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Abstract
A model of charge transport in a one-dimensional semiconductor crystal is considered, where
each electron follows the Hamiltonian characteristics, determined by the semiconductor band struc-
ture, and undergoes non-elastic collisions with a phonon bath. Starting from a detailed kinetic
(Boltzmann-like) model, a closed system of ODEs is obtained for phase-space averaged quantities.
Such a simplified model is nevertheless capable of describing the damping of Bloch oscillations, due
to collisions, and the consequent onset of a steady current flow, which is in very good agreement

with the available experimental data.



I. INTRODUCTION

It is known that semiconductors have crystalline structure. What that means is that
the electrons can flow throughout the material, and the ions of the atoms remain in a fixed
position forming what it’s called a crystalline lattice. In this work we make the assumption

that the crystal has no impurities, so that this lattice is perfectly periodic.

We can take into account several factors in order to model the dynamics of the electrons:

e From basic quantum mechanics it is known that the interaction of an electron with the
Coulomb potential generated by the ions of the crystal lattice results into a dispersion
relation, i.e., the relation between kinetic energy K and momentum p (also known as

the semiconductor band diagram), which turns out to be multi-valued and periodic.

e An external force can be applied to the electrons in the semiconductor. Typically this

will be done by means of an external electric field.

e Electrons can scatter with the vibrations of the crystal lattice (phonons). In this

process electrons can transfer momentum to the phonons, changing their velocity.
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e Coulomb interaction between different electrons. This force is proportional to 7~
where r is the distance between electrons. If the electron density is low, we can make

the assumption that the electrons are always far away, so that this term is negligible.

If we just take into account the lattice potential and the external force, the electrons
just follow what it is known as the Bloch Oscillations. The average displacement that this
oscillations have is 0, so even if we apply a strong electric field the average current that will

flow through the semiconductor is null. From the experience we know that this is false.

The aim of this work is to include the electron-phonon interactions in the model, so that

it is shown that they are responsible for the current flow in semiconductors.



II. MODEL FOR THE ELECTRON DYNAMICS

The first approximation we make is that the semiconductor only has one conduction band
and the crystal has only one spatial dimension. The kinetic energy of the electrons in this

band is derived from Quantum Mechanics and takes the form:
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which is known as Kronig-Penney dispersion relation [1]. This energy has a period of 27py,
and an amplitude of Ey. On the other hand, the potential energy of the electric field is
supposed to be linear:

Uz) = —Fx (2)

and corresponds to a constant force exerted by an applied voltage V' such that ¢V = —F'L,
where ¢ is the elementary charge and L is the device length. In this picture, the system’s
Hamiltonian can be written as
B p
H(z,p) = Ey (1 — cos <—)) — Fzx (3)
Po

so that the Hamilton equations are
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Let f(x,p,t) be the phase space density function. As the crystal has only one spatial
dimension, the spatial electron density p can be expressed as
™o
/ /
p(z,t) = fla,p', t)dp" (6)
—mpo

In virtue of Liouville’s theorem, the phase-space distribution function is constant along the

trajectories of the system. This can be expressed as

d
or
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ot +$8$ +p8p ot + Do S (po) Ox +F@p =0 (8)
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Equation (8) is known as Liouville’s equation, and it describes the behavior of our system
without taking into account the interactions between phonons and electrons.
mbox

These interactions will have two parts: out-scattering and in-scattering. The first one
takes into account the electrons that had momentum p and loose it because of a collision
with a phonon. This type of event will happen with a frequency of 1/7, so that the following

term is added to equation (8):

_flpt) (9)
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The second type of interactions is derived from statistical physics considerations, and it

takes the form:

Of (x,p,t)
ot

— L vp)pe.t) (10)
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where

1 5 92 *
M(p):\/me 202 O'QZmEI{BT (11)

In the last expression m} is the effective electron mass, xp is Boltzmann’s constant and 7'

is the temperature. Is it possible now to include the scattering terms into equation 8, which

results in
0f(£v,p, t) Ey . P af($7p7 t) @f(:v,p, t) _ 1
AHERD) B (L) 2]y pOHERD) L g ) f(op ]| (12)

Note that the collisions term described by the right-hand side, can be interpreted as follows:
electrons collide with a typical frequency 1/79 and and the effect of collisions is to re-
distribute the electron momenta according to a Maxwellian (thermal) distribution at the
temperature of the phonon bath.

