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Abstract

Investigation of the effects of associative memory in a neural network with a
noise-induced excitability for artificial intelligence development by means of
stochastic differential equation solving.
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Chapter 1

Introduction

Understanding the neuron-astrocyte system behaviour seems to be a key factor
in the path to improvement and development of artificial intelligence, as well
as an interesting topic for nowadays neurological and physical research, since
neural dynamics and noise-induced phenomena are an important field of the
study of both the human brain and nonequilibrium systems.
The aim for this problem is the investigation of the effects of astrocytes in
information processing for an induced-excitabilility neural system. So we will
be experimenting matching up two different topics: noise-induced excitability
and astrocyte organised associative memory.

On one hand it has been shown that multiplicative noise and coupling, if
introduced in the lattice of the FitzHugh-Nagumo elements, can change a be-
haviour of the system from oscillatory to excitable [2].

On the other hand, it has been recently shown that astrocytes organise an
associative memory if coupled to the neural network. Hence, it would be very
interesting to investigate whether such an associative memory is possible in a
neural network with a noise-induced excitability.

1.1 Problem Description
The problem will first consist on modelling a Noise-Induced Excitable system
(NIE) by providing a code and a visualization and the transmission of plane or
spiral waves through it. The second part of the problem will be adding astro-
cytes [3] and investigate whether astrocytes enable organization of an associative
memory able to store, e.g., two patterns "1" and "0".
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Chapter 2

Neurological background

In the mammalian brain neurons are arranged in layers and form specialized
synaptic connections that make up different circuits.

2.1 What is a neuron?

A neuron is a nervous system cell whose role is the transmission of electrical
and chemical impulses for information dissemination in mammal’s bodies. In
mammal brain, neurons are arranged in layers and connected to each other
through synaptic sites, leading to different circuits.

2.2 What is an astrocyte?

An astrocyte is a nervous system type of cell. It is necessary for neuronal
synapses to be formed and also crucial for synapsis regulation. For example
they propagate intercellular Ca2+ waves in response to stimulation [1]. They
have many receptors that are activated by adjacent neurons (mainly by elevat-
ing Calcium levels) although further investigation must be done. To sum up,
astrocytes can detect the level of neuronal activity and release chemical trans-
mitters to influence neuronal function. They also play an important role in
regulation of neuronal excitability, so they have a bidirectional interaction with
neurons [5]. And more importantly, astrocytes are thought to play a relevant
role in memory processes so they are being studied for that purpose.

2.2.1 Problem goals

In this section the principles the problem is based on will be briefly exposed.
The problem will focus on the importance of these two kind of cells and their
interaction. For that end, two main models or suppositions will be implemented:

Neuron modelling neurons have been previously modeled as locally coupled
elements following the FitzHugh-Nagumo model -FHN- that continuously
oscillate unless there are certain thermal fluctuations. If that is the case,
these lead to chemical reactions as well as electrical pulses that can be
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translated into multiplicative noise (further explained in section 3.1.There-
fore modelling a Noise-Induced Excitable system will be the first step in
our work.

Astrocyte & neuron interaction model neurons and astrocytes interaction
has also been studied. We will use an interaction model that can be found
in [1] which is based in a representation of the association of neurons by a
network of networks. It would be interesting to see if one were to add the
neuron modelling to the interaction model. That is why the second step
in our work 4 will consist on making this junction.

Brief conclusions can be found within each chapter in the result sections.
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Chapter 3

Modelling Noise-Induced
Excitable systems

3.1 Modelling of the problem
We consider a system of coupled FitzHugh-Nagumo (FHN) elements in the
oscillating state modeled by the following equations:u̇i =

1

ε
(F (ui)− vi) +Du(ūi − ui)

v̇i = cui + d+ viξi +Dv(v̄i − vi)
(3.1)

where

F (u) =


−1− u+ b u ≤ − 1

2 ,

u+ b − 1
2 < u < 1

1+a ,

+1− au+ b u ≥ 1
1+a .

(3.2)

In the neural context, u(t) represents the neuron membrane potential, while
v(t) is related to the time-dependent conductance of the potassium channels in
the membrane.

We consider a lattice of 40 × 40 neurons, so that the index i represents a
single element, while x̄i is the average of its neighbors’ values. In particular,
we assume that each neuron affects only its four neighbors with an intensity
determined by the coupling constants: Du and Dv.

ε is the time-scale ratio parameter; since it will be very small (≈ 0.01) it will
determine the activation of u(t) to be much faster than that of v(t).

ξ represents the zero-main Gaussian noise: it appears in a multiplicative
form in the equation of the inhibitor v .

