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Chapter 1

Introduction

1.1 Biological control of rabbits

Rabbits were first introduced in Australia in 1859 with the release of twelve
rabbits for hunting purposes.

For 50 years they have became a great problem because they have reached
plague proportions throughout the country. This results in environment dam-
age like erosion or outcompeting of native species for scarce food resources.

In 1901 a Royal Commission was held to investigate the situation. Once
the problem was understood, various control methods were tried to reduce or
limit the population of rabbits in Australia, like shooting rabbits or poisoning
them.

These methods had limited success until the introduction of biological
control methods in the latter half of the 20th Century.

The first bacterial rabbit disease they introduced was Myxomatosis, which
initially affects the skin and eyes. It also weakens rabbits’ immunity to
other diseases. Almost all infected rabbits die, usually within two weeks.
However, although it was very effective in decreasing the rabbit population,
their numbers have been recovering since then as resistance to myxomatosis
developed. This is the reason why they then introduced a calicivirus that
spreads rabbit haemorrhagic disease (RHD), but the situation seems to be
the same as the resistance is again developing.

In order to understand what makes a biological agent effective we are
interested in using mathematical models of epidemics.
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CHAPTER 1. INTRODUCTION 3

1.2 General view of the models

We are going to consider two mathematical models of epidemics:

• Mathematical models in which the rabbits´disease is transmitted by
rabbits´contact (SIR Model and variants).

• Mathematical models in which the rabbits´disease is transmitted by
fleas (vector-driven dynamics model).

For each model we consider two different options:

• temporal (ODE models)

• spatiotemporal (PDE models)

1.2.1 Rabbit to rabbit transmission

The easiest model considers evolution of the following populations:

- Susceptible rabbits, which are healthy rabbits that could get the dis-
ease.

- Infected rabbits, which are ill rabbits.

- Recovered rabbits, which are immune and dead rabbits (in this case,
practically all will be dead).

subject to the following rules:

- When an infected rabbit encounters a susceptible rabbit, the infected
rabbit population grows and the susceptible rabbit population decreases.

- Infected rabbit population decays at a constant rate into recovered
rabbits.

I It is called the SIR Model.

We can also add/leave out some factors or populations depending on the
purpose of our model. Firstly,

- Recovered rabbits altogether are omitted, because they don’t have any
influence in other populations dynamics.

- Natural growth of susceptible rabbits’ population, which is exponential,
is added.
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I We get the Lotka-Volterra Model.

The next step could be change exponential growth into logistic growth,
which is more realistic.

I We get a model where the rabbit populations are bounded.

1.2.2 Disease transmission by fleas

As we have done before, we start our study with the easiest model, introduc-
ing a new population

- Infected fleas

and considering the following evolution possibilities:

- Infected rabbit population increases as a result of contact between sus-
ceptible rabbits and fleas.

- Infected rabbit population decreases exponentially.

- Infected flea population grows in proportion to the number of infected
rabbits and decreases exponentially.

I If we do these, we get the vector-driven SIR model.

1.2.3 Other considerations

Furthermore, We can consider more complicated factors for each model we
have studied. As an example, we have done some research in the following
aspects:

Introducing spatial variation of one or more populations into the model

- by adding a diffusion-like term representing random movement of rab-
bits and/or fleas.

I We get a SIR-diffusion model.

Introducing Time-varying rate of infection

- λ is chosen periodically time variating.

I We get a time-varying SIR model.

A complete model could be the result of a combination of all those aspects.



Chapter 2

First attempt

2.1 SIR model

SIR Model consists on dividing rabbit population into three populations that
are mutually exclusive: susceptible rabbits, infected rabbits and recovered
ones. Considering that infected and recovered rabbits depend linearly on the
contact between an infected and a susceptible ones, and that infected rabbits´
evolution and recovered rabbits evolution depend linearly on infected rabbit
population, we can write: 

Ṡ = −αIS
İ = αIS − βI
Ṙ = βI

where
1

β
means the period of time that a rabbit is infected. During that

period of time,
αS

β
shows the susceptible rabbits which could be infected.

