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Abstract

COVID-19 is the issue that all countries are facing during 2020. The humanitarian loss consequences and
the economical impact of this pandemic has the best researchers all over the world working on how to deal
with every aspect of the virus.

The aims and goals of this project is to develop computationally efficient and accessible tools for rapid
detection of SarsCov-2 using existing testing and computational infrastructure; the tools should be avail-
able for large-scale deployment in both developed and developing countries with different funding models of
their health systems. The approach considered in this project is to consider SarsCov-2 detection using the
so-called Full Blood Count test – a standard analysis that is routinely performed in hospitals and haema-
tological laboratories world-wide. This test can be performed in under 5 minutes for a single patient, and
the technology is accessible to countries with different economic backgrounds and populational profiles. The
task, therefore, is to investigate this possibility for develop an algorithm for rapid assessment of SarsCov-2
infection using the Full Blood Count test.

Also, during this project, different mathematical equations will be studied in order to model the pandemic
and therefore, study the effect of decisions made by governments such as the quarantine, testing populations...
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Part I

Development of the problem.
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Chapter 1

Modelling

1.1 The SIR model

The SIR model was developed by Kermack and McKendrick in 1927. It is a system of three ordinary differential
equations in which the entire population (which is assumed to be constant and closed) is divided into three
groups: Susceptibles, Infectious and Removed.

SIR model 
Ṡ = −βIS
İ = βIS − γI
Ṙ = γI

(1.1)

Where

• β is the infection rate

• γ is the recovery rate.

and

• S is the number of susceptible.

• I is the number of infected.

• R is the number of removed.

If we sum the right hand sides of equations in (1.1), we obtain (̇S + I +R) = 0, so

S(t) + I(t) +R(t) = constant (1.2)

We assumed that S(t) + I(t) +R(t) = 1 for every t. This way, the variables could be understood as proportions
of population instead of total number of people.
We define the R0 parameter as

R0 :=
β

γ
S0 (1.3)

R0 gives a good approach to the initial behaviour of the pandemic:

• If R0 > 1 the infected people function increases and therefore, the pandemic spreads.

• If R0 < 1 the pandemic does not spread.

Furthermore, R0, known as “reproduction coefficient”, measures the spread of the infection. In the one hand,
if R0 takes a very large number, the infection will spread very fast. In the other hand, if R0 is greater than one
but small enough, the infection rate will be such that the pandemic will spread slowly.
Calculating the infection rate can be easily done by making the derivative of I equal to 0):

İ = I(βS − γ) = 0 =⇒ βS − γ = 0 (1.4)

Since we are analysing the initial values, we can take S as S0 = S(0), getting

βS0

γ
− 1 = 0 =⇒ R0 =

βS0

γ
(1.5)

At GitHub Matlab codes used for the project can be found.
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(b) β = 4, γ = 1

0 1 2 3 4 5 6 7 8 9 10

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Suscetibles

Infectious

Removed

(c) β = 0.8, γ = 1

Figure 1.1: Plot of I,R and S for t ∈ [0, 20], S(0) = 0.99, I(0) = 0.01 and R(0) = 0

1.2 Maximum number of infected people

The maximum number of infected people as a function of R0 is

Imax(R0) = I0 + S0 −
S0

R0

(
1 + ln (R0)

)
(1.6)

We note that

lim
R0→0+

Imax(R0) = +∞

lim
R0→+∞

Imax(R0) = I0 + S0

(1.7)

If we differentiate, we obtain

I ′max(R0) =
S0

R2
0

lnR0 > 0 ⇐⇒ R0 > 1 (1.8)

In conclusion, the function grows if R0 > 1 and has a negative growth behaviour if R0 ∈ (0, 1), so Imax(1) = I0
is the global minimum of the function.
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Figure 1.2: Plot of Imax for R0 ∈ (1, 50)

6



1.3 SIR model with quarantine effect

So far, we have just gone through the basic model of any pandemic. However, many other factor could be added
to better describe COVID-19. As a first approach, we consider the following variation of the SIR model, where
the parameter α represents the fraction of the infected population that is put into quarantine. Notice that this
model does not consider by which means this infected people are detected, it simply assumes that we are able
to identify them.

