESCRIPTION

Our topic, Supervision Retrieval, is developed in parallel with the Text Mining field. In
particular, the problem we dealt with was Sentiment Analysis. This can be formulated
as:

“Given several documents extracted from the Internet concerning certain brand or
product, would it be possible to know the author’s opinion expressed without actually
reading them?”

In order to answer to this question, we were given a couple of data sets:

 Document set: consisting of the list of the documents downloaded from some
web page in addition to their polarity target assigned by someone called “an
expert”. This target takes values in the set {positive, negative, neutral} meaning
the sentiment expressed by the author according to this expert.

 Document_Term set: gathering the previous documents together with the
frequency of the terms or words which appear on each of them, and an
information importance measure, the tf-idf.

Our aim was to build at least one model capable of classifying new documents
according to their polarity. We would like to categorize them as positive, negative or
neutral in an automatic way.

The purpose of this study is included into what is called Reputational Risk Analysis. It
takes into account the probability of creating a negative public opinion on a service,
offered by banks, telecommunication, food, assurance companies… The most frequent
causes are credibility loss and the fact of not being present. Consequently there is a
migration either of funds or clients to competitors companies on the market.

2. MATHEMATICAL TREATMENT

Once we have described the problem being treated, the information we count on and
the objective of our work, it is the moment to start with the mathematics. We all
agreed in following the SEMMA methodology (Sample, Explore, Manipulate, Model
and Assess) which is quite popular in Data Mining.

Despite the order showed above, we decided to start with the data exploration due to
the fact that we didn’t really know which kind of information and what dimensions of

 4

data we were going to work with. The result at this phase of the study we obtained
was:

 Huge size of the data sets, 6229 documents and 32638 terms which will play
the role of our variables.

 A uniform polarity distribution. We can see on the following histogram that
there is a balanced quantity of documents on each sentiment class:

We were indeed surprised by this graph in the sense that it is not usual to get this
similar proportion of opinions about any product, brand or sector. After talking to the
people from Neometrics we were said this set of documents have actually been
manipulated before.

After the exploration we were then able to carry out the data sampling. We divided the
original document set into two subsets: the training sample taking the 70% of the
documents which will allow us to train the model; and the validation sample,
gathering the 30% left, which will give us an idea of the precision we can expect. It is
important to say that we have used the same validation and training data set in all our
models.

Next step was the manipulation of the data. As we have mentioned earlier, we were
dealing with a big amount of data, and it is well-known in the data mining field that
this circumstance is fairly tricky. It is necessary to develop a deep analysis of the
importance of all the data we were given and try to get to a level of information load

 5

suitable to work with. The decision we took was to reduce the dimension of this data.
In first place, we consider filtering terms following two different, and compatible,
criteria we will explain on the next chapter. After this, we also made use of the
principal components algorithms reaching another reduction of variables. In parallel,
we did also explore a couple of methods with no dimension reduction requirements.

Not having started with the modelization we introduce here the models we have
suggested and tested:

 Frequency Model
 Frequency model with term filter
 KNN- k Nearest Neighbors
 SVM-Supported Vector Machine
 Neural Network
 Document-to-document similarity

The first two models were created by us from the beginning. We developed a very
intuitive and simple (in terms of hypothesis) model based on the count of word
occurrences in documents of each class. We use the filter on the second one.

The next three models listed above were considered taking advantage of methods
already implemented in software available. Every of them will be explained on next
chapters.

Finally, the last model was an alternative approach, attempting to measure the distance
among two unrelated documents by using a multi-hop path in a shortest path fashion.

3. FREQUENCY MODEL

The frequency model is based on the creation of a dictionary for each term as a
function of their frequencies. These frequencies are calculated from the target of every
document: positive, negative or neutral.

After crossing both initial tables, and eliminating the variable text, we get a target
linked to each word of every document. This word may have associated some
classifications.

 6

After use a “proc freq” we get the total events of every class, the total number, and,
after a change of variable, we create proportions as number events word in a class
over the total occurs. We introduce these proportions in the model.

Every word is classified as the class that counts with the highest proportions.

Repeating inversely the same process with the documents, each one will be associated
with the claim with highest number of words of that specific class.

Then, we crossed the validation table with “Document-term”, we repeat the analysis
with our dictionary and the result is 74% of success, the best of all result, against a
26% misclassified.