By no-dimensionalising, we can write the system as function of only one
parameter, so we could study it´s behavior and the importance of each dif-

ferent term. Choosing [t] =
1

αN
y λ =

β

αN
, we get

Ṡ = −IS
İ = IS − λI
Ṙ = λI

where the parameters are noted as
λ, rate of recovery
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R0 =
1

λ
, basic reproductive ratio (for S ∼ N , where N is the total number

of rabbits)1

2.2 Observations and discussion

The first observation we make is that, because we have divided rabbit pop-
ulation into three populations that are mutually exclusive (N = S + I +R),
the number of rabbits is constant during the whole process. In fact, replacing
the first and the third equations into the second one, we conclude that:

d

dt
I =

d

dt
(−S) +

d

dt
(−R) ⇔ d

dt
(I + S +R) = 0 ⇔ N ≡ constant

From the different values of λ we can understand the system behavior.
For example, we can wonder how the disease is going to finish. This means

that we have to study what happens when I = 0. Because N = S + I + R,
I = 0 ⇒ N = R + S. From the first and the third equations we can
write:

dS

dR
= −IS

λI
⇒ S = S0e

−R
λ ⇒ N = R∞ + S0e

−R∞
λ

Therefore,
λ� 1 ⇒ R∞ = N , that means that all the rabbits are recovered.
Whereas
λ� 1 ⇒ R∞ = N − S0 = R0, that means there isn´t illness evolution.

Solving the system numerically, we could find out that in the case of
S0 − λ > 0, we have an epidemic situation, in which the rabbits population
tends to become all recovered for sufficiently long period of time (figure 2.1).

In the case of S0−λ > 0 and considering a sufficiently long period of time,
infected rabbit population tends to almost zero, which means the disease dies
away (figure 2.2).

1For example, for SARS, R0 ∼ 3− 5, or for measles, R0 ∼ 12− 14
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Figure 2.1: SIR, λ = 0.1, T = 30 days
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Figure 2.2: SIR, λ = 1.1, T = 30 days
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More realistic SIR models

The SIR model is the first step towards a sensible model of the spread of the
disease. We now look to add two features: firstly growth, and then a spatial
dependence.

3.1 Including Grwoth

The next step would be adding an exponential growth of the susceptible
populations due to new births. Under this assumption, the population of
rabbits in the absence of a disease grows exponentially. This is known as
Malthus’ Law, proposed in 1798. The system of equations becomes{

Ṡ = −αIS + γS

İ = αIS − βI
Like in the SIR model, we will proceed to nondimensionalise the system

of equations. {
dS
dt

= #
[t]

= −α#2 + γ#
dI
dt

= α#2 − β#

# stands for the unit ‘number of rabbits’ and [t] is time. Doing the
appropriate algebra we arrive to{

ˆ̇S = −Î Ŝ + κS
ˆ̇I = Î Ŝ − λI

Is is important to remark the meaning of the nondimensional parameters:
κ is the birth rate relative to the infection rate. If κ < 1, the disease spreads

8



CHAPTER 3. MORE REALISTIC SIR MODELS 9

quicker than the birth rate, whereas λ is just the death rate relative to the
infection rate. The higher λ, the faster a individual dies.

One would expect that for a effective population control a very aggressive
disease should be introduced among the rabbit population. That is, one with
a high λ. However our results show that for any λ > 1—even in the case
where κ < 1—the disease kills so quickly that there is no time for spreading
as shown in the following figure.
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Figure 3.1: Evolution of the infected and the susceptible subjects, for κ = 0.6
and λ = 1.5

Although the behavior of the disease seems periodic, and the infected
grow again when the susceptible grow enough, in reality this point is never
reached, due to the so-called ‘atto-fox’ effect. When the population of a
species reaches a value below one, then it is effectively extinct, On the other
hand if the disease has a small λ the disease progressively affects the whole
population.

Again the atto-fox effect is present but in the population of susceptible
rabbits.