Finally, we have constants whose values are: a = 1, b = 2, c = 0.2, d = 0.075.

3.2 Equation solving

3.2.1 Deterministic Lattice
First we will see the computation of the deterministic lattice without noise
in time. Our goal is the depiction of the average field value u(t) in time. The

6



following considerations have to be accounted for to solve the deterministic
lattice model:

• two variables following the equations in (3.1);

• a really small time step ∆t shall be used in order to achieve system sta-
bility;

• initial conditions for the system are set to random numbers;

• periodic boundary conditions are chosen.

To solve the generic set of equations according to the Stratonovich interpre-
tation:

ẋi = f(xi) +
D

2d

∑
j

(xj − xi) + F (t) + g(xi)ξi(t) + ζi(t)

we are given the following iterative method:

xn[i][j] =xn−1[i][j] +
(
f(xn−1[i][j]) +

D

d
∗ (xn−1[i+ 1][j] + xn−1[i− 1][j]+

xn−1[i][j + 1] + xn−1[i][j − 1]− d xn−1[i][j])+

σ2
ζ/2 ∗ g(x[i][j]) g′(xn−1[i][j]) + F (t)

)
∗∆t+

sqm g(xn−1[i][j])ξ[i][j] + sqa ζ(i, j).

In particular, ξ represents the multiplicative noise whose intensity is regulated
by the parameter σξ which appears in the determination of sqm =

√
σ2
ξ∆t. In

the same way σζ determines the magnitude of the additive noise ζ through the
parameter sqa =

√
σ2
ζ∆t. In our system σζ will be always zero since we do

not have additive noise; to study the deterministic lattice we impose for the
moment that σξ is zero too. According to this, the equation we will impose for
both variables u(t) and v(t) will be:

xn[i][j] =xn−1[i][j] +
(
f(xn−1[i][j]) +

D

d
∗ (xn−1[i+ 1][j] + xn−1[i− 1][j]+

xn−1[i][j + 1] + xn−1[i][j − 1]− d xn−1[i][j])
)
∗∆t.

(3.3)

Having set these, the resolution will follow the steps that can be summarized
as follows.

Results

The figure 3.1 shows the oscillations of the system without noise: the oscillators
are perfectly synchronized.
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Algorithm 1: Deterministic Lattice Computation algorithm
initialize parameters;
set initial conditions;
for each time step do

for x dimension border members do
for y dimension border members do

impose periodic boundary conditions for both variables
end

end
start of the integration step;
for interior members in x dimension do

for interior members in y dimension do
solve the equation (3.3) for both variables

end
end
update values for next time iterationṡave time and average variable
values for plot

end
plot average vs time
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Noise=0.0   Periodic boundary conditions

Figure 3.1: Mean field for a system of 1600 coupled elements, with the coupling
strengths Du = 100 and Dv = 100 and no noise.

3.2.2 Adding noise

Thermal fluctuations within the real system lead to chemical reactions and
conductance fluctuations in ion channels which indeed cause some amount of
noise in the neural system that is what we call multiplicative noise. So in order
to better represent the real system this term has to be included. Multiplicative
noise technically means there is some noise that is multiplied by the coordinate

8



of the element we are integrating. This term is what makes our differential
equation stochastic.

The multiplicative noise appears in the second equation of our system (3.1)
and it is represented by ξ. To solve this differential stochastic equation we used
the same iterative method as in the previous section; in our case the function
g(x) is just the identity, so we have:

xn[i][j] =xn−1[i][j] +
(
f(xn−1[i][j]) +

D

d
∗ (xn−1[i+ 1][j] + xn−1[i− 1][j]+

xn−1[i][j + 1] + xn−1[i][j − 1]− d xn−1[i][j]) + σ2
ζ/2 ∗ (x[i][j])

)
∗∆t

+ sqm (xn−1[i][j])ξ[i][j].

(3.4)

In order to get a numerical solution of our problem, the steps we followed are
the same of the ones in the case without noise, but, instead of the equation
(3.3), we used (3.4).

Results

Firstly, we generated a plot for the mean field values of neighboring neurons for
different noise intensities.

Increasing the noise intensity σ2
ξ leads to an increase and randomization of

the time interval between consecutive spikes, as seen in figure 3.2. The solution
changes from a periodical one to an irregular one: the spikes follow each other
without a rule and the graphics appear less and less smooth. Finally, for large
enough noise (σ2

ξ = 0.08) no spike appears, as we can see in the last figure in
3.2. This corresponds to an oscillation suppression due to multiplicative noise:
the system stays at the noise-induced stable fixed point.