SIR model with quarantine effect 
Ṡ = −βIS
İ = βIS − γI − αI
Ṙ = αI + γI

(1.9)

Where

• α is the proportion of infected people quarantined.

If we made α equal to 0, we would get our previous model, so this can be considered a generalization of SIR
model.
To analyse this model, we begin with an analytical study of R0. R0 comes up to be the parameter that explains
whether that the pandemic will increase from the beginning or not. As previously dine, we make İ = 0:

İ = 0 ⇐⇒ βS − γ − α = 0 ⇐⇒ βS

γ + α
− 1 = 0 (1.10)

which evaluated at the initial time gives
β

γ + α
S0 − 1 = 0 (1.11)

So, we have that

R0 =
β

γ + α
S0 (1.12)

If R0 = 1, the pandemic reaches its maximum on the initial time and therefore the infected population decreases
at every t.
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Figure 1.3: Solution with different values of α: α = 0.01 (straight line), α = 0.99 (dotted line)

1.4 SIR model and relation with tests

In the following variation of the SIR model we will take into account the effect of testing people. With this
purpose, we are going to assume that the removed group is known to not be infected and for that reason, they
won’t be tested. Then, only a fraction of the infected ad susceptible population will be tested and put into
quarantine in case they turn out to be positive in the test.

SIR model with false positive and false negative rate
Ṡ = −βIS − αSS
İ = βIS − γI − αII
Ṙ = γI + αSS + αII

(1.13)
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• FPR : false positive rate. For the COVID-19 test FPR ≈ 0.2553191.

• FNR : false negative rate.For the COVID-19 test FNR ≈ 0.03846154.

• αS : proportion of susceptible people that are quarantined.

• αI : proportion of infected people that are quarantined.

In this case the R0 parameter can be defined as

R0 =
β

αI + γI
S0 (1.14)

We define the rates of false positives and false negatives as:

FPR =
FP

FP + TN
(1.15)

FNR =
FN

FN + TP
(1.16)

where:

• FP is the number of false positive tests (people who are not infected but the test turns out positive).

• TN is the number of true negative tests (when someone is not infected, and the test say so).

• TP is the number of true positive tests (when someone is infected, and the test says so).

• FN is the number of false negative tests (when someone is infected, and test results says they are not).

We consider a “medical quarantine”, which means that people who are in quarantine have been tested. So
indeed, we are defining the value of α.
As explained before, we are assuming that the removed group is formed by people who cannot be infected, so
the number of people who are tested is

σ(S + I), (1.17)

where σ is the proportion of people tested.
We can now focus on studying the infected and susceptible groups.
The number of susceptible people who goes into quarantine are those whose test result are false positives, and
this number can be easily calculated by using the σ and the FPR rates.
FP , and TN can only come from people who are not really infected (susceptible group). So, TN + FP comes
up to be the number of people in S who have been tested.
Now, using the (1.15) we can confirm that the S people that had a false positive result are σ · FPR · S and
therefore

αS = σ · FPR (1.18)

The same analysis can be applied to the infected people group. The number of infected people who are tested
negative (FNR) is also the infected people who does not go into quarantine. Now, if αI is the proportion of
infected people that have accurate results (true positives), σ − αI would be the proportion of infected people
who had wrong results (false negatives). So, using (1.16):

σ − αI = σ · FNR =⇒ αI = σ (1− FNR) (1.19)

In conclusion, the number of infected people that have false negative results is Iσ (1− FNR).

Finally, we offer the analytical solution of this problem, simplified by assuming that αs = 0.

