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Introduction

• Optical fibers made of pure glass (silica) are used as a
medium for telecommunication

• information carrying signal travels for hundreds, or even
thousands, of kilometers

• several degeneration processes
• signal needs to be periodically reinforced by optical

amplifiers over its long journey→ adds noise
• want to investigate the propagation of this electromagnetic

signal

Modelling and simulation of the signal and the degeneration
processes is fundamental for the correct interpretation of the
output signal and is, therefore, of central interest for the
telecommunications industries.



Introduction



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Introduction

Degeneration processes that the optical fiber undergoes
includes:
• chromatic dispersion

• nonlinear self-phase modulation (Kerr effect)

• dissipation

• nonlinear mixing with noise.

We will look at modelling the electromagnetic signal with the
dispersive, nonlinear and dissipative effects with added noise in
an optical fiber.
This will provide a tool for the signal degeneration analysis.
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Electromagnetic field in the fiber

The electromagnetic field inside the fiber can be assumed to
have this form:

~E(x , y , z,T ) = F (x , y) ei(β0z−ω0T )U(z,T )~ν

transverse mode (assumed to be fixed)

longitudinal carrier wave

longitudinal modulation (information carrying)

polarization vector (assumed to be fixed)
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Equation for U(z,T )

The modulation U(z,T ) obeys a nonlinear Schrödinger
equation (NLSE)

iUz = − iβ1UT −
β2

2
UTT − iαU + γ|U|2U

wave packet drift

chromatic dispersion (CD)

dissipation

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for U(z,T )

The modulation U(z,T ) obeys a nonlinear Schrödinger
equation (NLSE)

iUz = − iβ1UT −
β2

2
UTT − iαU + γ|U|2U

wave packet drift

chromatic dispersion (CD)

dissipation

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for U(z,T )

The modulation U(z,T ) obeys a nonlinear Schrödinger
equation (NLSE)

iUz = − iβ1UT −
β2

2
UTT − iαU + γ|U|2U

wave packet drift

chromatic dispersion (CD)

dissipation

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for U(z,T )

The modulation U(z,T ) obeys a nonlinear Schrödinger
equation (NLSE)

iUz = − iβ1UT −
β2

2
UTT − iαU + γ|U|2U

wave packet drift

chromatic dispersion (CD)

dissipation

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for U(z,T )

The modulation U(z,T ) obeys a nonlinear Schrödinger
equation (NLSE)

iUz = − iβ1UT −
β2

2
UTT − iαU + γ|U|2U

wave packet drift

chromatic dispersion (CD)

dissipation

self-phase modulation (SPM)



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Equation for u(z, t)
By the change of variable

u(z, t) = U(z, t + β1z)

we get rid of the drift term and obtain the NLSE

iuz = −β2

2
utt − iαu + γ|u|2u

which, from now on, will be our model of signal propagation in a
nonlinear optical fiber.

This has to be supplemented with input conditions at z = 0:

u(0, t) = u0(t)
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Nondimensionalization

We nondimensionalize the problem by introducting new
variables and parameters

t = t0 t̂ , z = z0ẑ, u = u0û, P0 = u2
0 ,

ND =
t2
0
β2
, NNL =

1
γP0

.

where t0, z0 and P0 are reference time, length and power, and
the hatted terms are the new dimensionless variables.
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Scaled NLSE

It is convienient to set ε2 = NNL
ND

and then we choose z0 such
that ε = NNL

z0
.

In this way we obtain the “semiclassical” scaled form of NLSE:

iεuz = −ε
2

2
utt + |u|2u − iα

2
NNLu,

where ε is a small parameter.
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Which t0 and P0 values?

To find a small ε value that corresponds to a large z0 value we
plot the two graphs

P0 =
t2
0

γβz2
0
, P0 =

β

ε2γt2
0
,

for different values of ε and z0.

From the graph we see that a convenient choice is t0 ≈ 100 ps
and P0 ≈ 50 mW.
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Which t0 and P0 values?
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The Madelung transform

We then apply the Madelung transform

u(z, t) =
√
ρ(z, t) exp

(
i
ε
φ(z, t)

)
,

J(z, t) = φt (z, t),

which brings the NLSE into a fluid-dynamic form:

ρz + (ρJ)t = −α̂ρ,

Jz +
∂

∂t

[
J2

2
+ ρ− ε2

(
ρtt

4ρ
−

ρ2
t

8ρ2

)]
= 0.