4. FILTERED FREQUENCY MODEL

We need to delete some terms, noise, using a filter. First of all, we eliminate the words
that appear only once or twice in the set of documents, then, we eliminated the words
that because of their characteristic cannot be well classified following two conditions:

 At least one class of the term must have a proportion of 40%, to avoid
proportions of 33% in every class for a word.

 For the model learn to distinguish between positive and negative, we
eliminated terms with close appearance in positive and negative.

After creating the filter and passed the frequency model, we have a worst result, 71%
well classified, but a lower cost in computational time.

5. K-Nearest Neighbors
Once we have develop a model of our own, we would also be interested in trying out
some of the methods SAS has to offer to see if we can improve the already good results
we have obtained.

The first idea that comes to mind is to try the well-known K-Nearest Neighbors
algorithm -from now on KNN.

KNN is a method for classifying objects based on closest training examples. The
algorithm classifies each object by a majority vote of its neighbors. Each document will
then be assigned to the class most common among its k nearest neighbors.

 7

Since we will be working with the euclidean distance and because of the size of the
data we are dealing with, we would first like to reduce the dimension of the problem
while at the same time make the point cloud round. We may achieve this by applying
principal components decomposition, but first we need to get rid of some of the terms,
so that the decomposition does not take too long. We therefore decide to work with the
filtered data set from the frequency model.

After computing the principal components we take the 200 best of them and train a
KNN model with the SAS Enterprise Miner node ‘Memory-Based Reasoning’.

One of the heuristics to choose the value of the parameter k suggests setting k to the
square root of the number of documents -in this case: 66.

The next graphic shows the confusion matrix of the KNN method trained by SAS with
k equals 66. We have obtained a 32.27% of misclassification error in the validation
sample. We may consider this result poor, since we already have methods that provide
us with better results.

6. Neural Network
Another method we may consider using is a neural network model.

Neural Networks are often criticized because they do not offer a clear interpretation of
the results they provide. However, this is the kind of problem where we are not as

 8

concerned for the model to be easy to understand as we would usually be. In this sort
of problem, we would be willing to sacrifice interpretation in order to get a result as
good as possible.

Nevertheless, the results do not seem so promising. We may use the filtered data set to
train a neural network model with one hidden layer consisting of three neurons (the
default neural network SAS Enterprise Miner offers). The misclassification error
reaches the 34% and the result is once again very poor.

We leave to the reader the task of training some other neural networks to see if the
results improve.

7. SVM
Another tool that we have used to classify the documents was support vector machines
(SVM) which is a useful technique for data classification.

Given a training set of document-term pairs (,), where and
 that represent two category attribute for the documents, SVM requires the
solution of the following optimization problem:

Min

 ∑

Subject to (
 ())

where is the penalty parameter of the error term and is the loss function,
usually taken one of the forms below:

 (
)

 (
)

Using this method, the training vector are mapped into a higher dimensional space
by the function , and SVM finds a separating hyperplane with the maximal margin
in this higher dimensional space.

 9

Furthermore, K()= ()
 () is called the kernel function. Some examples of

basic kernels are:

 Linear: the simplest kernel that one can use.
 ()

 .
 RBF (radial basic function) kernel: is a reasonable first choice. This
kernel nonlinearly maps samples into a higher dimensional space so it,
unlike the linear kernel, can handle the case when the relation between
class documents and terms is nonlinear.

 () (
)

where is a kernel parameter.

When the number of terms is large, one may not need to map data to a higher
dimensional space. That is, the nonlinear mapping does not improve the performance,
and using the linear kernel is good enough (see references).

Linear classification has become one of the most promising learning techniques for
large sparse data with a huge number of documents and terms, and from the available
software we have chosen to use liblinear, which is an open source library that
implement SVM with linear kernel, written on C++ and implementing a Python
interface.

The first step to use liblinear library is to write our data into a test file using its specific
format. Each document must fill a single line with the following format, using only
numeric values:

Target of the document index:value … index:value

 10

As we can see, first it must appear the target of the document, and we will denote
positive documents by 1, neutral documents by 0 and negative documents by -1. Next
we need to write the values from the document-term matrix into an sparse format,
with the index of the terms that appears in the instance and the associated document-
term matrix values. There are three possibilities to choose these values

- Term counts: this value indicates the frequency of the words in each document.
We didn´t use it in our study.

