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SIR Model

{
Ṡ = −αIS
İ = αIS − βI

Based on the mass action law
α: Rate of infections
β: Rate of deaths
No growth included!
All the infected animals die
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SIR model with exponential growth

{
Ṡ = −αIS + γS
İ = αIS − βI

Exponential growth in the absence of a disease (Malthus
1798)
Logistic model is better
Parameters? Nondimensionalisation
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SIR model with exponential growth

{
ˆ̇S = −ÎŜ + κŜ

ˆ̇I = ÎŜ − λÎ

Parameters that describes the dynamics of the disease:
κ is the birth rate relative to the infection rate.
λ is the death rate relative to the infection rate.

The higher the λ (higher mortality rate of disease), the better?
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SIR model with exponential growth

λ > 1 : disease with high mortality rate
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Figure: Evolution of the infected and the susceptible subjects, for
κ = 0.6 and λ = 1.5
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SIR model with exponential growth
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Figure: Phase portrait for κ < 1 and λ > 1
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SIR model with exponential growth

λ < 1 : disease with low mortality rate
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Figure: Evolution of the infected and the susceptible subjects, for
κ = 0.6 and λ = 0.3
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SIR model with exponential growth
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Figure: Phase portrait for κ < 1 and λ < 1
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SIR model with logistic growth

{
ˆ̇S = −ÎŜ + κS(1− S)

ˆ̇I = ÎŜ − λI

The parameters describe almost the same way the dynamics of
the disease:

κ is the birth rate relative to the infection rate.
λ is the death rate relative to the infection rate.
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SIR model with logistic growth

λ > 1 : disease with high mortality rate

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

 

 
Infected
Susceptibles

Figure: Evolution of the infected and the susceptible subjects for
κ < 1 and λ > 1
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SIR model with logistic growth
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Figure: Phase portrait for κ < 1 and λ < 1
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SIR model with logistic growth

λ < 1 : disease with low mortality rate
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Figure: Evolution of the infected and the susceptible subjects for
κ < 1 and λ < 1
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SIR model with logistic growth
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Figure: Phase portrait for κ < 1 and λ < 1
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SIR model with logistic growth

Conclusion: We should seek for a contagious disease rather
than a fast and agressive one, in other to spread it among the
subjects
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Spatio temporal dynamics
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Spatio temporal dynamics

Ṡ(x , t) = −S(x , t)I(x , t)+D
∂2S
∂x2 (x , t) + growth

İ(x , t) = S(x , t)I(x , t)− λI(x , t)+D
∂2I
∂x2 (x , t)

x ∈ [0,1], t > 0
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Spatio temporal dynamics
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İ(x , t) = S(x , t)I(x , t)− λI(x , t)+D
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where D is a nondimensional diffusion parameter



Introduction SIR Model Incorporating growth Vector-driven dynamics Time-varying rate of infection Conclusions

Spatio temporal dynamics
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Spatio temporal dynamics

S ’ = − S I + kap S
I ’ = S I − lam I  

kap = 0.2228
lam = 0.4
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SIR with fleas population

Considering that fleas are the main vector of the disease we
can neglect other transmission factors. We assume:

Ṡ = −αSF + δS(1− S
K

), (1)

İ = αSF − βI, (2)

Ḟ = γI − ψF . (3)
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İ = αSF − βI, (2)
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SIR with fleas population

Considering that fleas are the main vector of the disease we
can neglect other transmission factors. We assume:
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SIR with fleas population

After the nondimensionalisation the dynamic system is:
Ṡ = −SF + κS(1− S)

İ = SF − λI
Ḟ = 1

ε (I − F )

(4)
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SIR with fleas population

Two equilibrium solutions that exist for all parameter values are
A(0,0,0) and B(1,0,0). Additional equilibrium point
C(λ, κ(1− λ), κ(1− λ)) exists only if λ < 1.

A is always a saddle point while B is asymptotically stable for
λ > 1.

When the point C exists it is asymptotically stable while B
becomes unstable.
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SIR with fleas population

S ’ = − S I + kappa S (1 − S)
I ’ = S I − lambda I         

kappa = 0.5
lambda = 1.1
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Figure: Phase portrait with λ > 1
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SIR with fleas population

S ’ = − S I + kappa S (1 − S)
I ’ = S I − lambda I         

kappa = 0.5
lambda = 0.3
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Figure: Phase portrait with λ < 1
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SIR with fleas population

We can observe that:
choosing a small ε we find the dynamic system (5) is
equivalent to a SIR model with logistic growth because F
and I go to infinity in the same way;

in the case λ < 1 we have an endemic disease
When λ > 1 the situation returns to the initial condition as
time goes to infinity
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SIR with fleas population and space diffusion

As we have done before we introduce diffusion terms for fleas
and rabbits



∂S
∂t = −SF + κS(1− S) + Dr

∂2S
∂t2 t > 0, x ∈ [0,1]

∂I
∂t = SF − λI + Dr

∂2I
∂t2 t > 0, x ∈ [0,1]

∂F
∂t = 1

ε (I − F ) + Df
∂2F
∂t2 t > 0, x ∈ [0,1]

S(x ,0) = S0(x) x ∈ [0,1]

I(x ,0) = I0(x) x ∈ [0,1]

F (x ,0) = F0(x) x ∈ [0,1]
∂S
∂x |x=0,1 = 0 t > 0
∂I
∂x |x=0,1 = 0 t > 0
∂F
∂x |x=0,1 = 0 t > 0

(5)
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SIR with fleas population and space diffusion
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SIR with fleas population and space diffusion
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SIR with fleas population and space diffusion
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SIR with fleas population and space diffusion
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Time-varying rate of infection

We now assume to have a seasonal disease:
Ṡ = −α(t)SI
İ = −α(t)SI − βI
α(t) = Asin(ωt) + α0

(6)

After nondimensionalisation our dynamic system becomes
Ṡ = −α(t)µSI
İ = −α(t)µSI − ηI
α(t) = 1 + Γsin(t)

(7)
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Time-varying rate of infection

We proceeded by numerical simulations and as we can see the
seasonality of disease makes the populations trend periodic
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Figure: Time-varying rate of infection α(t) = 1 + Γsin(t)
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Time-varying rate of infection

Disease that has an effect only in a short period of the year:

α(t) =

{
σ for t ∈ [a,b]
0 otherwise

(8)
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Time-varying rate of infection
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Figure: Disease that has an effect in a long period of the year
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Time-varying rate of infection

It is interesting to notice that when R0 is big enough the period
of population is larger then the disease one.
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Figure: Disease with a short period of effect
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Conclusions

Logistic growth more realistic than exponential one
The key parameter for virulence is R0

The spatiotemporal dynamics shows a spreading wave
front
Vector-driven is a more realistic transmission model
When the disease is seasonal the variation of populations
is periodic
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Future work

Two-dimensional spatial model
Genetic immunity
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