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Introduction to the problem

Introduction

e Optical fibers made of pure glass (silica) are used as a
medium for telecommunication

e information carrying signal travels for hundreds, or even
thousands, of kilometers

e several degeneration processes
¢ signal needs to be periodically reinforced by optical
amplifiers over its long journey — adds noise
e want to investigate the propagation of this electromagnetic
signal
Modelling and simulation of the signal and the degeneration
processes is fundamental for the correct interpretation of the
output signal and is, therefore, of central interest for the
telecommunications industries.
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Introduction to the problem

Introduction

Degeneration processes that the optical fiber undergoes
includes:

e chromatic dispersion
¢ nonlinear self-phase modulation (Kerr effect)
e dissipation

e nonlinear mixing with noise.

We will look at modelling the electromagnetic signal with the
dispersive, nonlinear and dissipative effects with added noise in
an optical fiber.

This will provide a tool for the signal degeneration analysis.
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

E(x,y,2,T) = F(x,y)e®oz=«0Dy(z, T) 7
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

E(x,y,2,T) = F(x,y)e®oz=«0Dy(z, T) 7

transverse mode (assumed to be fixed)
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

E(x,y,2,T) = F(x,y)e/®z«0Dy(z, T) 7

longitudinal carrier wave
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

E(x,y,z,T) = F(x,y)ePoz==0N y(z T)i7

longitudinal modulation (information carrying)
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

E(x,y,2,T) = F(x,y)e®oz=«0Dy(z, T) 7

polarization vector (assumed to be fixed)
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Equation for U(z, T)

The modulation U(z, T) obeys a nonlinear Schrédinger
equation (NLSE)

iU, = —ifyUr — %UTT —iaU+~|UPU



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

00000000

Equation for U(z, T)
The modulation U(z, T) obeys a nonlinear Schrédinger
equation (NLSE)
iU, = —iB1Ur — %UTT —ialU + ’Y‘U‘QU

wave packet drift
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Equation for U(z, T)

The modulation U(z, T) obeys a nonlinear Schrédinger
equation (NLSE)

iUz = — iy Ur — 2 Urr — iU +4|UPPU

chromatic dispersion (CD)
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Equation for U(z, T)

The modulation U(z, T) obeys a nonlinear Schrédinger
equation (NLSE)

iU, = —ifyUr — %UTT — iU +~|UPU

dissipation
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Equation for U(z, T)

The modulation U(z, T) obeys a nonlinear Schrédinger
equation (NLSE)

iU, = —ifyUr — %UTT — iU +~|UPU

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for u(z, t)
By the change of variable

u(z,t)y=U(z,t+ p12)

we get rid of the drift term and obtain the NLSE

P

5 Uit — iau +~|ulu

iUz -

which, from now on, will be our model of signal propagation in a
nonlinear optical fiber.



The mathematical problem
Equation for u(z, t)
By the change of variable
u(z,t)y=U(z,t+ p12)

we get rid of the drift term and obtain the NLSE

P

5 Uit — iau +~|ulu

iUz -

which, from now on, will be our model of signal propagation in a
nonlinear optical fiber.

This has to be supplemented with input conditions at z = 0:

(0, 1) = uo(t) |




Rescaling

Nondimensionalization

We nondimensionalize the problem by introducting new
variables and parameters

t=1tt, z=2zy2 u=ul, Py=Ug,

where fy, zo and Py are reference time, length and power, and
the hatted terms are the new dimensionless variables.
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Scaled NLSE

It is convienient to set 2 = ’\,(,—%L and then we choose z; such

that ¢ = ",
In this way we obtain the “semiclassical”’ scaled form of NLSE:

€2

u ulcu— —Nnu
> i+ |U] 5 NNLU,

iGUz - —

where ¢ is a small parameter.



Rescaling

Which f; and P, values?

To find a small e value that corresponds to a large zy value we
plot the two graphs

t2
0 2 PO = 5 PR
vBZ§ 215

for different values of € and zj.