Equation (12) is semiclassical Boltzmann-type equationn [2], and it describes the system
that we propose in this work. An important remark to be made is that this equation has an

integral term, because of (6), and that will complicate its resolution.

III. NON-DIMENSIONALISATION

We shall non-dimension (12) by changing = — xoz, p — pop, t — tot and f — Noyf,

where xg, po, to and Ny are reference length, momentum, time and density, respectively, and
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the new variables x, p, t and f are non-dimensional. Making these substitutions into (12)

and multiplying by t, yields

8f NoEoto . ﬁ NotoF%_ toNo /ﬂ' -
Noor + Prre sin(p) 5 + R e, poM (pop) 3 fdp— ). (13)

It is natural to set xg = L and it is clear than Ny is arbitrary as it multiplies every term.

We choose that t, = £ and and define the new parameters

E(] FT(]
A= 0 -0 14
to yield the non-dimensionalised equation
of of of 1 T
Asi -+ = =- dp — 1
G+ Asin) g+ 5 =~ (me) [ rav-r). (15)
where )
.
m(p) =poM(pop) = =e 2¢,  e=0/p
2me

IV. AVERAGING OVER MOMENTA p

In order to arrive at a macroscopic description, we start by averaging the non-dimensional

equation over the momemta p. In other words, we calculate

T 0 0 0 4 4
a{JrA n()ai aﬁp /%(m(p)/_ﬂfdp—f)dp (16)

—T

By defining
plart) = [ s (7)

which is the density of electrons at any particular spatial point x and time ¢, the left hand

side of (16) simplifies to

%+%/_WASin(p)fdp—{—f($77r,t)—f(.il?,—’/'(,t), (18)

by using the Fundamental Theorem of Calculus. However, as f is periodic in p the final
term is zero. Hence, the left hand side of (16) is in fact given by
dp 0j

9 , 9] 1
ot T oz’ (19)



where j(z,t) = ffﬂ Asin(p) fdp, which has the interpretation of current.
The right hand side of (16) is zero. To see this, note that the Gaussian m(p), if assumed
to be sufficiently tightly distributed around zero will normalise to one. In other words, we

have

/ m(p)p — fdp=p—p=0, (20)
noting the definition (17). Hence, by equating (19) and (20), (16) simplifies to
dp 0j
—+ —=0. 21
ot " o (21

To understand how j varies with ¢ we multiply the origin non-dimensional equation by

Asin(p) and average over p once more. In particular, we compute

/_: Asin(p) @_{ + ASin(p)g—i + %) dp = /ﬁ ASif(p) <m(p) /_7; fdp — f) dp.  (22)

—T

The left hand side of this expression simplifies to

% + % (/7r A%sin®(p) f(x, p) dp) + /W g—idp. (23)

-7 -

By using integration by parts, the last term reduces to

™

Acos(p) (f(z,m,8) — f(,—m. 1)) - / Acos(p)fdp. (24)

Recalling the periodicity of f in p and defining k := f:r Acos(p)fdp (which is related to
kinetic energy) we then find that (23) becomes

% + (‘% (/: A%sin®(p) f(z, p,t) dp) — k. (25)

We now focus attention on the right hand side of (22) . As the density p does not depend

on p we can pull it out of the first integral so that we have

/_: ASif(p) (m(p) /_7; fdp — f) dp = % <p /_iAsin(p)m(p)dp - /_zAsin(p)fdp) :
(26)

As sin(p) is an odd function and m(p) is even, the first integral on the right hand side reduces

to zero. The second term is how we define j. Hence we have
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/WALIl(m(m(p)/_Zfdp—f) dp:—%. (27)

T
By equating this expression with (25), we arrive at the following simplification of (22):
8 9 [ [T j
=+ — A?sin® t)ydp | —k=—= 28
ot g ([ i) sl dp) — k= - (28)

Similar calculations, but instead by first multiplying the original non-dimensional equation

by Acos(p) we arrive at an equation describing the time evolution of k:

ok 0

5 + P (/_: A?sin(p) cos(p) f(x,p,t) dp) +7= % (6p — k), (29)

where ¢ is a constant given by

=/WAm@n%@mp (30)