It is interesting to notice that changing the initial conditions only affects
the state of the system at the beginning. If initial conditions are irregular each
large propagation starts to propagate. Since the system has no memory the
behaviour of the system tends to become the same with no dependence on the
initial conditions, as shown in figure 3.3.

Furthermore, it is possible to notice that noise by itself is not able to suppress
oscillations and bring stability. The fact that neurons are coupled is strictly
necessary: the transition to excitability cannot be observed in isolated oscillators
as shown in figure 3.5 where we have noise (σ2

ξ = 0.08) but no coupling (Du =
Dv = 0).
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(a) σ2
ξ = 0.03
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(b) σ2
ξ = 0.05
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(c) σ2
ξ = 0.06
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(d) σ2
ξ = 0.08

Figure 3.2: Mean field for a system of 1600 coupled elements, with the coupling
strengths Du = 100 and Dv = 100.
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Figure 3.3: Noise σ2
ξ = 0.08 and different initial conditions.
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Figure 3.4: Noise σ2
ξ = 0.08 but no coupling (Du = Dv = 0).
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We can observe the phenomenon of spiral propagation of a signal with two
different levels of noise. In the first case we observe, with a noise of σ2

ξ = 0.001
, how the spiral is forming on a regular basis. IT is interesting to note how the
initial condition, and with them the signal, loose their effect with time due to
the noise and the system oscillates again as observed in the previous figures.
In the second case we observe how a noise of σ2

ξ = 0.1 is too preponderant
with respect to the signal and does not allow the correct formation of a spiral.
Anyway even in this case the signal effect disappear after a couple of seconds.

Figure 3.5: Propagation of a signal at times: 0 , 0.2, 0.4 in a 80 × 80 arrey.
Parameters are: ε = 0.01 , a = 1.0, b = 2.0, c = 0.2, d = 0.075, g = 0.2 ,
Du = 100 , Dv = 100 and σ2

ξ = 0.001 in the first line and σ2
ξ = 0.1 in the second

line
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Chapter 4

Modelling Astrocytes
Organized Associative
Memory

4.1 Neuron-astrocyte network
The model of the neuron-astrocyte network (NAN) that is been considered con-
sists of two layers, first layer of 40 × 40 neuron and a second layer of 13 × 13
astrocytes. In this NAN, we consider bidirectional neuron-astrocytic commu-
nication between layers, but the elements in each layer are no interconnected.
The communication between layers is made so each astrocyte can communicate
with 4× 4 neurons with overlapping in one row (see Figure 4.1).

Figure 4.1: Structure of the neuron-astrocyte network. Input images 40x40
pixels size, each pixel representing a neuron. Red square correspond to the field
of communication of each astrocyte, which overlap by one neuron wide layer.
Taken from [3].

The model is designed so that when calcium level inside an astrocyte ex-
ceeds a threshold, there will be released a synaptic current to the connected
neurons that will affect their activity. Similarly, when at least 50% of the neu-
rons connected with an astrocyte reach some threshold, this astrocyte will be
activated.
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4.2 The model
This works is based on the results of [3] where the membrane potential of a
single neuron is described by Izhikevich model, described by the equations 4.1.{

v̇
dt = 0.04v2 + 5v + 140− u+ Iapp + Iastro,

u̇
dt = a(bv − u).

(4.1)

If v ≥ 30mV, then v → c, u→ u+ d.

The parameters values used where: a = 0.1, b = 0.25, c = −65, d = 2.
The application currents Iapp simulate imput signal (Iapp = 5 if input signal
is presented), Iastro represent the astracytic synaptic activity (setted as 30 if
the Ca2+ level in astrocyte exceeds 0.15µM and more than 50% of neurons
connected to the astrocyte are activated).

Calcium dynamics in astrocyte is described by the Li-Rinzel model. This
model analyze the behavior of the IP3 (IP3 variable) and Ca2 (Ca variable)
concentration, and the fraction of activated IP3 (h variable) receptors.

dCa
dt = Ier − Ipump + Ileak,

dH
dt = H−h

τn
,

dIP3

dt = (IP3s − IP3)τr + Iplc + Ineuro.

(4.2)

Ier = c1v1

(
IP3

IP3 + d1

)3(
Ca

Ca+ d5

)3

h3
(
c0 − Ca
c1

− Ca
)
,

Ileak = c1v2

(
c0− Ca
c1

)
,

Ipump = v3
Ca2

Ca2+k23
,

H =

(
d2
IP3 + d1
IP3 + d3

)
/

(
d2
IP3 + d1
IP3 + d3

+ Ca

)
,

τn = 1/

(
a2

(
d2
IP3 + d1
IP3 + d3

+ Ca

))
,

Iplc = v4
Ca+ (1− α)k4

Ca+ k4
.