These are called Madelung equations.
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A simplified fluid model

Neglecting the O(ε2) terms, we finally obtain a simplified fluid
model to work with:


ρz + (ρJ)t = −α̂ρ,

Jz +
∂

∂t

(
J2

2
+ ρ

)
= 0.
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Numerical Experiments

• Implement the simplied fluid model and the full NLSE
• Numerical package COMSOL Multiphysics R© (finite

element method)
• Will compare both models to demonstrate that the main

trend of the solutions are captured by the simplified fluid
model

• No natural boundary conditions⇒ choose large domain
with trival Neumann conditions

• Initial condition will have a dominating effect on the solution
(Gaussian Pulses, Chirped Gaussian Pulses, Super
Gaussian Pulses and Hyperbolic Secant Pulses)
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Gaussian Pulse

u(0, t) = exp
(
− t2

2σ2

)
,

Figure: The fluid model solution.
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Gaussian Pulse

u(0, t) = exp
(
− t2

2σ2

)
,

Figure: The full NLSE solution.



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Chirped Gaussian Pulses

u(0, t) = exp
(
−(1 + ic)t2

2σ2

)

Figure: The fluid model
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Chirped Gaussian Pulses

u(0, t) = exp
(
−(1 + ic)t2

2σ2

)

Figure: The full NLSE solution.



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Super Gaussian Pulses

u(0, t) = exp

(
−(1 + ic)

2

(
t
σ

)2m
)

Figure: The fluid model solution.
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Super Gaussian Pulses

u(0, t) = exp

(
−(1 + ic)

2

(
t
σ

)2m
)

Figure: The full NLSE solution.
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Hyperbolic Secant Pulses

u(0, t) = sech
(

t
σ

)
exp

(
− ict2

2σ2

)

The fluid model solution.
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Hyperbolic Secant Pulses

u(0, t) = sech
(

t
σ

)
exp

(
− ict2

2σ2

)

Figure: The full NLSE solution.



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Input noise
The signal travels for hundreds, even thousands, of kilometers
and, because of dissipation, needs to be reinforced by optical
amplifiers placed along the fiber.
Each amplifier introduces a certain amount of noise.
Then, if we consider an amplifier-amplifier or amplifier-receiver
span of the fiber, we have to prescribe stochastic input data

u(0, t) = u0(t) + λg(t)

where u0 is the deterministic signal and g is some stochastic
process.
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Assumptions

u0(t) = ū0(t) exp
(

i
ε
φ0

)
g(t) = ḡ(t) exp

(
i
ε
φ0

)

ḡ is a white stochastic process with a Chi squared distribution
at a fixed time.
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Perturbation Solution

ρz + (ρJ)t = −α̂ρ,

Jz +
∂

∂t

(
J2

2
+ ρ

)
= 0.

ρ(z, t) =
∞∑

j=0

λjρj(z, t) ≈ ρ0(z, t) + λρ1(z, t),

J(z, t) =
∞∑

j=0

λjJj(z, t) ≈ J0(z, t) + λJ1(z, t),
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Perturbation Solution

ρ0(0, t) = ū2
0 ,

ρ1(0, t) = 2ū0ḡ,

J0(0, t) =
∂φ0

∂t
,

J1(0, t) = 0,

∂ρ0

∂z
+
∂

∂t
(ρ0J0) = −α̃ρ0,

∂J0

∂z
+
∂

∂t

(
J2

0
2

+ ρ0

)
= 0,

∂ρ1

∂z
+
∂

∂t
(ρ1J0 + J1ρ0) = −α̃ρ1,

∂J1

∂z
+
∂

∂t
(J0J1 + ρ1) = 0.
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Super Gaussian

Consider a perturbed super Gaussian. This means that in the
initial conditions we have

ū0 = exp
(
−1

2
t2m

σ2m

)
φt = 0

for one realisation with ḡ = 1, σ = 2 and m = 2.
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Stochastic Super Gaussian Pulses

Figure: The leading order fluid model solution for ρ.
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Stochastic Super Gaussian Pulses

Figure: The first order correction fluid model solution for ρ.
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Stochastic Super Gaussian Pulses

Figure: The leading order fluid model solution for J.
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Stochastic Super Gaussian Pulses

Figure: The first order correction fluid model solution for J.



Introduction to the problem The mathematical problem Rescaling Numerical Experiments Stochastic Input data Conclusions

Conclusions

• Considered a model of signal propagation in optical fibers
based on NLSE

• Applied Madelung transform to obtain a simplified fluid
model

• Excellent numerical evidence for agreement between
NLSE and simplified fluid model

• Stochastic input produces a perturbation that we treated at
first order



Muchisimas gracias por su
atenciòn!
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