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Introduction 

Nowadays, technology is not an option, it is a need. The detection in Live Video Streams is 

everywhere, in our smart phones (detecting faces and also age), in security environments 

(streets, preventing riots) and many important companies like Google and Tesla are working 

on autonomous vehicles.   

There are different mathematical models to resolve this problem but because of the 

dimensionality of the data set, there are problems like: 

1. Computational costs 

2. Autonomy and energy consumption 

3. The need of large data set of samples. 

The objective of this problem is to train the system to detect a new object (we choice apples). 

The system already knows hands and faces.  

 

Approach and work plan 

On the first day we attend a lecture about the basics of Machine Learning Theory that is 

relevant for the Project. Our first task was to collect a lot of pictures from apples (the positives 

ones) and the same amount of pictures from others objects (like hands, faces, etc.).  

On the second day we used the fisher linear discriminant model to separate the two classes of 

data. We had dimension problems of data, so we used principal components analysis (PCA) to 

reduce the data dimension and avoid collinearity problems. We were working with two sets, 

training and test. We tried to get the value of the coefficient b which represents the 

translation of the hyperplane w. We calculated it using an entropy function, which tells us how 

much information we have of the data set. We chose b subject to maximize entropy function. 

After that we used the linear support vector machine model, which improves our results. And 

finally we implemented our final model in the system. 

 

1. Working with the data 

We collected 1000 pictures negatives and 1000 pictures positives. We use MATLAB to work 

with this data. First we use Histogram Oriented Gradient to transform pictures into a matrix, 

where each row is a picture (2400 variables).  

 

 

 



1.1 HOG: Histogram of oriented gradients 

The main goal of HOG is to try to get a vector associated to a picture to characterize it.  This 

characterization is based on gradient orientation in localized portions of an image. 

The first step is to divide the image into small adjacent, non-overlapping regions, called “cells”. 

Cells can be either rectangle or radial (in this case square).   

Next, we compute the gradient directions over the pixels of the cell. This gradient is expressed 

on polar coordinates, with the angle constrained to be between 0 and 180 degree. More 

specifically, if the input is a window I from a gray-scale image, the two components Ix and Iy of 

the gradient of I are computed by central differences: 

 

                                                               

 

The gradient is then transformed to polar coordinates 

        
    

                         
                . 

Once these gradients are calculated, we discretize their values in the so called Cell Orientation 

Histograms.  

Cells can also be grouped in “blocks”, in which accumulate histograms are normalized. 

The HOG descriptor is then the concatenated vector of the components of the normalized cell 

histograms from all of the block regions. 

 

Then we split randomly the data in two: training and test. 

 

 



2. Fisher linear discriminant 

The fisher linear discriminant uses covariances (           and means (       for 

each class. We search a hyperplane that separate the two classes the “best” possible. 

We calculate a direction (vector) w* so that 

 The distances between the centroids of projected points on w* are 

maximized  

 The “variance” is minimized 

 

This leads to this problem 

   
 

                
    

                 

 

 

The optimal solution of this problem is: 

          
  

       . 

So, if    
                decide class     Where x is an observation from the data set, w the 

coefficients of the vector and b the thresold. We chose b such that it maximizes Relative 

Information Gain. We solved this problem over the training set. 

We faced with the fact that          is singular. In order to solve this we used Principal 

Components Analysis (PCA). 



3. Principal Components Analysis 

3.1 What is Principal Components Analysis? 

Principal component analysis (PCA) is a statistical method that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal components.  These new variables are 

a lineal combination of the original variables. 

 PCA is usually used to reduce the dimension of a problem. However, the main idea of Principal 

Components Analysis, according to Pearson, is to explain the data set through a coordinate 

transformation. This transformation is defined in such a way that the first principal component 

has the largest possible variance and the rest of components are ordered so that they explain 

most of the variance. 

In addition, PCA is closely related to factor analysis. Factor analysis typically incorporates more 

domain specific assumptions about the underlying structure and solves eigenvectors of a 

slightly different matrix. Also, it is also related to canonical correlation analysis (CCA). CCA 

defines coordinate systems that optimally describe the cross-covariance between two datasets 

while PCA defines a new orthogonal coordinate system that optimally describes variance in a 

single dataset. 

 

3.2 How to calculate Principal Components? 

Let`s consider a data matrix,   with column-wise zero empirical mean (the sample mean of 

each column has been shifted to zero), where each of the n rows represents a different 

repetition of the experiment, and each of the p columns gives a particular kind of feature. 

 

   

       

   
       

  

 

The main idea is to calculate a new set of uncorrelated variables            .  In order to 

calculate these variables, we need define a lineal transformation. 

