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1 Introduction

Optical fibers made of pure glass (silica) are used as a medium for telecommunication and net-
working as they act as waveguides to transmit light between the two fiber ends. The information
carrying signal travels for hundreds, or even thousands, of kilometers (see Fig 1) and undergoes
several degeneration processes. Further undersired noise enters the system due to the fact that
the signal needs to be periodically reinforced by optical amplifiers over its long journey (see Fig
2).

Figure 1: Optical fibers carry informations for hundreds, or even thousands, of kilometers.

Modelling and simulation of the signal and the degeneration processes is fundamental for the
correct interpretation of the output signal and is, therefore, of central interest for the telecommu-
nications industries. Degeneration processes include chromatic dispersion (different wavelenghts
travel with different speed), nonlinear self-phase modulation (Kerr effect) and dissipation. Fur-
thermore the signal and noise is nonlinearly mix up during the propagation, and this contributes
to the degeneration of the output. All these phenomena can be described by a one-dimensional,
nonlinear Schrödinger equation, with stochastic input data.

Our purpose is to investigate the propagation of the electromagnetic signal by exploiting the
Madelung transform which reduces the one-dimensional Schrödinger equation to an Euler-like
system of equations for a compressible fluid. This allows to deduce an approximated “semiclassical”
model which can more easily handled for numerical simulations and which is more treatable when
the stochastic data are considered.

An optical fiber is made of three components: the jacket, cladding and the core. For a cross-
sectional image of a fiber see Fig 3(a). The refraction index gradient between core and cladding
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Figure 2: Noise is mixed into the signal as the signal is reinforced at every amplifier along its path.

acts as a confinement trap for the electromagnetic wave in the transverse directions (xy). The
propagating part of the electromagnetic wave is along the z (longitudinal) direction (into the page)
within the core. This is the important part to be analyzed for our purposes. For our problem we
will consider a single-mode fiber which means that the electromagnetic wave in the xy (transverse)
directions has a stationary shape (called a mode). Usually a ∼ 5 m and b ∼ 50 m, for a standard
single-mode fiber. In Fig 3(b) we can see different fiber modes.

(a) Cross section (b) Transverse modes

Figure 3: A single-mode optical fiber.

This report is arranged as follows: In section 2 the electromagnetic field within the optical
fiber and the nonlinear Schr odinger equation (NLSE) for the modulation of the electromagnetic
field are defined. In section 3 we introduce new variables to nondimensionalize the problem and a
simplied fluid model is found with the use of the Madelung transform. In section 4 we report our
solutions. We do a brief introduction to adding the stochasic noise to the input data in section 5
and finally our conclusions are summarized in section 6.

2 The matematical problem

The electromagnetic field inside the fiber can be assumed to have this form:

~E(x, y, z, T ) = F (x, y)ei(β0z−ω0T )U(z, T )~ν (1)

where F (x, y) is the transverse mode (assumed to be fixed), ei(β0z−ω0T ) is the longitudinal carrier
wave, U(z, T ) is the longitudinal modulation and ~ν polarization vector (assumed to be fixed). The
modulation U(z, T ) is that component which carries the information and so is the function of
interest here. In general, the propagation can be described by the nonlinear Schrödinger equation
with cubic nonlinearity, where the roles of space and time variables are inverted with respect to
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the usual Schrödinger equation of quantum mechanics:

iUz = −iβ1UT −
β2
2
UTT − iαU + γ|U |2U. (2)

Here, the four terms on the right hand side are defined as the wave packet drift, chromatic
dispersion (CD), dissipation and the self-phase modulation (SPM) terms. The drift term can be
neglected by introducing a new time variable,

t = T − β1z. (3)

So clocks along the fiber are set to t = 0 at the arrival of the pulse center (traveling at the group

Figure 4: Drift of the wave packet.

velocity 1/β1, see Fig 4). Now the new modulation can be expressed as

u(z, t) = U(z, t+ β1z) (4)

and it obeys the NLSE

iuz = −β2
2
utt − iαu+ γ|u|2u (5)

which, from now on, will be our model of signal propagation in a nonlinear optical fiber. This has
to be supplemented with input conditions at z = 0:

u(0, t) = u0(t). (6)

Later we will consider stochastic input data.