- TF-IDF (term frequency–inverse document frequency).
- Term presence (binary) that indicates whether a term appears in a document.

We have three document classes and the linear kernel only allows binary
classifications, so we need some schema to perform the classification. We propose
three schemas, one for simple binary classification, and two for the ternary
classification we are interested in:

1. Class reassign: reassign neutral documents either to positive or negative classes.
2. Two-phase classification:

- First grouping neutral and positives.
- Second reclassified the extended positives using a proper subset of the initial

training dataset.
3. Three binary-class prediction built within liblinear.

Now we are going to show the results that we have obtain using liblinear library from
Python with the previous schemas.

Class reassign:

As document-term matrix elements we have tried with tf-idf and binary, with raw
(meaning unmodified values) and normalized values, and the best classification was
achieved with raw binary values. The data transformation and initial tests with the
library did show us that there were four documents in our dataset with no term,
which were deleted from the corpus.

We obtained 85% success grouping neutral and negative, and 87% grouping neutral
and positives, with confusion matrix for the validation set below. We present predicted
values by rows vs. real values by columns.

 11

Predicted

Real target

Neutral+Neg. Pos.

Neutral+Neg. 63.65 % 5.51%

Pos. 9.05 % 21.79%

Predicted

Real target

Neg. Neutral+Pos.

Neg. 28.48 % 6.64 %

Neutral+Pos. 6.64 % 58.24%

Precision Pos. : 87.56 %
Recall: 79.80 %

Precision Neg. : 89.77 %
Recall: 81.10 %

Three categories classification:

When comparing the two schemas for ternary classification, we see that the overall
precision for liblinear building implementation is 77%, a bit higher than the 74%
achieved with two-phase classification. This improvement comes for greatest precision
for the class of negative document but two phases model is better for positive and
neutral documents, giving the best results if we just consider the worst case
classification. Below we show the confusion matrix for the validation set of the two
methods:

Liblinear Two-Phase

Predicted

Real target

Neg. Neutral Pos.

Neg. 30.51 % 5.51 % 2.89 %

Neutral 3.00 % 23.18 % 4.66 %

Pos. 1.61 % 5.35 % 23.29 %

Predicted

Real target

Neg. Neutral Pos.

Neg. 28.48 % 4.44 % 2.19 %

Neutral 3.85 % 24.04 % 4.98 %

Pos. 2.78 % 5.57 % 23.66 %

Precision Neg : 86.89 %
Precision Neutral: 68.08 %
Precision Pos : 75.52 %

Precision Neg: 81.10 %
Precision Neutral : 70.60 %
Precision Pos: 76.74 %

8. DOCUMENT-DOCUMENT DISTANCE
The obvious way to know the polarity of a document is to search similar documents
and assign their polarity to the document under study. This requires a way to
determine when two documents are close one to another, which in fact means to
define a distance in our corpus, which in fact is an underlying issue in many of the

 12

available methods. For this purpose we will consider only the presence of terms within
a document, initially discarding the number of occurrences and the tf-idf value. The
distance will be derived from the number of terms shared by both documents, relative
to the number of terms that appear on them, so we define it as

Defining distance in this manner gives a taste about the upper bound of the real
distance, particularly in the case of two documents with no common terms, where the
definition above leads to an undetermined (∞) distance. This restricted definition could
serve for classification purposes alone, but as we are actually dealing with bounds, we
tried to refine a bit, using network shortest path algorithm to give a better
determination of the distance among documents with just a few terms in common
causing an overestimated distance, but maybe connected one to another by a chain of
close documents.

Although initial implementation of the method pointed to a non-connected corpus,
this was quite an artifact due to a programming bug, partly caused by the existence of
six documents with no neighbors. Revised implementations allowed us to define a
distance for every pair of documents. So, we should start with a very sparse distance
matrix, and after multiple shortest-path iterations end up producing a completely
dense distance matrix, that should be suitable for many classification algorithms. In
order to test the power of the method outlined here, we decide to use a K-neighbors
method, easily implemented also in term of shortest path algorithm.