The parameter’s value of the model can be found in [3].
We have considered the neuron layer as a excitable system which is affected

by noise as studied in chapter 3 of this. Our NAN astrocyte layer is modeled
through the same equations as the previous one but we have change the neuron
layer, integrating it with the NIE model. The new model evolves according to
the equations 4.3 where F as in 3.1.u̇i =

1

ε
(F (ui)− vi) +Du(ūi − ui) + 2

5Iapp + 2
82Iastro

v̇i = cui + d+ viξi +Dv(v̄i − vi)
(4.3)
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If v ≥ 2.4mV, then v → 1.6.

If u ≥ 1.4mV, then u→ −0.6.

We used the parameters value: Du = 100, Dv = 100, c = 0.2, d = 0.075,
ε = 0.1 and intensity noise σ2 = 0.08. The reason we have setted the last
conditions of the model is because F has two stable points but only one of them
is of use.

The implementation of this model can be seen in appendix B. The results
we have obtained will be shown in next chapter.
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Chapter 5

Training the neuron-astrocyte
network

5.1 Input data
The input of our network will be an image with the same size of the neuron
network, 40 by 40. We will feed the network with images of 1’s and 0’s. Also,
we will apply some salt and pepper noise, with different intensities, to those
images. We apply the noise to slightly change the inputs, which and allows the
model to generalize better in the test phase.

Figure 5.1: Input image with salt and pepper noise

5.2 Original network
As seen in the previous chapter our model is based on a previous neuron-
astrocyte network. This model has the neurons modeled by the Izhikevich model
and the astrocytes by the Li-Rinzel model.

The goal of the training for the astrocyte network is to learn the patterns
of the input images and effectively store them. To do so, the input images are
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fed to the neural network within a short time interval. During that interval the
neurons that have received an input are excited. An astrocyte will be excited if
half of the 16 neurons that are connected with it are excited.

Figure 5.2: Left image: input. Middle image: neuron network. Right image:
astrocyte network

In figure 5.2 it can be seen the training process where the neurons are excited
by the input. However, the astrocyte network is not excited. This happens
because the dynamics of the astrocyte model are remarkably slower and it takes
some time for the astrocytes to get excited.

Figure 5.3: Test phase.

Once all the input images are fed to the network the training phase is over.
In addition, some seconds without inputs are left for the astrocytes to stabilize,
as their dynamics are slower. The final result is shown in the right part of figure
5.3. It can be seen how the 1 and 0 pattern has been stored in the astrocyte
network. It is interesting to see than the noise has been filtered and is not stored
in the astrocytes.

After the pause, we apply an input to see the response of the system once
is trained. Now, the neurons remains excited much more time than in the
training phase, as seen in figure 5.3. This happens because the neurons and the
astrocytes have bidirectional communication and the 1 pattern is stored in the
astrocytes.
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5.3 Novel network

The challenge of this research is to use the FHN model, explained in Chapter
3, to model the neurons in the previous neuron-astrocyte model.

The code was modified to introduce the new neuron model. The astrocyte
part and the training and test process remained untouched.

During the training phase the experiment started with the expected be-
haviour. The neurons were excited when the input was fed. The response was
noisier than in the previous model. Though, this noisy response was expected
because noise is inherent to the new neuron model. This can be seen in figure
5.4. However, while the experiment went on the response started to downgrade
because of the noise. The neurons did not go back to the stable state before the
next input. This caused a progressive increment of the noise that finished with
the whole neuron network excited. When this happened the inputs had almost
any effect on the network and the training was ineffective.

Figure 5.4: Train phase of the training.

The results of this experiments are shown in 5.5. The 1 pattern was stored
by the astrocyte network but not the 0 pattern. This occurred because the 0
inputs were introduced when the noise was too high in the training phase and
none effect was caused to the neurons. Also, when the test image was fed into
the network the noise was too high to produce any response.

Figure 5.5: Test phase.

To conclude, some ideas emerged to improve the results of this experiment
and to solve the noise problem.
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First, the dynamics of the astrocyte and neurons can be studied and modified
to give the possibility to the neurons to go back to the stable state before the
new input is fed. Other option is to change the input intervals and give more
time between inputs.