SIR model with false positive and false negative rate
Ṡ = −βIS
İ = βIS − I(γ + αI)

Ṙ = I(γ + αI)

(1.20)

If we define a primitive ξ(t) of βI(t), we can write

ξ(t) := β

∫ t

0

I(t̂) dt̂ (1.21)
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Figure 1.4: Solutions with γ = 1, β = 4 and different values of σ

Firstly, we will assume that R(0) = 0. So that, S0 = 1− I0 (being N the total population). If we take the fist
equation of the system we get

Ṡ + βIS = 0 (1.22)

Now, using the previous ξ expression, we have

d

dt

(
S(t) eβ

∫ t
0
I(t̂) dt̂

)
=

d

dt

(
S(t) eξ(t)

)
= 0 (1.23)

So S(t) eξ(t)is constant and therefore is equal to S(0) eξ(0)

S(t) eξ(t) = S(0) =⇒ S(t) = S(0) e−ξt = (N − I0) e−ξt (1.24)

Taking the definition of ξ we know that ξ̇ = βI.
Furthermore, we have that ξ(0) = 0 = R(0), and:

Ṙ = I(γ + αI) (1.25)

So, that means that

R =
ξ̇

β
(γ + αI) (1.26)

Finally, since I +R+ S = 1, we get

I = 1−R− S = 1− ξ̇

β
(γ + αI)− S0 e−ξ(t) (1.27)

So, this results in the following differential equation and its initial condition.{
ξ̇ = βI = β

(
1− ξ̇

β (γ + αI)− S0 e−ξ(t)
)

ξ(0) = 0
(1.28)

Now, a final suggestion could be applied to all the models shown above. A country might not afford having too
many people into quarantine (due to the economical impact that this may cause). Any country in this situation,
could try to get the optimal rate of citizens that should be quarantined. With this purpose we could implement
a new model that introduces a new group in the system.

SIR model with false positive and false negative rate
Ṡ = −βIS − αSS
İ = βIS − γII − αII
Q̇ = αII + αSS − γQQ
Ṙ = γII + γQQ

(1.29)

Where
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• Q is the number of people quarantined.

Furthermore,we must consider that the recovery rate is different for infected people who are in quarantine and
those who are not in quarantine. So,

• γI is the rate of infected people that were not in quarantine and go to the removed group.

• γQ is the rate of infected people that were in quarantine and go to the removed group.

1.5 SIR model with delay time

Delay-differential equations (DDE’s) are a really important tool in dynamical systems. They usually appear in
engineering problems such as technological control problems, where there is a delay between the observations
and the adjustments. They also appear frequently in pandemic models.
There are different types of DDE’s, but we are going to focus on the delay-differential equation with only one
constant of delay. Its general form is the following.

ẋ = f (x(t), x(t− τ)) , (1.30)

where τ ∈ R is the delay time.

SIR model with delay time
Ṡ(t) = −β I(t)S(t)

İ(t) = β I(t)S(t)− γI I(t)− α I(t− τ) sgn I(t)

Ṙ(t) = γI I(t) + αI(t− τ) sgn I(t)

(1.31)

Where

• τ is the delay time, the time that happens between the beginning of infectiousness and the final diagnosis.

and sgn a represents the function defined by

sgn(a) =

{
1 if a > 0,

0 otherwise.
(1.32)

As we have done with the previous models, we are going to study R0. In order to do that, we will use the
Taylor series of I(t− τ) around t, so we get

I(t− τ) = I(t)− τ İ(t) +
τ2

2
Ï(t) +O(τ3). (1.33)

Taking the first order term we can easily obtain an approximation of R0, i.e.,

İ(t) = βI(t)S(t)− γII(t)− α(I(t)− τ İ(t)) (1.34)

İ = I

(
βS − γIα

1 + ατ

)
. (1.35)

Using the previous analysis we obtain the same result as in the previous model.

R0 =
β

γI + α
S0, (1.36)

Some simulations are shown now, depending on the value of τ .
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(a) τ = 0.5 (b) τ = 1

The longer the delay time is, the higher the infected rate, Imax, gets. That could be an expected result, because
during that delay period, during which the infected person does not know that they are contagious, they carry
the virus around and they are bound to infect more people.