V. AVERAGING OVER SPACE z

Coupled with initial conditions, the system of equations (21), (28) and (29) form a closed
system. However, to deal with the unwieldly integral terms in (28) and (29) we also average
over x. We can get rid of the boundary terms by assuming that the spatial boundaries
of the device are very far with respect to the initial location of electrons. In other words,
we may substitute (at least up to some maximum time) the space interval z € [0, L] with

x € (—00,+00). If we define

then averaging (21) we get

— + lim J(z) — lim J(x) =0, (34)

d T—00 T——00

However, we suppose that the current at both limits drops to zero. Hence we have
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dH —0 (35)
dat

Similarly, if we average (28) over x we obtain

g—i—(lim / A?sin®(p) f(x,p,t)dp — lim A?sin®(p) f(x, p,t) dp) —K = —i, (36)
T

dt —r z——oo [__
where for the term involving limits we have used the Fundamental Theorem of Calculus. As
the limits are with respect to x, and not p, we can pull them inside the integrals. Then, as

before, we assume that as = gets very large the electron density function f(x,p,t) decays.

Thus, we find

dJ J
— — K =—
dt T (37)

Using the same decay assumptions, we find the spatially averaged equivalent of (29) to

be:

dK 1
—rtJ = (0H — K). (38)

From (35), it is clear that H is a constant. We relabel this constant N. Thus, (35), (37)

and (38) form a closed system (the first equation being trivial), with initial conditions

N [ e pdps
Jo = /_00 /_7r Asin(p) fo(x,p)dpdx
Ky = /OO /7T Acos(p) fo(x,p)dpdz,

where fy(x,p) is the initial density distribution.

An idea of the charge movement inside the semiconductor can be given in term of the

average position

X(t) = /00 zp(z,t)de.

—00

From (19) the equation for X(t) is readily found to be

X

A
a7
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and so

X(t) = X(0) + / J(s)ds. (39)

VI. SOLVING THE SYSTEM

We have already seen that the previous differential equation corresponds to a macroscopic

description of our problem, so now we are going to give an explicit solution of the unknowns
J and K.

We remind that the differential equation is

) = — L)+ K@)
. T 1 R
Rty = () ~ K@) +

T

where R = Ne/2 and the initial conditions are

J(0)=Jy = / / Asin(p) fo(x,p)dpdx
K(0) =K, = / / Acos(p) folz,p) dpdz.
Firstly, to solve the system, we compute the second derivative of J, which is

Jt) = - %J(t) bR = — @) — g — 2r@ + F = —%J(t) — ) - %j(t) +2J()

. 9. 1
:J+—J+<1+—2)J:
T T

Typically, these kind of problems are solved by finding a particular solution of the differential

equation, and then, we just have to solve the homogeneous solution.

1\ 7 24 1) e /2
Sp:(1+_2>_:(—)
-

Is easily check that

R TN
verifies the differential equation, so is a particular solution. Now, to solve the homogeneous
solution
. 9. 1
J+=J+ |1+ ]J=0
T T
we are going to consider, as usual, that the solution has this expression:

Sp(t) = AN,
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where A, X\ € C. So, in this case, we get

Sp(t) = AeM
Sh (t) = /\A@M

Su(t) = N2 AN

and if we want to impose that S, is the solution of the homogeneous case, it must verify the

differential equation, namely
2 1
AeM {AQ +2=X+ (1 + —2)} =0,
T T

and this is true if and only if
1

A=——=%1.
T
Hence,
Sp(t) = e lacost + Bcost],
and
J(t) = e Y [acost + Beost] + Jg, (40)
where

(T2 4+1) e~ /2
Jo = —N (41)

is the asymptotic current.

The constants o and § depend on the initial conditions Jy and Ky, namely:

1
a=Jo—Jo, B=Ky——J
T

We can notice that in both limits 7 — oo (no collisions) and 7 — 0 (infinite collision
frequency), the current is zero. In fact, in the first case, the dynamics reduces to Bloch
oscillations while, in the second one, the collisions are “too many” and electrons remain

stuck.

Finally, the expression (40) can be integrated to obtain an explicit expression for the

mean position (39):
Jat (JO - Ja)T2 —t : 1 1
X(t) = X(0) = S5 + T | e 7 (sin(t) — = cos(t)) + —
=00 = 37 + gy (7600 o) + 2
~— - ~— 4
Drift Damped Bloch Oscillation

(KO — KQ)T2

—t/T 1 1
i (L et + L)),

J

~
Damped Bloch Oscillation
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where the asymptotic current J, is given by (41).