Second, the communication between the neurons and astrocytes are mod-
eled by some parameters. The original neuron model had greater voltages and
intensities than the new neuron model. We let the original parameters but those
parameters that model the communication can be tunned to see if the response
improves.
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Appendix A

Noise-Induced Matlab code

% Initialization
% Stochastic initial conditions

t = 0; % initial time
d = 4;
N = 40; % lattice size
mu=0;
sigma=1;

u = 0.0001*normrnd(mu,sigma,N);
u_n = u;
v = 0.0001*normrnd(mu,sigma,N)+1.5;
v_n = v;

Du=0; %coupling
Dv=0;
c=0.2;
dd=0.075;
e= 0.08;
index_plot=0; %index for recording values for plot

Lim = 100000; % number of integration steps
tmp = Lim/(N^2); % size of each integration step
T = 200; % total time
dt = T/Lim; % time step

% Calculation of the new state of the system
sigma2=0.08; % Noise intensity
sqm=sqrt(sigma2*dt);

for time = t:dt:T
for i = 1:N

% Boundary conditions for the main step

u_n(N,i) = u(2,i);
u_n(1,i) = u(N−1,i);
u_n(i,N) = u(i,2);
u_n(i,1) = u(i,N−1);
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v_n(N,i) = v(2,i);
v_n(1,i) = v(N−1,i);
v_n(i,N) = v(i,2);
v_n(i,1) = v(i,N−1);

end

chi=normrnd(0,1,N);

%Integration step

for i = 2:N−1
for j = 2: N−1

u_n(i,j) = u(i,j) + ( 1/e * (F(u(i,j))−v(i,j)) + Du/d *(...
u(i+1,j) + u(i−1,j) + u(i,j+1) + u(i,j−1) − ...

d*u(i,j)))* dt;

v_n(i,j) = v(i,j) +( c*u(i,j) + dd + Dv/d *(...
v(i+1,j) + v(i−1,j) + v(i,j+1) + v(i,j−1) − ...

d*v(i,j)) ...
+ sigma2/2*v(i,j)) * dt + sqm*v(i,j)*chi(i,j);

end
end
v = v_n;
u = u_n ;

index_plot=index_plot+1;
time_plot(index_plot) = time;
average(index_plot)= sum ( sum(u) )/ (N^2);
average_v(index_plot)= sum ( sum(v) )/ (N^2);

end
title('Evolution of average neuron membrane potential')
plot(time_plot,average)
ylabel('u(t)')
xlabel('t')
xlim([0,T])
title('Noise=08 Periodic boundary conditions','Fontsize',14)
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Appendix B

Neuron-astrocyte Matlab
code

B.1 Code for the neuron-astrocyte network train-
ing

close all;
clearvars;
u = 0.0001;
u2 = u/2;
u6 = u/6;
t = 1.65;
N = t/u;
Aneuro = 5;
Tneuro = 0.06;
PCa = 0.15; %Ca2+ level in astrocytes
Aastro = 82;
YW = 0;
h = 3;
%matrix neuro
mm = 40;
nn = 40;
v_tot = ones(mm,nn,N)*1.6;
u_tot = ones(mm,nn,N)*−0.6 ;
%matrix astro
m = 13;
n = 13;
masCa = zeros (m,n,N); % concentration of calcium
mash = zeros (m,n,N); % fraction of IP3 activated
masIP33 = zeros (m,n,N); % concentration of IP3
masCa(:,:,1) = 0.072495;
mash(:,:,1) = 0.886314;
masIP33(:,:,1) = 0.820204;
dispersion = 0.2;
Ivh = 0;
masIvh = zeros(mm,nn,N);

I1 = imread('one.jpg');
% add noise to the image
J1 = imnoise(I1,'salt & pepper',0.1);
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J1 = J1(1:40, 1:40) > 127;
J2 = imnoise(I1,'salt & pepper',0.1);
J2 = J2(1:40, 1:40) > 127;
J3 = imnoise(I1,'salt & pepper',0.1);
J3 = J3(1:40, 1:40) > 127;
J4 = imnoise(I1,'salt & pepper',0.1);
J4 = J4(1:40, 1:40) > 127;
J5 = imnoise(I1,'salt & pepper',0.1);
J5 = J5(1:40, 1:40) > 127;
J6 = imnoise(I1,'salt & pepper',0.1);
J6 = J6(1:40, 1:40) > 127;
J7 = imnoise(I1,'salt & pepper',0.1);
J7 = J7(1:40, 1:40) > 127;
J8 = imnoise(I1,'salt & pepper',0.1);
J8 = J8(1:40, 1:40) > 127;
J9 = imnoise(I1,'salt & pepper',0.1);
J9 = J9(1:40, 1:40) > 127;
J10 = imnoise(I1,'salt & pepper',0.1);
J10 = J10(1:40, 1:40) > 127;
I11 = imread('zero.jpg');
J11 = imnoise(I11,'salt & pepper',0.1);
J11 = J11(1:40, 1:40) > 127;
J21 = imnoise(I11,'salt & pepper',0.1);
J21 = J21(1:40, 1:40) > 127;
J31 = imnoise(I11,'salt & pepper',0.1);
J31 = J31(1:40, 1:40) > 127;
J41 = imnoise(I11,'salt & pepper',0.1);
J41 = J41(1:40, 1:40) > 127;
J51 = imnoise(I11,'salt & pepper',0.1);
J51 = J51(1:40, 1:40) > 127;
J61 = imnoise(I11,'salt & pepper',0.1);
J61 = J61(1:40, 1:40) > 127;
J71 = imnoise(I11,'salt & pepper',0.1);
J71 = J71(1:40, 1:40) > 127;
J81 = imnoise(I11,'salt & pepper',0.1);
J81 = J81(1:40, 1:40) > 127;
J91 = imnoise(I11,'salt & pepper',0.1);
J91 = J91(1:40, 1:40) > 127;
J101 = imnoise(I11,'salt & pepper',0.1);
J101 = J101(1:40, 1:40) > 127;
II = imread('one.jpg');
JJ = imnoise(II,'salt & pepper',dispersion);
JJ = JJ(1:40, 1:40) > 127;
masMet = zeros(mm,nn,N);
F = zeros(m,n,N); % if neuron are activated in an instant time
aq = zeros(m,n,N);
aqq = zeros(m,n,N);
masIastro = zeros(mm,nn,N);
Iastroo = zeros(m,n,N); % corriente que modela la actividad ...