1.6 SEIR model

It is very important in order to make a realistic model to consider the proportion of people who are infected,
but still don’t know it because they have not developed any symptom. In order to do this, we introduce a new
variable E. This group is known as the “exposed” group and the resulting system is

SEIR model 
Ṡ = −β I S − βE S
Ė = β(E + I)S − aE − γEE
İ = aE − γI
Ṙ = γI + γEE

(1.37)

Where

• a is the rate of people who go from exposed to infected.

• γE is the rate of exposed people that go to removed group because they did not develop any symptom.

γ and γE are different rates since a person who has the infection without symptoms is bound to recover earlier
than a person who has symptoms.
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Figure 1.5: SEIR model for different values of a

Once again we focus on the R0 value. Now the only variables related to R0 are E and I. The matrix of the
subsystem formed by I and E is: (

βS − (a+ γE) βS
a −γ

)
(1.38)
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Note that for people in group E that go to group I before they finally recover and go to R, γE = γ. So,

Ė + İ = β(E + I)S − γ(E + I) (1.39)

In this special case, we could consider another new variable called Z that would be representing E + I, getting
the following:

Ż = βZS − γZ (1.40)

Repeating the process done in previous cases, and we obtain that

Ż = 0 ⇐⇒ βZS0 − γZ = 0 ⇐⇒ Z(βS0 − γ) = 0 ⇐⇒ R0 =
β

γ
S0 (1.41)

That is actually an easier case than the one we are interested in.
Going back to the Jacobian matrix of the linearized dynamic subsystem formed by E and I: (1.38).
Exponential growth occurs when one eigenvalue of (1.38) is positive. So, since the independent term of the
characteristic polynomial the determinant of (1.38); then, we get the following sufficient condition.

(a+ γE − βS)γ − aβS < 0⇐⇒ aβS − (a+ γE − βS)γ > 0 (1.42)

R0 is consequently defined as

R0 :=
aβS0 + βS0γ

aγ + γγE
. (1.43)

1.7 SEIR model and relation with tests

SEIR model with quarantine (after test)
Ṡ = −β I S − βE S − αSS
Ė = β(E + I)S − aE − γEE − αEE
İ = aE − γI − αII
Ṙ = γI + γEE + αSS + αEE + αII

(1.44)

Where:

• αS is the rate of susceptible people that are put into quarantine (so, they got FP results).

• αE is the rate of exposed people that are put into quarantine (so, they got TP results).

• αI is the rate of infected people that are put into quarantine (so, they got TP results).

In this case, the σ parameter is split into two different parameters.

• σ1 is the proportion of people without any symptom that are tested. So, σ1(S +E) is all this group that
is tested.

• σ2 is the proportion of infected people (people with symptoms) that are tested, σ2I.

This seems more realistic because the health system surely does not act the same way with people who seem
to be infected and with those who seem healthy.
Then σ1(E + S) are asymptomatic people who are tested. And σ2I are symptomatic people who are tested.
Now, let’s look at the αI , αS and αE new expressions. αS does not change at all. Using (1.15) we have that
the proportion of people in group S who get false positive results are:

σ1 · E · FNR (1.45)

αS = σ1 · FPR (1.46)

Now, if αE is the fraction of infected asymptomatic people who are quarantined; then it is also the fraction of
this group who got TP results in their tests. Using (1.16):

σ1 − αE = σ1FNR =⇒ αE = σ1(1− FNR) (1.47)

Finally, to get αI , the procedure is similar to the one previously done.