3 Rescaling

We nondimensionalize the problem by introducting new variables

t = t0t̂, z = z0ẑ, u = u0û, (7)

where t0, z0 and u20 are reference time, length and power, while the hatted terms are the new
dimensionless variables. Furthermore we define

P0 = u20, ND =
t20
β2
, NNL =

1

γP0
. (8)

Substituting these into equation (5) and dropping the hat notation we get

i
NNL

z0
uz = −NNL

2ND
utt + |u|2u− iα

2
NNLu (9)

In order to get the “semiclassical” scaling,1 it is convienient to set ε2 = NNL
ND

and then we choose z0

such that ε = NNL
z0

. We want ε to be a small parameter, so that later when we take the Madelung

1The term semiclassical is used in analogy with the semiclassical scaling of the Schrödinger equation of quantum
mechanics but, of course, here the scaling has a different meaning, namely that of SPM being much stronger than
CD.
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Figure 5: Plot of equations (12) and (13)

transformation we may neglect part of the nonlinearity in the equation. To ensure ε is small we
choose appropriate values for t0 and P0. From the definitions of ε we may express the typical
length scale as

z0 =
√
NNLND, (10)

and the the NLSE can be written in the following “semiclassical” scaled form

iεuz = −ε
2

2
utt + |u|2u− iα

2
NNLu. (11)

To find a small ε value that corresponds to a large z0 value we plot the two graphs (see Fig 6)

P0 =
t20

γβz20
, (12)

P0 =
β

ε2γt20
, (13)

for different (logarithmically spaced) values of ε and z0. Looking at where the graphs intersect we
may choose appropriate ranges for t0 and P0. We choose t0 ≈ 100 ps and P0 ≈ 50 mW. Other
parameters, such as

α = 0.02 km−1, β = 10 ps2km−1, γ = 2 W−1km−1,

are fixed as they are physical properties of the fiber and the typical values are taken from literature.
The other parameter values turn out to be

ε = 0.1, z0 = 100 km, α̂ = αz0 = 2, NNL = 10 km, ND = 1000 km.

We then apply the Madelung transform to (11) which assumes u(z, t) to have the form

u(z, t) =
√
ρ(z, t) exp

(
i

ε
φ(z, t)

)
, (14)

J(z, t) = φt(z, t), (15)
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where ρ may be interpreted as the amplitude of the propagation and φ is the phase. Substituting
these expressions into (11) we obtain two real equations of a fluid-dynamic form:

ρz + (ρJ)t = −α̂ρ, (16a)

Jz +
∂

∂t

[
J2

2
+ ρ− ε2

(
ρtt
4ρ
− ρ2t

8ρ2

)]
= 0. (16b)

These are called the Madelung equations. By neglecting the O(ε2) terms we finally obtain a
simplified fluid model to work with:

ρz + (ρJ)t = −α̂ρ, (17a)

Jz +
∂

∂t

(
J2

2
+ ρ

)
= 0. (17b)

In the following section these simplified equations will be solved numerically using COMSOL
Multiphysics R© with suitable initial data and boundary conditions. To investigate the effect of
neglecting the nonlinear term a comparison of the approximate solution with the result obtained
with the full NLSE will be made.

4 Solutions

In this section we will implement both the simplied fluid model in (17) and the full NLSE using the
numerical package COMSOL Multiphysics R© which makes use of the finite element method. The
reduced fluid model is easier to implement numerically and when including the effect of stochastic
input data (details to follow later) the fluid model is simplier to work with. Then we will compare
the simulations obtained with the simplified fluid model with those obtained with the full NLSE
to demonstrate that the main trend of the solutions are captured.

Our problem does not have natural boundary conditions, but when implementing the problem
in COMSOL we are required to stipulate boundary conditions. To avoid this complication we
choose a domain much larger than the pulse width and define trival Neumann boundary conditions
at a distance far enough away from the region of interest. This way the effect of the boundary
condition on the solution is negligible. So the initial condition will have a dominating effect on the
solution, and so we will explore many different initial deterministic data inputs, such as Gaussian
Pulses, Chirped Gaussian Pulses, Super Gaussian Pulses and Hyperbolic Secant Pulses. A typical
length for the pulse width is 2σt0, where σ is the standard deviation of the initial data, so the
domain chosen for the solution is t ∈ [−10t0, 10t0].

4.1 Gaussian Pulses

To start with we solve the problem using a Gaussian pulse for the initial data, defined as

u(0, t) = exp

(
− t2

2σ2

)
, (18)

which corresponds to initial conditions for the fluid system (17),

ρ(0, t) = exp

(
− t

2

σ2

)
,

J(0, t) = 0.

As seen in Figs 6(a) and 6(b), where the fluid model and the full NLSE solutions are represented
respectively, we have excellent agreement even though ε = 0.1 is not particularly small.
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(a) The fluid model solution.

(b) The full NLSE solution.

Figure 6: A comparison of the fluid model solution (a) of the fluid equations (17) with the full
NLSE (b) using a Gaussian Pulse for initial condition.

4.2 Chirped Gaussian Pulses

Now we work with a chirped intial condition, i.e. the initial conditional has a frequency that varies
in time where c is the chirped parameter, defined as

u(0, t) = exp

(
−(1 + ic)t2

2σ2

)
(19)
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which corresponds to initial conditions for the fluid system (17),

ρ(0, t) = exp

(
− t

2

σ2

)
,

J(0, t) = −cεt
σ2
.