Py =

From the graph we see that a convenient choice is ) ~ 100 ps
and Py ~ 50 mW.
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Which f; and P, values?
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The Madelung transform

We then apply the Madelung transform
i
Uz ) = oz 1) exp <6¢(z, r)) ,

J(Zv t) = ¢t(zv t)»

which brings the NLSE into a fluid-dynamic form:

pz+ (pd)t = —ap,
o [ o (Pt P2 N
szt (G ap)] =0

These are called Madelung equations.
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A simplified fluid model

Neglecting the O(e?) terms, we finally obtain a simplified fluid
model to work with:




Numerical Experiments

Numerical Experiments

Implement the simplied fluid model and the full NLSE

Numerical package COMSOL Multiphysics® (finite
element method)

Will compare both models to demonstrate that the main
trend of the solutions are captured by the simplified fluid
model

No natural boundary conditions = choose large domain
with trival Neumann conditions

Initial condition will have a dominating effect on the solution
(Gaussian Pulses, Chirped Gaussian Pulses, Super
Gaussian Pulses and Hyperbolic Secant Pulses)
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Gaussian Pulse

t2
u(0,t) =exp <—%2) ;

Figure: The fluid model solution.
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Gaussian Pulse

t2
u(0,t) =exp <—%2) ;

Figure: The full NLSE solution.
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Chirped Gaussian Pulses

i) 72
u(0,t) = exp (—“ZJE”)

Figure: The fluid model
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Chirped Gaussian Pulses

i) 72
u(0,t) = exp (—“ZJE”)

Figure: The full NLSE solution.
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Super Gaussian Pulses

u(0,t) =exp (—“ZIC) <;>2m>

Figure: The fluid model solution.
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Super Gaussian Pulses

u(0,t) =exp (—“ZIC) <;>2m>

Figure: The full NLSE solution.
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Hyperbolic Secant Pulses

t ict?
U(O7 t) = sech <0_> eXp <—&‘_2>

The fluid model solution.
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Hyperbolic Secant Pulses

t ict?
U(O7 t) = sech <0_> eXp <—&‘2>

Figure: The full NLSE solution.




Stochastic Input data

Input noise
The signal travels for hundreds, even thousands, of kilometers
and, because of dissipation, needs to be reinforced by optical
amplifiers placed along the fiber.

Each amplifier introduces a certain amount of noise.

Then, if we consider an amplifier-amplifier or amplifier-receiver
span of the fiber, we have to prescribe stochastic input data

(0, 1) = uo(t) + Ag(t)|

where uy is the deterministic signal and g is some stochastic
process.

amplifier receiver

signal

—_—

noise
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Assumptions

() = ta(erp (Lon) o) =gyexp (Loo)

g is a white stochastic process with a Chi squared distribution
at a fixed time.
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Perturbation Solution

p(z. 1) = > Npi(z. 1)~ po(2, 1) + Ap1 (2, 1),
j=0

J(z,t) = DY Nz, t)~ do(2,1) + (2, 1),
j=0
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Perturbation Solution
po(0, 1) = 15,
P (07 t) = 2[]0@7
~ Ogo
Ji(0,8) = O,
dpo | 0 L
odo 0 [ B
oz ot <2 tro) =0
Op1 O .
E*‘E(MJO‘FJWO) = —api,
o , 0

57 T g (oditp) = 0

Conclusions
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Super Gaussian

Consider a perturbed super Gaussian. This means that in the
initial conditions we have

_ 1 2m
Up = exp <—202m> ¢t=0

for one realisation with g =1, 0 =2 and m = 2.
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Stochastic Super Gaussian Pulses

Figure: The leading order fluid model solution for p.
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Stochastic Super Gaussian Pulses

Figure: The first order correction fluid model solution for p.




Stochastic Input data

00000080

Stochastic Super Gaussian Pulses

Figure: The leading order fluid model solution for J.
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0O000000e

Stochastic Super Gaussian Pulses

Figure: The first order correction fluid model solution for J.
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Conclusions

Considered a model of signal propagation in optical fibers
based on NLSE

Applied Madelung transform to obtain a simplified fluid
model

Excellent numerical evidence for agreement between
NLSE and simplified fluid model

Stochastic input produces a perturbation that we treated at
first order
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