σ2 − αI = σ2FNR =⇒ αI = σ2(1− FNR) (1.48)

So, in conclusion, we have that: 
αS = σ1FPR

αE = σ1(1− FNR)

αI = σ2(1− FNR)

(1.49)
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Chapter 2

Data analysis

Once we have studied different models that could be applied to the pandemic, and the importance of tests has
been proved, the objective of the project is to develop a cheap test based on the results of a simple blood exam.
First of all, we begin by analyzing the data we are going to work with. This data shows the results of blood
tests conducted over a total of 2048 patients in a hospital of Sao Paolo, Brazil. This means we start with 2048
observations, and 39 variables for all of them. This variables are divided in two groups.

• Blood test variables. This variables include 14 parameters including the amount of leukcytes, eosinphils
and other blood cells.

• Virus test variables. A total of 24 binary variables that show if patients turned out positive or negative
in virus tests such as Influenza, Endovirus, etc...

The remaining variable is a ‘target’ variable since it shows whether the patient is positive or negative in SarsCov-
2. The objective of the data analytics in the problem is to provide the model with some reliable parameters
based on the data of this 2048 observations. Secondly, in order to make proper predictions, it is necessary to
previously process the data. This means that any ‘NaN’ register should be somehow treated, either by deleting
the observation, or imputing data if the information could be obtained. When deleting all the observations that
contained any missing value, the total amount of data was reduced to less than 100 observations. In order to
maintain a large enough set of data in order to make predictions, the procedure was the following.

1. Remove all the binary variables, most of them, virus test variables.

2. With the remaining data, proceed to exclude all the observations containing any ’Nan’.

3. This resulted into 598 observations, which we considered a much better number of total observations.

4. Conducted a LDA, with a previous PCA, and also without this previous PCA.

2.1 Descriptive analysis of blood test analysis

The following tables show the different characteristics of the variables we are studying. It might be of special
interest to point out that the proportion of ones in the target variable is much smaller than the proportion of
zeros. This must be taken into account when conducting any data analysis since some methods could leads us
to predictions of few ’positives’, which for sure is going to give a small error. However, the false negatives are
something we should try to avoid due to the importance of not considering any infected person as healthy.

Figure 2.1: Target variable

In Figure 2.3a we can see a Decision Tree about Blood Test.
As you can see in Figure 2.4, the most important variables are Leukocytes, Eosinophils and Platelets in that
order. This explains that the same variables are important nodes in the decision tree.
Even if what we used for predictions were only the blood test variables, it is also interesting to consider the
effect of the virus tests. Therefore, we also proceed to analyse this part of the data.
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Figure 2.2: Blood test variables

(a) Decision Tree Blood Test (b) Decision Tree Virus Test

Figure 2.3: Decision Trees

Figure 2.4: Importance of the variables
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In Figure 2.5 we can compare the number of records with and without COVID. The Table 2.1 is a contingency
table with frequency of zeros and ones, that is, if the patients turned out positive or negative in different virus
test. As you can see, all the variables are binary.

Figure 2.5: Target variable

Variable Frequency of 0s Frequency of 1s

Patient in regular ward 255 10
Patient in semi intensive unit 247 18
Respiratory Syncytial Virus 247 18

Influenza A 259 6
Influenza B 237 28

Parainfluenza 1 264 1
CoronavirusNL63 261 4

Rhinovirus Enterovirus 188 77
Coronavirus HKU1 263 2

Parainfluenza 3 265 0
Chlamydophila pneumoniae 264 1

Adenovirus 260 5
Parainfluenza 4 260 5

Coronavirus229E 264 1
CoronavirusOC43 262 3
Inf A H1N1 2009 228 37

Bordetella pertussis 265 0
Metapneumovirus 262 3

Influenza B rapid test 250 15
Influenza A rapid test 246 19

Table 2.1: Virus test variables

The figure 2.3 is a Decision Tree. The most important variables seem to be the age and having been in a regular
ward, and consequently, this allows to classify the data.
To end this chapter, we wanted to comment some interesting graphics we got. In Figure 2.7 we can see that
the COVID-19 is high related with the age of the patient.
In addition, Figure 2.8 shows that the percent of patients with COVID who have remained in critical unit is
greater than the percent of the patients who have stayed in critical unit but not because of COVID.