sinaptica de los astrocitos
aQ = zeros(m,n,N);
t1 = [0]; %array t
%parameters neuron
aa = 0.1; %RZ value for potential V
b = 0.25; % in dU/dt
c = −65; % value for V, if V ≥ 30 mV => V −> V+c
d = 2; %value for U, if V≥ 30 mV −> U −> U+d
X = zeros(1, 3);
t11 = 0;
tic
for N1 = 1 : N % tiempo

for m1 = 1 : 1 : m % 13: astrocyte
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for n1 = 1 : 1 : n %13: astrocytes
YW = 0;
if F(m1,n1,N1) > 8 % F : neuronas activas en un ...

instante de tiempo
aqq(m1,n1,N1) = Aneuro; % ponemos feedback ...

astrocitos − neurona
end
if N1 < (0.4/u)

aq(m1,n1,N1) = 0;
end
if (N1 == (0.4 / u)) || (N1 == (0.9 / u))

aQ = aqq(m1,n1,(N1+1−0.4/u):(N1−1));
[aQ] = shiftdim(aQ);
YW = sum(aQ == Aneuro);
if YW > 50 %if more than 50% of neurons that ...

correspond to an
% astrocyte are activated
aq(m1,n1,N1 : N1 + Tneuro/u) = Aneuro;

end
end
X(1) = masCa(m1,n1,N1);
X(2) = mash(m1,n1,N1);
X(3) = masIP33(m1,n1,N1);
Ineuro = aq(m1,n1,N1);

% calculation of current value
w1 = fun(0,X, Ineuro);
w2 = fun(0,X + u2.*w1', Ineuro);
w3 = fun(0,X + u2.*w2', Ineuro);
w4 = fun(0,X + u .*w3', Ineuro);
X = X + u6 .* (w1' + 2 .* w2' + 2 .* w3' + w4');
Y = X;
masCa(m1,n1,N1+1) = Y(1);
masIP33(m1,n1,N1+1) = Y(3);
mash(m1,n1,N1+1) = Y(2);
if (masCa(m1,n1,N1) > PCa) && (F(m1,n1,N1) > 8)

Iastroo(m1,n1,N1) = Aastro;
else

Iastroo(m1,n1,N1) = 0;
end

end
end
km=0;
kmm=0;
for j = 1 : h : (mm−3)

kmm = 0;
for jj = 1 : h : (mm−3)

masIastro(j : j+h,jj : jj+h, N1) = Iastroo(j−km,jj−kmm,N1);
kmm = kmm + 2;

end
km = km + 2;

end

% [u_tot(:,:,N1) , v_tot(:,:,N1)] = main_fun2(u_tot(:,:,N1), ...
v_tot(:,:,N1) , u, 0.05) ;

for mm1 = 1 : 1 : mm %40: neurons
for nn1 = 1 : 1 : nn %40: neurons

% v = v_tot(mm1,nn1,N1);
% uu = u_tot(mm1,nn1,N1);
% fired = find(v ≥ 30); %if the potencial is greater or ...

equal than 30mV
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% v(fired) = c; %then V=> c
% uu(fired) = uu(fired) + d; %and U => U+d

if (((J1(mm1,nn1)==0)&& (t11≥ 0 && t11 ≤ ...
0.004))||((J2(mm1,nn1)==0)&&(t11≥ 0.044 && t11 ≤ ...
0.048))||...