(a) Approximate solution.

(b) Full solution.

Figure 7: A comparison of ρJ of the fluid model (a) with the full NLSE (b) using a Chirped
Gaussian Pulse with c = 1 for initial condition.

In the case of non-vanishing initial chirp c we show the graph of ρJ because ρ is not qualitatively
different to that of the Gaussian and so are not reported here. In Fig. 4.2 we report a simulation
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with c = 1: we can see that the approximation is good even if it is not so perfect. It is interesting
to remark that the dynamics develops a chirp which reverses the initial one.

4.3 Super Gaussian Pulses

By introducing a parameter m to the Chirped Gaussian Pulse we can control the shape of the
initial pulse. Increasing m the pulse becomes square shaped with sharper leading and trailing
edges. When m = 1 we recover the Gaussian Chirped Pulse.

u(0, t) = exp

(
−(1 + ic)

2

(
t

σ

)2m
)

(20)

which corresponds to initial conditions for the fluid system (17),

ρ(0, t) = exp

(
− t

2m

σ2m

)
,

J(0, t) = −εcmt2m−1

σ2m
.

We observe in the Figs below that the initial solution is damped and disperses with respect to
time as it moves in space, for both the fluid model and the full NLSE. This corresponds to the
signal taking a longer time to pass each spatial point.
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(a) The fluid model solution.

(b) The full NLSE solution.

Figure 8: A comparison of the fluid model solution (a) of the fluid equations (17) with the full
NLSE (b) using a Super Gaussian Pulse with m = 2 for initial condition.

4.4 Hyperbolic Secant Pulses

A naturally occuring pulse, in the context of optical solitons and pulses emitted from some mode-
locked lasers, takes the shape of a hyperbolic secant as seen in the following initial condition

u(0, t) = sech

(
t

σ

)
exp

(
− ict

2

2σ2

)
(21)
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which corresponds to initial conditions for the fluid system (17),

ρ(0, t) = sech2(t),

J(0, t) = −εcmt
σ2

.

The figures below again show excellent agreement between the fluid model and the NLSE, as
the initial solution is dispersed.

(a) The fluid model solution.

(b) The full NLSE solution.

Figure 9: A comparison of the approximate solution (a) of the fluid equations (17) with the full
NLSE (b) using a Hyperbolic Secant Pulse for initial condition.
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5 Stochastic input data

When a signal is propagated in an optical fiber, its input is not perfect. There is a perturbation
to the intended signal. We will model this as a stochastic perturbation. Take the NLSE (5)

iuz = −β2
2
utt − iαu+ γ|u|2u,

with the initial condition
u(0, t) = u0(t) + λg(t), (22)

where u0 is the desired input signal, g(t) is a t-dependent stochastic process acting as a perturbation
to this signal and a constant λ� 1. The complex function g(t) is Gaussian white noise, meaning
that

• g1(t), g2(t) ∼ N (0, N2) where N (0, N2) is a normal distribution with mean zero and variance
p2.

• g1(t) and g2(t) are independent for all fixed t ∈ R.

• E[g(t)g(t′)] = N δ(t− t′).

To analyse this stochastic problem, let’s consider again the simplified fluid model where u(z, t) =√
ρ(z, t) exp

(
i
εφ(z, t)

)
given by equations (17) and we approach it in two different ways, one is

modelling the expectation values and the other using perturbation theory.

5.1 Expectations Values

We want to decompose the input signal in polar form as

u0 =
√
ρ exp

(
i

ε
φ

)
, (23)

and the stochastic perturbation in a polar form as

g =
√
ρ1 exp

(
i

ε
φ1

)
. (24)

If we assume that both real and imaginary parts of g, gr(t) and gi(t) respectively, are from a
Gaussian distrubution

gr(t) ∼ N (O,N2) gi(t) ∼ N (O,N2), (25)

and we assume the that the variance of the distrubion is N2 = 1, then

ρ1(0, t) = g2r (t) + g2i (t) ∼ χ2
2, (26)

known as a Chi-square distribution.
On the other hand, we know that

φ1(z, t) = ε arctan

(
gi(t)

gr(t)

)
∼ U [−επ, επ], (27)

which is the uniform distribution. From this, we conclude that

J1(0, t) :=
∂φ1
∂z

= 0. (28)

We model this solution by rewriting ρ in the fluid model as

ρ = ρ0 + λρ1, (29)
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where ρ0 is the solution to the probem with no perturbation in the initial condition. Substituting
this into the fluid model equations, taking the expectation values of the stochastic functions ρ1
and J1, results in the system

∂ρ0
∂z

+
∂

∂t
(ρ0J0) = −α̃ρ0, (30a)

∂J0
∂z

+
∂

∂t

(
J2
0

2
+ ρ0

)
= 0. (30b)

∂ρ1
∂z

+
∂

∂t
(ρ1J0 + J1ρ0) = −α̃ρ1, (30c)

∂J1
∂z

+
∂

∂t
(J0J1 + ρ1) = 0, (30d)

where the first two equations are of order 1 and the second two equations are of order λ, with

ρ1 = E[ρ1], J1 = E[J1], (31)

and intial conditions

ρ0(0, t) = ρ0, (32a)

ρ1(0, t) = E[χ2
2] = 2, (32b)

J0(0, t) = 0, (32c)

J1(0, t) = 0. (32d)
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(a) Approximate solution.