Mathematically, this transformation is defined by a set of p-dimensional vectors of weights 

or loadings                            that map each row vector    of   to a new 

vector of principal component scores                      , given by 

 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Canonical_correlation
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Empirical_mean


 

   

 
   

   

       

   
       

  

   

 
   

  

 

The vectors of components principals                 of this lineal transformation are 

orthogonal because they are eigenvector of the covariance matrix, which is symmetric. 

As we see, we need to calculate vectors of weight to get the principal components. So, we 

need to resolve the next problem, 

   
  

             
  

   
     

  
      

                           

 

From this problem, it is easy to realize that principal components are a projection of the 

original variables on the directions defined by the eigenvectors of the covariance matrix 

 

3.3 Geometric Interpretation of PCA 

PCA can be thought of as fitting an n-dimensional ellipsoid to the data, where each axis of the 

ellipsoid represents a principal component. If some axis of the ellipse is small, then the 

variance along that axis is also small, and by omitting that axis and its corresponding principal 

component from our representation of the dataset, we lose only a commensurately small 

amount of information. 

 

 

https://en.wikipedia.org/wiki/Ellipsoid


3.4 Criteria for determining the number of components 

As we saw before, the number of principal components is the same than the number of 

original variables and we are interested in reducing the dimension of our problem. For that 

reason it is very important to choose a good number of principal components. I mean a 

number of components which explain the most of the data but it uses a few principal 

components. There is no a perfect number of principal components but there are some rules 

that can help to choose it. 

For this problem, we used the Kaiser Rule. This criterion chooses all the principal components 

whose eigenvalues are bigger than the average of all of them. 

As we can see in the graphic, only a few principal components explain the most of the 

variance. According to the Kaiser Rule, the “magic” number of principal components is 25 .  

 

 

4. Results 

After applying PCA to our problem, we could solve the singularity matrix problem. In this way, 

we got 90% hit rate. It seems a good percentage, but for our problem that is not true. 

This is not a traditional problem; we are working with streaming video. As consequence of this, 

we are working with more than 150000 detections windows per frame. 

If we do some math, we can see that 90% hit rate means that we have 15000 false positives 

per frame, which are 375000 false positives per second. That`s something you can see with 

your naked eye! 

These results were expected for us because we were working with a simple model which only 

uses covariance and means.  

 

 



5. Support Vector Machine 

This machine learning technique is also useful for our problem. The objective of this method is 

find a hyperplane that separate the two class of data, maximizing the distance between the 

hyperplane and the nearest point from either group. In other words, SVM maximize the 

margin around the separating hyperplane. 

 

 

 

 

Unlike the linear fisher discriminant, this method does not use any statistical information. 

 

5.1 Mathematical formulation (Linear SVM) 

A hyperplane can be represented by a normal vector w (which is perpendicular to the 

hyperplane) and the intercept b. So, all the points in the hyperplane satisfy        

We have the following optimization problem:  

               
 

   
 

                                           

         

          

Class 1 Class 2 



Where    are the observations corresponding to the class 1 and    to the other class. Now, we 

transform the problem into a nicer one (quadratic optimization problem, computationally 

cheap): 

                     

                                           

         

          

However, this formulation is not valid for non-linearly separable data. 

 

We introduce a penalized vector   in order to solve this problem. 

                                     

                                           

           

            

         

Solving this problem using the training data, we get a classificator that only depends on w and 

b. So, in our case the classifier has the parameters           

                   

And if                                               

 

 

 



5.2 Remarks 

 The maximum points that a hyperplane in a real n dimensional space will separate 

with probability 1 is n+1. 

 

 In order to avoid trivial classification, we introduce a cost function. 

We penalize more the largest class (which is easy to classify) 

 

 We get an approximately  98 % hit rate in cross-validation in the original dimension  

(2400) and 85% in the reduced dimension (250) 

 

 In this method, like Fisher Linear Discriminant, the belonging to a class does not 

depend on the distance to the hyperplane 

 

 

6. Results 

6.1 Hit Rate of 98% 

As we have seen before, a high hit rate could not be enough to detect an object in live video 

streams, because of the large amount of false positives or miss detections. In fact, for a 98% 

hit rate, we have a 2% of error (either false positives or miss detections). 

In a pessimistic estimation (where all the error were false positives), for our problem, if we 

have approximately 150 000 detection windows for a picture, we could have 3 000 false 

positives, which means (as we have 25 frames per second) that we could have 75 000 false 

positives per second. This number of false positives will be easily detected by human eye. 

Again, as we proceeded before, our goal is improving our hit rate. But a 98% hit rate would be 

hardly improved changing our model, almost without a high computational cost. So, why are 

not we able to improve this hit rate? 

Now, we have to look into the data. First of all, an apple has a very common shape. This is a 

remarkable problem, because the apple’s shape could be easily confused with other objects 

like other rounded fruits or a lot of rounded objects. 