((J3(mm1,nn1)==0)&&(t11≥ 0.088 && t11 ≤ ...
0.092))||((J4(mm1,nn1)==0)&&(t11≥ 0.132 && ...
t11 ≤ 0.136))||...

((J5(mm1,nn1)==0)&&(t11≥ 0.176 && t11 ≤ ...
0.180))||((J6(mm1,nn1)==0)&&(t11≥ 0.220 && ...
t11 ≤ 0.224))||...

((J7(mm1,nn1)==0)&&(t11≥ 0.264 && t11 ≤ ...
0.268))||((J8(mm1,nn1)==0)&&(t11≥ 0.308 && ...
t11 ≤ 0.312))||...

((J9(mm1,nn1)==0)&&(t11≥ 0.352 && t11 ≤ ...
0.356))||((J10(mm1,nn1)==0)&&(t11≥ 0.396 && ...
t11 ≤ 0.400))||...

((J11(mm1,nn1)==0)&& (t11≥ 0.5 && t11 ≤ ...
0.504))||((J21(mm1,nn1)==0)&&(t11≥ 0.544 && ...
t11 ≤ 0.548))||...

((J31(mm1,nn1)==0)&&(t11≥ 0.588 && t11 ≤ ...
0.592))||((J41(mm1,nn1)==0)&&(t11≥ 0.632 && ...
t11 ≤ 0.636))||...

((J51(mm1,nn1)==0)&&(t11≥ 0.676 && t11 ≤ ...
0.68))||((J61(mm1,nn1)==0)&&(t11≥ 0.720 && ...
t11 ≤ 0.724))||...

((J71(mm1,nn1)==0)&&(t11≥ 0.764 && t11 ≤ ...
0.768))||((J81(mm1,nn1)==0)&&(t11≥ 0.808 && ...
t11 ≤ 0.812))||...

((J91(mm1,nn1)==0)&&(t11≥ 0.852 && t11 ≤ ...
0.856))||((J101(mm1,nn1)==0)&&(t11≥ 0.896 ...
&& t11 ≤ 0.9))||...

((JJ(mm1,nn1)==0)&&(t11≥ 1.6 && t11 ≤ 1.620)))
Ivh = 5; % input signal is presented

else
Ivh = 0;

end
masIvh(mm1,nn1,N1) = Ivh;
Iastro = masIastro(mm1,nn1,N1);

% v = v + u * 1000 *(0.04 * v .^2 + 5 * v + 140 + Ivh + ...
Iastro − uu);

% uu = uu + u * 1000 * aa .*(b .*v − uu);
%

[uu , v] = fun2(u_tot(:,:,N1), v_tot(:,:,N1), mm1 ,nn1 ...
,u, Ivh,Iastro);

v_tot(mm1,nn1,N1+1) = v;
u_tot(mm1,nn1,N1+1) = uu;

if v > 2.4
v_tot(mm1,nn1,N1+1) = 1.6;%stable state

else
v_tot(mm1,nn1,N1+1) = v;

end

if u > 1.4
u_tot(mm1,nn1,N1+1) = −0.6;%stable state

else
u_tot(mm1,nn1,N1+1) = u;

end
% end
% u_tot(mm1,nn1,N1+1) = uu;
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%if v > −63
%if v > 2
if u>0

masMet(mm1,nn1,N1) = 1;
else

masMet(mm1,nn1,N1) = 0;
end

end
end
km = 0;
kmm = 0;
for j = 1 : 3 : (mm−3)

kmm = 0;
for jj = 1 : 3 :(mm−3)

F(j−km,jj−kmm,N1+1) = sum(sum(masMet(j:j+h, jj:jj+h,N1)));
kmm = kmm + 2;

end
km = km + 2;

end
if t11 < t

t11 = t11 + u;
t1 = [t1 t11];

end
if rem(N1, 500) == 0

toc;
end

end
km = 0;
kmm = 0;
masCa1 = zeros(mm,nn,N);
for qe = 1 : N

for j = 1 : h :(mm−3)
kmm = 0;
for jj = 1 : h :(mm−3)

masCa1(j:j+h,jj:jj+h,qe) = masCa(j−km,jj−kmm,qe);
kmm = kmm + 2;

end
km = km + 2;

end
km = 0;
kmm = 0;

end
masIvh = masIvh ./ 10;
u_tot = u_tot./1;
video = horzcat(masIvh,u_tot(:,:,1:end−1),masCa1);
handle = implay(video,10);
cmap = jet(256);
handle.Visual.ColorMap.Map = cmap;
handle.Visual.ColorMap.UserRangeMin = −0.8;
handle.Visual.ColorMap.UserRangeMax = 0.3;