The first quality measurement was just an average of the number of neighbors with
the right polarity for our validation dataset, and showed a not very promising 43%
average, which is actually not too far from the ⁄ that we could expect from pure
randomness. A bit more work with the results allowed us to construct the confusion
matrix, which confirms the very poor results, giving a global accuracy around 57%.
The only hope for this method is that despite of its low accuracy, the classification
achieved is close to the optimum, because if we inspect the confusion matrix for the
auto-classification of the training dataset, the total accuracy is just 58%, so really close
to the values achieved for the validation dataset, as the fraction of neighbors with right
polarity did show in the preliminary results.

 13

Training auto-classification Validation dataset

Predicted

Real target

Neg. Neutral Pos.

Neg. 21.58 % 7.19 % 4.62 %

Neutral 9.33 % 16.52 % 7.81 %

Pos. 5.81 % 7.42 % 19.70 %

Predicted

Real target

Neg. Neutral Pos.

Neg. 20.80 % 7.74 % 4.57 %

Neutral 9.13 % 18.16 % 8.49 %

Pos. 5.16 % 8.11 % 17.84 %

Some results not showed here lead to the conclusion that the use of shortest path
algorithms does not noticeably affect the method accuracy. Although some of the
evaluated distances get reduce by the algorithm iterations, these reductions do rarely
occurs among the nearest documents. Although the iterations do still allow building
dense distance matrixes with no missing values that could be used with more
sophisticated classification methods, the low performance achieved by these initial
implementations did prevent us to actually get a fully populated matrix.

9. DIFFICULTIES
The main difficulties that arise during the elaboration of this work were originated by
technical problems related to the amount of data and the available computer and
software resources. The local installation of our main tool (SAS) did lack on procedures
to handle sparse data, and some of the procedures were just not capable to manage the
large matrixes that we get forced to use as input.

But the main difficulty for this problem, that we didn’t actually hit due to the limited
time, was related to the fact that we are processing human language, which is very
difficult to effectively summarize with the three polarity levels that we are using, and
is also quite sensitive to factors very hard to move into numeric values, as could be the
presence of sarcasm. A self-explanatory example of this problem is easily picked up
from documents misclassified as positive while being clearly negative for every human
reader.

“Sanguijuelas Dios te ama. Nike te anima a hacerlo. Metro está mejorando
para ti. En #BANCO#, lo que cuenta eres tu. El Corte Inglés es especialista en
ti. Tu novio te quiere más que a nadie. La Comunidad de Madrid te escucha.
En Bodybell son cómplices de tu belleza. Facebook te ayuda a comunicarte y
compartir. Cuántas sanguijuelas para esa única necesidad que corre por tus
venas: la necesidad de sentirte importante. Más importante que el resto.
Publicado por Timita”

 14

10. CONCLUSIONS& FURTHER WORK
Although there were much more available methods than those that we were able to
explore, we did find that our very first attempt was quite competitive even when
compared with models that in principle are much more elaborated. Moreover, even
the simple filtering performed on the dataset did decrease a bit the performance of the
classification, despite the fact that it was designed to clear out some of the noise.

Only the use of the more elaborated support vector machines technique did produce
an important increase on the classification accuracy, although the increase was much
less spectacular when the classification was attempted against the full ternary target,
because SVM is designed for binary classification and the modifications that we did
attempt had a strong impact in the overall accuracy.

Given our initial results, the most promising path to improve our classification ability
is a deeper exploration of the SVM techniques, maybe with non-linear kernels. Other
possibility that we started to work in was the construction of new terms, as for
example grouping terms that usually appear together. And, if we are able to
compensate the weaknesses of some methods by applying others, probably a
combination of multiple methods is the best path for classification improvements.

REFERENCES
“A Practical Guide to Support Vector Classification”, Chih-Wei Hsu, Chih-Chung
Chang, and Chih-Jen Lin.

”Introducción a la Minería de Datos”, Hernández Orallo, J., Ramírez Quintana,
M.J.,Ferri Ramírez, C.

“Data Mining, Concepts and Techniques”, Han J., Kamber M.

http://en.wikipedia.org/wiki/tf*idf

Native python implementation of shortest-path Dijkstra's algorithm
(http://code.activestate.com/recipes/119466/)

LIBLINEAR -- A Library for Large Linear Classification
(http://www.csie.ntu.edu.tw/~cjlin/liblinear/)

http://en.wikipedia.org/wiki/tf*idf
http://code.activestate.com/recipes/119466/