The phase portraits for both cases confirm what we have shown.
One of the main drawbacks of the model Malthusian model is that the

population of rabbits grow to infinity in the case that no exiting diseases.
This is not a right assumption, for two obvious reasons: Food is limited and
space is limited. Therefore the growth might be exponential, but is should
stop at a certain point. This effect is achieved with the following model:{

Ṡ = −αIS + δS
(
1− S

K
)
)

İ = αIS − βI
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Figure 3.2: Evolution of the infected and the susceptible subjects, for κ = 0.6
and λ = 0.3
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Figure 3.3: Phase portrait for κ < 1 and λ < 1

Where ι is the carrying capacity. When S = K growth stops and reaches
a steady state. Now the growth without diseases follow this plot:

Performing the nondimensionalisation of the equations like before, we get:{
ˆ̇S = −Î Ŝ + κŜ(1− Ŝ)

ˆ̇I = Î Ŝ − λÎ

where κ = γ
αι

and λ = β
αι

. The ’physical’ meaning of the nondimensional
parameters is equivalent, namely κ is the birth rate relative to the infection
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Figure 3.4: Phase portrait for κ < 1 and λ > 1

rate. If κ < 1, the disease spreads quicker than the birth rate, whereas λ is
just the death rate relative to the infection rate. The higher λ, the faster a
individual dies.

In figures 3.5 to 3.8 we show the temporal evolution of the species, and
the phase portrait in the two cases of interest: λ > 1 and λ < 1.

3.2 Spatio-Temporal Dynamics

Our main goal is to accurately model population dynamics in the face of a
disease spreading through Australia. All of our models so far have considered
a population made up of susceptible, infected, and recovered rabbits. Indi-
vidual rabbits move between these groups at prescribed rates that depend
only on the sizes of the groups, and some scalar parameters.

However, Australia is an expansive country, and it is clear that spatial
distance plays a huge role in real epidemics.

Rabbit families typically live in underground burrows. Such underground
systems can be expansive, and many burrows can be linked together. Such
a system is called warren, and the rabbits that inhabit it are collectively
known as a herd. These are close-knit communities, and infection spreads
easily within them. In contrast, infection between herds is rather rarer.

We suppose that we are modelling such a population on a large scale,
Hence, we can approximate a ‘continuum’ of warrens occupying x ∈ [0, 1].1

1This is non-dimensional, the size of the domain is captured in the nondimensional
parameter D given momentarily.
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Figure 3.5: Evolution of the infected and the susceptible subjects for κ < 1 and
λ < 1
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Figure 3.6: Evolution of the infected and the susceptible subjects for κ < 1 and
λ > 1
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Figure 3.7: Phase portrait for κ < 1 and λ < 1
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Infections move between warrens only by the movement of rabbits. To model
this movement, we simply added a diffusion of susceptibles and infecteds.

∂S

∂t
(x, t) = −S(x, t)I(x, t) +D

∂2S

∂x2
(x, t), x ∈ [0, 1], t > 0 (3.1)

∂I

∂t
(x, t) = S(x, t)I(x, t)− λI(x, t) +D

∂2I

∂x2
(x, t), x ∈ [0, 1], t > 0 (3.2)

where D is a diffusion parameter.2 This can be interpreted as rabbits
hopping a normally-distributed distance; a random motility of rabbits!

We would like our rabbit-populated area to be finite. At the boundaries
x = 0, 1, we impose homogenous Neumann conditions. This choice represent
rabbits reaching a boundary, turning around, and hopping straight back.3

∂S

∂x
= 0 x = 0, 1, t > 0 (3.3)

∂I

∂x
= 0 x = 0, 1, t > 0 (3.4)

Of course, our initial conditions are as before, albeit with a spatial de-
pendence.

The resulting system of PDEs can be solved numerically in Matlab using
the pdepe routine. Our results are shown in Figure 3.9 and 3.10, where we
have added exponential and logistic growth respectively.

We choose the initial population S of susceptibles to be evenly distributed
in x, and the initial population of I to be non-zero only in a small portion
at the left boundary. This is intended to represent an ‘injection’ of diseased
rabbits at x = 0.

For our non-dimensional parameter κ we choose a realistic value based
on the gestation period of a doe, their average litter size, and the time to
sexual maturity of rabbit kittens. This we calculated to be around 0.2228.
We choose the diffusion parameter (effectively, the length of the spatial re-
gion) so that the spatial effects are best displayed, and the λ value so that
the oscillations of the system are contained below one. Ideally λ would be
replaced with experimental values.

For both exponential and logistic growth we see an expected initial diffu-
sion of the initial conditions. Both solutions then exhibit a travelling ‘wave-
front’ of infected and susceptible rabbits, which sweeps through from left to
right. This is a pleasing result, representing an initial wave in the epidemic.

2D is non-dimensional, so we may happily add it straight into our non-dimensional
model. It effectively controls the size of the spatial domain.