VII. NUMERICAL SOLUTION AND COMPARISON WITH THE EXPERIMENTS

Now we are going to plot the results that we have obtained and to compare them with
the experimental results reported in Ref. [3]. In order to do that it is first of all necessary
to return to the dimensional variables and parameters

We remember that, in non-dimensional variables, we have obtained for the averaged
current this expression:

ANTe=</?

J(t)=e " t+ Bsint
(t) = e V7 [acost + fsint] + T

Then, we make the inverse changes with respect to the ones that we used to perform the

non-dimensionalisation, i.e.:

Fry F It
T=—) w=— t=—
Do Do Do
« Po % Bpo
b=, B=
EyN EyN
2 2 knT
m::&, o? =m:KgT, ezzg—zzi.
Ey Po Ey

The dimensional expression of the current reads as follows:

EyN

—kpT/2Eq
J(t) = L]
Po

{et/fo <d cos(wt) + Bsin(wt)) + 1+ (wr0)?
WTo

or

_ EN

J(t) = o [e’t/m (éz cos(wt) + Bsin(wt)) + Ja} ,

where w = pﬂo is the frequency of Bloch oscillations, and

roweKBT/2E0
1+ (wmp)?

is the asymptotic current expressed in dimensional variables.

Jo =
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In our plots we use the following values, which are taken from Ref. [3]:

Device length: L = 0.147 - 10~ %m

Band period: py = 7.89- 1072 Kg-m/s

Mean collision time: 75 = 1.52 - 107135

Band width: Ey = 5.76 - 1072'.J

The first thing we do is to represent the graph of the mean position X (t) for different

values of the voltage

We see that, as V' increases, the slope (that is the asymptotic current .J,) also increases.

Also, as expected, as time increases, the amplitude of oscillations decrease.

In the following image, we will represent the relation between the voltage and the fre-

quency.
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Frequency Vs Voltage

11

Frequency (THz)

-1 -1.5 -2 -2.5 -3 -3.5 -4
Voltage (V)

We can see that frequency increases linearly with voltage, because they are proportional:

F_av

TP BL

Now we compare our image with the one taken from experiments, and we see that they

(43)

are very similar, both having a slope close to 2.1:

10 - : : .
< 8t P _
= a7t
> 27t
o 6r 43 :
& -3
L

2 " 1 " 1 i

-1 -2 -3 -4

Voltage (V)
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Next figure show the the current versus time for different voltages:

x 10° Differents Voltages
-0.8F

-1 -3.3V

=31V

-2.9V

12 26V

-2.4V

14 /\/\/ 2.2V

-2.2

J (m/sec)
| |
o oo >
L L
(&3] ~
< <

Note that the current, at first, has some oscillations (which are exactly the Bloch oscil-
lations) and, after a time of order 7y, it reaches the asymptotic value J,, due to the effect
of collisions. The asymptotic value of the current increases with the absolute value of the
applied voltage.

The comparison with the analogous figure obtained experimentally shows a very good agree-

ment:
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Note that in the experimental figure the current axis is measured in units that depends
on the way the current is experimentally measured, and so the comparison with our values

is possible only up to an overall scale factor.

Finally, we are going to check how the temperature 7" affects the current. To this aim we
represent, just like in the previous image, the value of the current as a function of time, but
now we will vary the value of the temperature. For example, we take the same representative

values also considered in Ref. [3], i.e. 10K (Kelvin) and 300K (room temperature):
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We can see in the picture that if the temperature is higher the current decreases, this
makes sense since, if the temperature increases, the mean energy of the phonons increases,
which makes the Bloch oscillations more damped and, at the same time, the asymptotic

current smaller.
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VIII. CONCLUSIONS

In conclusion, the team was able to achieve the assigned target, i.e. to provide a simple
mathematical model that is able to describe the onset of a current flow in a semiconductor,
as determined by the concurrent action of the Hamiltonian dynamics and of the collisions.

The model is derived from a detailed kinetic (Boltzmann-like) description and consist of
a system of ODEs for the phase-space averaged velocity and energy.

The model depend on all relevant physical parameters, namely the applied voltage V,
the collisional frequency 1/7y, the band-energy period py and width Ey (that depend on the
lattice structure), and the crystal temperature 7.

A comparison with the available experimental data shows a very good agreement.
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