15



Figure 2.6: Importance of the variables

Figure 2.7: Patient age

Figure 2.8: Patient in critical unit
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2.2 Discriminant analysis

2.2.1 Introduction

Discriminant analysis starts with quantitative data of individuals that are going to be classified into k ≥ 2
groups. It is about partitioning the space of individuals in k parts, in such a way that we will assign a new
individual to group j, if the vector corresponding to its evaluation belongs to part j. The membership in one
or the other group is introduced into analysis by using a categorical variable which takes as many values as
existing groups. In the discriminant analysis this variable plays the role of dependent variable.

To begin, we will need to decide on the most appropriate type of separation function. Linear functions are the
most frequently used, so we will use this type of separation to analyse our problem.

Suppose that an individual w belongs to one of k possible groups G1, . . . , Gk of population P , and also, we have
the following information:

1. The values of the n individuals in the population take about p variables x1, . . . , xp in addition to the group
to which each one belongs (nj being the size of each group).

2. Information of an individual w in respect to the same variables.

We are going to obtain a decision rule that allows assigning w to one of the groups. In general, the classification
is solved by constructing a function of the variables F = g(x1, . . . , xp), called the discriminant function. The
group to which each individual belongs will be decided from the value that the function takes.

There are different criteria to obtain the discriminant functions that separate a k sets. In this chapter we will
see the approach and development of some of them.

2.2.2 Geometric criteria

This classification criterion is very intuitive since it consists of assigning w to the closest group. To find the
distances between the individual and a set of data we must take into account that:

1. Each group is represented by its centroid or mean vector.

2. The distance to be used must be that of Mahalanobis, since we have not assumed that we have incorrect
and standardized variables.

The Mahalanobis distance, represented by D2, was proposed by this author in 1936 and is a generalization of
the Euclidean distance, which takes into account the matrix of intragroup covariances.

Let G1, . . . , Gk k groups of n1, . . . , nk individuals each, respectively. For each individual p variables are known,
x1, . . . , xp. A matrix of observations corresponds to each group, so there are k matrices, each one of dimension
nj × p, j = 1, . . . , k. From this data, the Mahalanobis distance between the individual w of coordinates
x = (x1, . . . , xp) and the group Gj is given by the formula:

D2(w,Gj) = (x− µj)′V −1(x− µj).

Being µj the column vector that contains the means of the considered variables of group j and V the intragroup
variance-covariance matrix, that is

V =

∑k
j=1 njVj∑k
j=1 nj

where Vj covariance matrix of j group.

The Euclidean distance is the particular case of the Mahalanobis distance in which V = I. Thus, the Euclidean
distance does not take into account the dispersion of variables or the relationships between them, while the
distance of Mahalanobis does consider it when introducing the inverse of the matrix into his calculation of
intragroup covariances.

If we consider that we only have two groups, the decision rule will be:{
w ∈ G1 if D2(w,G1)−D2(w,G2) < 0

w ∈ G2 in other case
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Doing some maths,

D2(w,G1)−D2(w,G2) = (µ1 − µ2)′V −1(µ1 + µ2)− 2(µ1 − µ2)′V −1x

Taking µ =
µ1 + µ2

2
, the discriminant hyperplane will be:

H ≡ (µ1 − µ2)′V −1µ− (µ1 − µ2)′V −1x = 0.

Usually, mean vectors and covariance matrix are unknown, being replaced by unbiased estimates; the sample
mean vectors x1 y x2 and by

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

respectively, being S2
1 and S2

2 the sample variance-covariance of each group.

2.3 Linear discriminant analysis applied to the data

For this analysis two different tests were made. One with the data variables as input and another one with the
principal components as input.