3At least, hopping back according to diffusion.
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As this wavefront reaches the right boundary, the PDE system attempts
to satisfy the boundary conditions. In the case of exponential growth, this
results in large oscillations as the system jumps onto larger orbits in the phase
plane. Eventually the system settles, with the solution at each x oscillating
around the equilibrium, as predicted by the spatially independent model.

For the case of logistic growth, the system again jumps onto different
paths in the phase plane as the wavefront reaches the right-hand side. How-
ever, since each path is a stable spiral, the oscillations are rather more con-
tained. This seems far more realistic. Again, each point spirals into equilib-
rium.

Although it is not straightforward to implement in Matlab, a natural
first step would be to move to a two-dimensional model. λ could be further
modified to include a spatial dependence, with lower values representing areas
of Australia where it is more difficult for the infection to travel through.
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(a) Diffusion of initial conditions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, t

N
um

be
r 

of
 r

ab
bi

ts

t = 60.6061

 

 
S
I

(b) A wavefront carries the infection
through the warrens.
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(c) As we satisfy the Neumann condi-
tions at the right boundary, we move
onto larger orbits.
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(d) The system settles into periodic or-
bits at each x.

Figure 3.9: SIR model with spatial diffusion and exponential growth. The
equilibria for S and I are given as dashed lines.
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(a) Diffusion of initial conditions.
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(b) A wavefront carries the infection
through the warrens.
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(c) Satisfying the right-boundary condi-
tion is rather less wild than the exponen-
tial growth case.
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(d) Each x eventually spirals to equilib-
rium.

Figure 3.10: SIR model with spatial diffusion and logistic growth. λ is chosen
so that the equilibrium point is a stable spiral. The equilibria for S and I
are given as dashed lines.
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Vector-driven dynamics

4.1 SIR with infected fleas population:

Considering that fleas are the main vector of the disease we can neglect
other transmission factories. We assume susceptible population, S varies in
accordance with

Ṡ = −αSF + δS(1− S

K
), (4.1)

where α represents the probability of infection in case of meeting between
susceptible rabbits and infected fleas, F , δ is rabbits birth rate and K is the
carrying capacity. Consequently the infected rabbits population, I,has to be

İ = αSF − βI, (4.2)

where β is the steady death rate. The last equation of our dynamic system
represents the infected fleas variation and reads

Ḟ = γI − ψF, (4.3)

where we are assuming γ as the number of infected fleas for infected rabbits in
time, while ψ is the fleas steady death rate. After the nondimensionalisation
the dynamic system is: 

Ṡ = −SF + κS(1− S)

İ = SF − λI
Ḟ = 1

ε
(I − F )

(4.4)

with

λ =
βψ

αγS0

,
1

ε
=

ψ2

αS0γ
, κ =

δ

αK
. (4.5)

18
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The equilibrium states of the dynamical system can be obtained, as before,
equating to 0 the right hand side of (4.8). Two equilibrium solutions that
exist for all parameter values are A(0, 0, 0) and B(1, 0, 0). Additional equi-
librium point C(λ, κ(1 − λ), κ(1 − λ)) exists only if λ < 1. The Jacobian
matrix related to the system (4.8) is

J =

 −F + κ− 2κS 0 −S
F −λ S
0 1

ε
−1
ε

 (4.6)

A is always a saddle point while B is asymptotically stable (the three eigen-
values of the Jacobian matrix are negative) for λ > 1.

S ’ = − S I + kappa S (1 − S)
I ’ = S I − lambda I         

kappa = 0.5
lambda = 1.1
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Figure 4.1: Phase portrait with λ > 1

When the point C exists it is asymptotically stable 1 while B becomes
unstable (see figure (4.2)).

We can observe that the dynamic system (4.8) is equivalent to a SIR
model with logistic growth when F is in a steady state. Choosing a small
ε we find this behavior because F and I go to infinity in the same way. In
the case λ < 1 we have an endemic disease where infected and susceptible

1The equation for the calculation of Jacobian eigenvalues is

µ3 + µ2(
1

ε
+ λ+ κλ) + µ(

κλ

ε
+ κλ2) +

κ(1− λ)

ε
= 0. (4.7)

Using Cartesio’s signs rule for cubics equations we can say that no positive solutions exist
because there aren’t sign’s changes.
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S ’ = − S I + kappa S (1 − S)
I ’ = S I − lambda I         

kappa = 0.5
lambda = 0.3
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Figure 4.2: Phase portrait with λ < 1

rabbits live together. When λ > 1 the equilibrium point suggests that the
situation will returns to the initial condition when time goes to infinity and
this confirm the choice of a small value of λ.