Also, using PCA has not helped us to solve this problem, because using it we have lost valuable 

information by reducing variables, which may have help us to distinguish apples. 

So, once we have rejected improving our hit rate improving our models, we have to improve 

our data. 

 

 

 



6.2 Improving Hit Rate 

There is one thing left we can do to improve our model before we change our data. We can 

add a colour classification. We have been using samples in grayscale, but colour is a very 

particular specification of an object. So, if we add this criterion, we can improve our model. 

This increases the computational cost, but as we have seen in out tests, also improves the 

accuracy of the model making it worthwhile. 

In our tests, this allowed us to detect our apple, but also we got a lot of false positives. 

Also, for our very first tests, we tried reducing the size of the sample. We took only 20 

positives. In fact, we took 20 pictures of the same apple. This helped us to distinguish one 

simple apple. The reason this works is because in high dimensional spaces, one object is close 

to the border. So then, is easy to split one object from the rest of the universe. 

This technique helped us to clearly distinguish one single apple in a live video stream with a hit 

rate of 100%. 

However, we want to establish a general method, so we need other techniques. 

The key for generalizing the method is to increase our samples. Also, we do not want just more 

samples but quality samples. 

To obtain these new samples, we use a technique called prototyping. Our goal is to clearly 

separate positives and negatives. That is, to find a hyperplane (or a band) which separates our 

two sets. 

As we have seen before, this hyperplane is closely related to the distance between the mass 

centres of both sets. Also, our problem with the false positives remains on the fact that there 

are a lot of points in the border of the two sets.  

 

 
Hyperplane which separates the two sets and the mass centres 

 

So, we want now to take samples close to the border. These will be our quality samples. If we 

take samples this way, we could accumulate points in both sides of the border. This makes the 



mass centres to get close to the border, so the distances between them is too small, and we 

will find a hyperplane that splits both sets –which will be almost the border. 

But first we have to get the samples close to the border. This is achieved by the prototyping 

technique. It is based on taking all the false positives given by the method, and putting them 

into the negative’s set. Then you retrain your model with the new samples. If you repeat it 

again (adding samples), you get the quality samples you need, and this approaches the model’s 

hit rate to 100%. 

 

NOTE: In spite of this technique improves a lot the model, especially to generalize it, we were 

running out of time in our test, so we did not apply this method to our experiments. Our last 

change was to reduce the sample to one single apple and add colour classification. 

 

 

7. Conclusions 

 We had obtained first-hands experience in training a real functional object detection 

system. We also acquire practical data mining and data analysis skills and 

experimented with measure concentration effects in high dimensions. 

 

 Our purpose was detecting a specific object in live video streaming. In order to get it, 

we have learnt HOG, Fisher Linear Discriminant, SVM, PCA and some concepts of 

Machine Learning. 

 

 We have dealt with problems related to Big Data. Maybe the most difficult of this 

project was to work with a big dimensionality of data set. 

 

 

8. Further Work 

 Collecting more negatives and positives for our data set. With more pictures we can 

distinguish a specific object of the others which are in the real world.  

 

 Using quadratic Kernel in the model Support Vector Machine. Nowadays, this method 

is not available in the system that we used to detect object in live streaming video. 

 

 

 



Appendix 

Code to Split the data: 

 

% Separa una matriz en test y training 

 
function [train,test] = split(matrix,perc) 
    seq = randperm(size(matrix,1)); 
    point = floor(size(matrix,1)*perc); 
    train = matrix(seq(1:point),:); 
    test = matrix(seq(point+1:end),:); 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code to Fisher Linear Discriminant: 

function [r,r1,r2]=Fisher_lim(test,train,lim) 

  
A=train(train(:,end)==1,:); 
B=train(train(:,end)==0,:); 
A(:,end)=[]; 
B(:,end)=[]; 
covA=cov(A); 
covB=cov(B); 

  
% means 
m1=sum(A)/size(A,1); 
m2=sum(B)/size(B,1); 

  
mean_all=m1-m2; 

  
%% PCA 

  
train2=train; 
train2(:,end)=[]; 
[COEFF,SCORE,latent] = princomp(train2); 
ind = train(:,end); 
PCA=SCORE(:,1:lim); 
PCA = [PCA ind]; 
A=PCA(PCA(:,end)==1,:); 
B=PCA(PCA(:,end)==0,:); 
A(:,end)=[]; 
B(:,end)=[]; 

  
covA=cov(A); 
covB=cov(B); 

  
mean_all = sum(A)/size(A,1) - sum(B)/size(B,1); 
sigm=covA+covB; 
 

mean_all = mean_all(:); 
w=sigm\mean_all; 
H = COEFF(:,1:lim); 
wt = w*H'; 