2.3.1 LDA

The first step to be able to make predictions is to divide our data set into training and test. The training set
will be used to train the data we have and create the LDA algorithm that will later on be used to test the rest
of the data. The proportion chosen for this data division in 70% for training and 30% for testing. Next, the

Figure 2.9: Proportion of training training set and test set

discriminant analysis is developed with the training set. For this purpose, we have used Rstudio. It is possible to
adjust different parameters in order to obtain the maximum number of true positives and the minimum of false
positives. This means, our objective is to maximize the distance between these rates. There is an important
parameter when it comes to LDA, the cutoff, which indeed is related to this maximization. The optimal cutoff
provides us with the maximum distance between the false positive rate and the false negative rate. Having said
that, our first task is to obtain the confusion matrix for different cutoffs, and after that, the optimal cutoff will
be chosen.

(a) True positive rate and false positive rate (b) ROC curve

Figure 2.10

In addition, it is relevant to show the ROC curve, and in this case the area that remains under the curve is
0.8288.

18



As a result, we obtain the optimal cutoff, which we could have easily guessed by the graph of the rates as 0.22.
This cutoff provides us with a final confusion matrix. In this matrix, the false negative rate is of high interest
since we do not want our test to classify as not infected any infected individual.

Predicted

Real
Data

0 1
0 134 23
1 6 18

Table 2.2: Confusion matrix

And from this results we can calculate the false positive rates and the true positive rates. However, for more
accurate results, we are going to randomly select the training data more times, up to 100 different sets, and get
the rates from this simulations. We will go deeper into this point in a following chapter.

2.3.2 LDA with a previous PCA

The difference between this analysis and the previous one is that, in this case, we are firstly going to group
all the variables into the principal components. The principal components analysis, from now on PCA, tries to
put variables that could be somehow related into the same group. This way, the variables are cut down into
components that describe different aspects of the data. A good example that could be applied to our blood
test data, is the separation of red cells and white cells. The white cells, related to the immune response of
the body, could probably have an important weight in some components. Having done this previous PCA, the
components come up to be the new input to our LDA, and the following procedure is just the same as before.

PCA

Once again, RStudio offer the results of the PCA, and here it is important to make the decision of which
components should be taken. We are trying to take the components that explain, at least, 85% of the variance,
and that means choosing the 8 first principal components.

Figure 2.11: Results of the PCA

Now, our data set, consists of the same number of observations, but with the principle components as variables.
We are now ready to conduct the LDA.

(a) True positive rate and false positive
rate with PCA

(b) ROC curve with the previous PCA

Now, the area under the ROC curve is 0.803816.
In this case, the optimal cutoff turns out to be 0.17, and the resulting confusion matrix is the following one.
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Predicted

Real Data
0 1

0 121 25
1 8 20

Table 2.3: Confusion matrix

2.3.3 Simulations

To get the previous results, we have fixed a seed which is used to split the dataset into a training set and a
validation set. Using a any other seed will lead us to slightly different results. That is why we decided to make
100 simulations.
When we got all the simulations, our goal was to minimize the False Negative Rate(FNR) because in this
context, we aim to avoid any misclassification of an infected person.
The results are the following:

TPR(True Positive Rate) = TP/(TP + FN) = 0.9615385

FPR(False Positive Rate) = FP/(FP + TN) = 0.2553191

FNR(False Negative Rate) = FN/(FN + TP ) = 0.03846154,

where TP is the number of True Positives, FN is the number of False Negatives, TN is the number of True
Negatives and FP is the number of False Positives.
However, we also though that other crieria, like taking the mean of the rates could be better. The results were
the following.

TPR(True Positive Rate) = TP/(TP + FN) = 0.8288872

FPR(False Positive Rate) = FP/(FP + TN) = 0.2103967

FNR(False Negative Rate) = FN/(FN + TP ) = 0.1711128,

2.4 Delay

Our purpose in this chapter is to study the delay. The delay is the time window between test and results. To
get a good estimation, we calculate how many times we have to do the test in order to get a false negative
rate close to zero. Assuming independence, we can calculate the chance of not detecting an infected person as
follows: FNRtimes, where times are the times the test is made.