4.2 Diffusion of fleas

As we have done before we introduce diffusion terms for fleas and rabbits

∂S
∂t

= −SF + κS(1− S) +Dr
∂2S
∂t2

t > 0, x ∈ [0, 1]
∂I
∂t

= SF − λI +Dr
∂2I
∂t2

t > 0, x ∈ [0, 1]
∂F
∂t

= 1
ε
(I − F ) +Df

∂2F
∂t2

t > 0, x ∈ [0, 1]

S(x, 0) = S0(x) x ∈ [0, 1]

I(x, 0) = I0(x) x ∈ [0, 1]

F (x, 0) = F0(x) x ∈ [0, 1]
∂S
∂x
|x=0,1 = 0 t > 0

∂I
∂x
|x=0,1 = 0 t > 0

∂F
∂x
|x=0,1 = 0 t > 0

(4.8)

where Dr represents the diffusion term for rabbits, susceptible and infected
too, and Df the diffusion term for infected fleas. We are assuming that fleas
spread faster than rabbits. Results from a numerical simulation are shown
in Figure (4.3).
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Figure 4.3: Spread of infection at different times
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4.3 Time-varying rate of infection

We now assume, according with the viruses used to reduce rabbits, to have
a seasonal disease. In effect this means a time-varying rate of infection. Our
dynamic system is now: {

Ṡ = −α(t)SI

İ = −α(t)SI − βI (4.9)

where α(t) has to be a periodic function as:

Asin(ωt) + α0 (4.10)

with α0 the medium value assumed by the function, ω the frequency 2 and
A the amplitude of the function. It must be α0 > A in order to have α(t)
always positive. After nondimensionalisation our dynamic system becomes

Ṡ = −α(t)µSI

İ = −α(t)µSI − ηI
α(t) = 1 + Γsin(t)

(4.11)

where

µ =
α0S0

ω
, η =

β

ω
,Γ =

A

α0

. (4.12)

First of all the average value of basic reproductive ratio R0 is equal to µ
η

just

like it was in the SIR model while for each time t we can obtain R0 = µα(t)
η

.
We proceeded by numerical simulations and we can see in the next images
how the seasonality of disease makes the populations trend periodic (see
figure (4.4)).

To be more realistic we have considered a disease that has effect only in
a short period of the year (few months) defining

α(t) =

{
σ for t ∈ [a, b]
0 otherwise

(4.13)

in which σ is a real positive number depending on the considered virus, while
[a, b] is the period of disease activity (see figure (4.5)).

Of course we need a disease death time for infected rabbits shorter than
the period T but is mathematically interesting to notice that when R0 is big
enough the period of population is larger then the disease one (see figure
(4.6)).

2ω = 1
T , with T is assumed to be one year.
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Figure 4.4: Variation in time with α(t) = 1 + Γsin(t)
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Figure 4.5: Variation in time with α(t) as in (4.13)
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Figure 4.6: Variation in time with a big R0



Chapter 5

Conclusions and future work

In our project we started off using the famous SIR model. We found that
the key parameter for virulence is R0. However, this model is only applicable
when the timescale of the spread of the disease is much quicker than the
birth of rabbits.

We introduced a growth term and found that logistic growth is more
realistic than exponential one.

Modelling a rabbit population as perfectly mixed is unsatisfactory, as in
reality rabbits live in communities. We introduced a spatial dependence and
came up with a PDE model. Numerical simulations of the model show a very
nice spreading wavefront.

We then decided to introduce more realistic transmission model. We used
a third population of infected fleas to spread the disease, and incorporated a
faster diffusion term for them.

Finally, we introduce time-dependent parameters, and gave numerical
simulations that suggest that seasonal diseases give way to periodic variations
in the population for certain R0 values.

For future work, it would be interesting to move into two spatial dimen-
sions. The spatial domain could include areas where it is more difficult for
the disease to spread.

We would also like to include genetic immunities in our model, as this is
a key factor that hampers the progress of diseases over long-time periods.
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