B.2 Code for the astrocyte layer

function f=fun(t,X,Ineuro)

c0=2.0;
c1=0.185;
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v1=6.0;
v2=0.11;
v3=2.2;
v4=0.3;
%v5=0.025;
v6=0.2;

k1=0.5;
k2=1.0;
k3=0.1;
k4=1.1;

d1=0.13;
d2=1.049;
d3=0.9434;
d5=0.082;

IP3s=0.16;

Tr=0.14;

a=0.8;
a2=0.14;

M=X(3)/(X(3)+d1);
NM=X(1)/(X(1)+d5);
Ier=c1*v1*(M^3)*(NM^3)*(X(2)^3)*(((c0−X(1))/c1)−X(1));
Ileak=c1*v2*(((c0−X(1))/c1)−X(1));
Ipump=v3*(X(1)^2)/(X(1)^2+k3^2);
Iin=v6*(X(3)^2/(k2^2+X(3)^2));
Iout=k1*X(1);
Q2=d2*((X(3)+d1)/(X(3)+d3));
h=Q2/(Q2+X(1)); %receptor de moleculas activas
Tn=1.0/(a2*(Q2+X(1)));
Iplc=v4*((X(1)+(1.0−a)*k4)/(X(1)+k4));

f(1)=Ier−Ipump+Ileak+Iin−Iout; f(2)=(h−X(2))/Tn; ...
f(3)=(IP3s−X(3))*Tr+Iplc+Ineuro;

% M=X(1:m,1:n,3)./(X(1:m,1:n,3)+d1);
% NM=X(1:m,1:n,1)./(X(1:m,1:n,1)+d5);
% Ier=c1*v1*(M.^3)*(NM.^3)*(X(1:m,1:n,2).^3)*...
% (((c0−X(1:m,1:n,1))/c1)−X(1:m,1:n,1));
% Ileak=c1*v2*(((c0−X(1:m,1:n,1))/c1)−X(1:m,1:n,1));
% Ipump=v3*(X(1:m,1:n,1).^2)/(X(1:m,1:n,1).^2+k3^2);
% Iin=v6*(X(1:m,1:n,3)^2/(k2^2+X(1:m,1:n,3)^2));
% Iout=k1*X(1:m,1:n,1);
% Q2=d2*((X(1:m,1:n,3)+d1)/(X(1:m,1:n,3)+d3));
% h=Q2/(Q2+X(1:m,1:n,1));
% Tn=1.0/(a2*(Q2+X(1:m,1:n,1)));
% Iplc=v4*((X(1:m,1:n,1)+(1.0−a)*k4)/(X(1:m,1:n,1)+k4));
%
%
%
% f(1)=Ier−Ipump+Ileak+Iin−Iout; f(2)=(h−X(1:m,1:n,2))/Tn; ...

f(3)=(IP3s−X(1:m,1:n,3))*Tr+Iplc+Ineuro;

f=f';
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B.3 Code for the neurons layer

function [u_n, v_n] = fun2(u, v, i , j , dt,Ivh,Iastro )

% Input for function ASTRO:
% u=u_tot(:,:,N1), v=v_tot(:,:,N1) , i=mm1, j=nn1 , chi=Ivh , ...

dt=u (time step)

N=size(u,2);
% Parameters:

d = 4; % 2−D lattice

Du=100; %coupling
Dv=100;
c=0.2;
dd=0.075;
e= 0.01;

% Noise:

sigma2=0.08;
sqm=sqrt(sigma2*dt);
sqa=sqm;

if i == 1
u_n = u(N−1,j);
v_n = v(N−1,j);

elseif i == N
u_n= u(2,j);
v_n= v(2,j);

elseif j == 1
u_n = u (i, N−1);
v_n = v (i , N−1);

elseif j == N
u_n = u (i,2);
v_n = v(i,2);

else

%Integration step:

u_n = u(i,j) + ( 1/e * (F(u(i,j))−v(i,j)) + Du/d *(...
u(i+1,j) + u(i−1,j) + u(i,j+1) + u(i,j−1) − d*u(i,j)) + ...

(Ivh/5)*2 + (Iastro/82)*2)* dt;

% Moltiplicative noise :
chi=normrnd(0,1);
v_n = v(i,j) +( c*u(i,j) + dd + Dv/d *(...

v(i+1,j) + v(i−1,j) + v(i,j+1) + v(i,j−1) − d*v(i,j)) ...
+ sigma2/2*v(i,j)) * dt + sqm*v(i,j)*chi ;

end
end
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