We got the following graphic in which we can see that our delay is three units of time, because from this point
on, the curve stabilizes.

Figure 2.12: Delay
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2.5 Rashomon effect

In this chapter we have taken into account the Rashomon effect, which means, we have done an exhaustive
analysis of the principal components in order to choose the ones that give better results when it comes to
minimizing the false negative rates. With this purpose we consider all the possible combinations of principal
components, such that, they explain at least 85% of the variance. Once we have all this lists of principal
components, we proceed to do the LDA with these PCA and choose the best of all results. In this case, when
talking about the best result, we are referring to the one that offers the lowest FNR. Particularly, there are 4
combinations of principal components that give a FNR = 0. Therefore, to compare them, we analyse the FPR
that this combinations of principal components offer, and choose the lowest one. The final principal components
obtained in this search of optimality is 1, 2, 4, 5, 6, 7, 8, 9, 10, 11.
Once we have the principal components we are going to use, we can actually run a 100 simulations with different
seeds and calculate the mean of the rates. These are the final results.

TPR(True Positive Rate) = TP/(TP + FN) = 0.8427493

FPR(False Positive Rate) = FP/(FP + TN) = 0.2236289

FNR(False Negative Rate) = FN/(FN + TP ) = 0.1572507

However, the variance is not always the best indicator of which components must be chosen. Therefore, we also
tried all the possible combinations of principal components, even those that did not get to explain 85% of the
variance. In this case, the optimal combination of principal components was 1, 3, 4, 11. To sum up, we attach
this summary table.

Models TPR FPR FNR

LDA 0.8288872 0.2103967 0.1711128
PCA-LDA 0.8400366 0.2025678 0.1599634

PCARash(>= 85%)-LDA 0.8427493 0.2236289 0.1572507
PCARash-LDA 0.8157532 0.2763271 0.1842468

Table 2.4: Final models
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Part II

Conclusions
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The aim of this project was to create a cheap test that could lead to reliable results in order to correctly model
the pandemic in any country and therefore, make recommendations for some of the most important sanitary
and economical decisions.
With this objective, we focus on the optimal proportion of tests we should make. The aim is to consider a
human cost for the people infected and the economic cost of having people in quarantine.
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(c) Priority saving lifes

Figure 2.13a shows the optimal number of tests that should be done in a country in which the government tries
to give the same importance to human loss and to economical impact. We should make tests less than 40% of
the population.
The second case could be representing a country whose priority is to save money. This government would try to
test a small amount of the population and consider that enough in order to stop the pandemic without a much
bigger economical impact. In Figure 2.13b we can see that the recommendation would be to test less than the
20% of the population.
In the last case, in Figure 2.13c the priority is to save lives. The government would accept to do as many
tests as recommended no matter what the costs would be. In this case, we should make our test to 70% of the
population.
These results are quite useful because they allow us to make a good decision depending on the priorities of a
country.
It is interesting to point out that the accuracy of the test we are explaining in this project is high enough, 84%
of TPR. Not only the results are good, but also, the test is cheap (between 30 and 60 pounds) and could be
done anywhere since it is based in a simple blood exam. It is not a test just for developed countries, it is a test
that makes us all equal.

To end this project, we would like to present same open questions and future projects that could be applied to
get better results.

First of all, our database was to small and based on a single hospital. It is well known that the virus has had a
very different behaviour in every country, so reliable results would require a wider range of data.

For the modelling part delay time could be added to SEIR model. In addition, it could be interesting to study
the effect of putting every symptomatic person into quarantine and testing only some of the asymptomatic
population.

As we can see in Figure 2.7 the age quantile of patients with COVID is high, which means that the number of
people who need to be hospitalized having COVID is related to the patients age. One of the biggest problems
in this pandemic has been hospitals space and lack of material, so taking into account the clear correlation
between ages and hospitalization, it could be recommendable to repeat this project considering different ages.
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