(b) Full solution.

Figure 10: J0f luid and J0compl
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(a) Approximate solution.

(b) Full solution.

Figure 11: J1f luid and J1compl

5.2 Perturbation method

We will write the solution to the fluid system

ρz + (ρJ)t = 0,

Jz +

(
J2

2
+ ρ

)
t

= 0,

with the stochastic input signal
u(0, t) = u0(t) + λg(t), (33)
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as a sum of powers of λ,

ρ(z, t) =
∞∑
j=0

λjρj(z, t) ≈ ρ0(z, t) + λρ1(z, t),

J(z, t) =

∞∑
j=0

λjJj(z, t) ≈ J0(z, t) + λJ1(z, t), (34)

where we approximate the series to O(λ). We assume that the functions u0(t) and g(t) are of the
form

u0(t) = ū0(t) exp

(
i

ε
φ0

)
g(t) = ḡ(t) exp

(
i

ε
φ0

)
(35)

where ḡ ∼ N (0, N). This implies that

u(0, t) = [ū0(t) + λg(t)] exp

(
i

ε
φ0

)
. (36)

From the change of variable u(z, t) =
√
ρ(z, t) exp

(
i
εφ(z, t)

)
, J = ∂φ(z,t)

∂t , we can extract initial
conditions for ρ0, ρ1, φ0 and φ1. To O(λ), these are

ρ0(0, t) = ū20, (37a)

ρ1(0, t) = 2ū0ḡ, (37b)

J0(0, t) =
∂φ0
∂t

, (37c)

J1(0, t) = 0. (37d)

Substituting the perturbation series expressions for ρ and J from Equations (34) into the fluid
model gives four equations, the first two are the leading order equations and the second two are
the first order in λ corrections

∂ρ0
∂z

+
∂

∂t
(ρ0J0) = −α̃ρ0, (38a)

∂J0
∂z

+
∂

∂t

(
J2
0

2
+ ρ0

)
= 0, (38b)

∂ρ1
∂z

+
∂

∂t
(ρ1J0 + J1ρ0) = −α̃ρ1, (38c)

∂J1
∂z

+
∂

∂t
(J0J1 + ρ1) = 0. (38d)

These equations are the same as those of the expectations method, but the initial conditions are
different.

To simulate this numerically in COMSOL Multiphysics R©, the system of four equations with
their initial conditions is solved with an initial condition of a perturbed super Gaussian, with
σ = 2 and m = 2. This means that in the initial conditions we have

ū0 = exp

(
−1

2

t2m

σ2m

)
φt = 0 (39)

Below is one realisation of the stochastic input, with ḡ = 1. We observe that the leading order
solution for ρ is damped and dispersed as expected in Fig 12(a) . However the first order correction
displays a formation of spikes at the edges of the pulse, see Fig 12(b), as seen in the literature
for some non-stochastic cases. Similarly in the case of J , the leading order solution behaves as in
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the non-stochastic case, see Fig 13(a), and the first order correction is a similar pulse but again
forming spikes as seen in Fig 13(b).

(a) Leading order solution ρ0.

(b) First order correction ρ1.

Figure 12: Coefficients ρ0 and ρ1 to a perturbation solution for ρ.
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(a) Leading order solution J0.

(b) First order correction J1.

Figure 13: Coefficients J0 and J1 to a perturbation solution for J .

6 Conclusions

In general there is excellent agreement between the solutions of the full NLSE and the fluid model
used to approximate the system. Since this agreement occurs while we are using a values of ε = 0.1,
which is not very small, and the fluid system is faster and easier to implement numerically, it sug-
gest that the fluid model is an accurate model to use for solving the problem of signal propagation
in nonlinear optical fibers. This model, which has a nice quadratic structure, allowed us to look
at the case of a stochastic input without much difficulty.
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All numerical simulations were performed using COMSOL Multiphysics R©. This software is
designed specifically to solve partial differential equations. Although we are using a very simple
domain, it required a very fine grid to achieve high accuracy in the solutions. In particular, for
the full NLSE, numerically implementing with an initial condition of a chirped pulse could not be
fully resolved for J by COMSOL. This made the simplified model more attractive as an approach
to solving the problem.
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