  
%% Training 
Results_P=A*w'; 
Results_N=B*w'; 

  
Rpos=[Results_P>0]; 
Rneg=[Results_N<0]; 

  
%% Test 

  
%[COEFF,SCORE,latent] = princomp(test2); 

  
ATEST=test(test(:,end)==1,:); 
BTEST=test(test(:,end)==0,:); 
ATEST(:,end)=[]; 
BTEST(:,end)=[]; 

  
% RESULTS 



Results_P=ATEST*wt'; 
Results_N=BTEST*wt'; 

  
Rpos=[Results_P>0]; 
Rneg=[Results_N<0]; 

  
r1=sum(Rneg)/size(Rneg,1); 
r2=sum(Rpos)/size(Rpos,1); 
r=(sum(Rpos)/size(Rpos,1)*size(A,1)+sum(Rneg)/size(Rneg,1)*size(B,1))/

(size(A,1)+size(B,1)); 

  
% %% Using b 
% Results_P=A*w'; 
% Results_N=B*w'; 
%  
% % means 
% mA=1/size(A,1)*sum(A);mA=mA*w'; 
% mB=1/size(B,1)*sum(B);mB=mB*w'; 
% S=[Results_P;Results_N]; 
%  
% if (mB<mA) 
%     grid = linspace(mB,mA,100); 
% else 
%     grid = linspace(mA,mB,100); 
% end 
% PA=size(Results_P,1)/size(S,1); 
% PB=size(Results_N,1)/size(S,1); 
% H_S = -(PA*log(PA)+PB*log(PB)); 
%  
% P = Results_P; 
% N = Results_N; 
% RIG = 0; 
% for i=1:length(grid) 
%     b = grid(i); 
%     % S_RIGHT 
%     S_right = S(S>=b); 
%     Size_S_right = size(S_right,1); 
%     Size_P_right = size(P(P>=b),1); 
%     Size_N_right = size(N(N>=b),1); 
%      
%     % S_LEFT 
%     S_left = S(S<b); 
%     Size_S_left = size(S_left,1); 
%     Size_P_left = size(P(P<b),1); 
%     Size_N_left = size(N(N<b),1); 
%      
%     % Probabilities 
%     Prob_P_right = Size_P_right/Size_S_right; 
%     Prob_N_right = Size_N_right/Size_S_right; 
%      
%     Prob_P_left = Size_P_left/Size_S_left; 
%     Prob_N_left = Size_N_left/Size_S_left; 
%      
%     H_right = -(Prob_P_right*log(Prob_P_right) + 

Prob_N_right*log(Prob_N_right)); 
%     H_left = -(Prob_P_left*log(Prob_P_left) + 

Prob_N_left*log(Prob_N_left)); 
%      
%     Size_S = size(S,1); 
%      



%     H_cond = Size_S_right/Size_S*H_right + 

Size_S_left/Size_S*H_left; 
%      
%     RIG_aux = (H_S-H_cond)/H_S; 
%     if (RIG_aux>RIG) 
%         RIG = RIG_aux; 
%         b_best = b; 
%     end 
%      
% end 
%  
% b = b_best; 
% Results_P=ATEST*w'+b; 
% Results_N=BTEST*w'+b; 
%  
% Rpos=[Results_P>0]; 
% Rneg=[Results_N<0]; 
%  
% %display('--------------------------------------------------------

'); 
% %display('Negatives hit rate (using b)'); 
% r1=sum(Rneg)/size(Rneg,1); 
% %display('Positives hit rate (using b)'); 
% r2=sum(Rpos)/size(Rpos,1); 
% %display('Total hit rate (using b)'); 
% 

r=(sum(Rpos)/size(Rpos,1)*size(A,1)+sum(Rneg)/size(Rneg,1)*size(B,1))/

(size(A,1)+size(B,1)); 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code to Crossvalidation: 

clear all 

  
% Data 
%load('E:\problem 5\Data\pos_neg_hogs.mat') 

  
positives = ts_p_hog; 
negatives = ts_n_hog; 
positives(:,end+1) = 1; 
negatives(:,end+1) = 0; 

  
ts_total_hog_ind = [positives; negatives]; 
matrix=ts_total_hog_ind; 

  
% Parameters 
perc=0.8; 
n=10; 
lim=250; 
delta_lim=100; 
t=20; 
L=linspace(lim-delta_lim,lim + delta_lim,t); 

  
% Training & Test tables 
[train,test] = split(matrix,perc); 

  
%PCA Study 
for j=1:length(L) 

     
    % Cross Validation 
    for i=1:n 
        [train,~] = split(matrix,perc); 
        [r(i),~,~]=Fisher_lim(test,train,floor(L(i))); 
    end 

     
    R(j)=mean(r); 
end 

  
plot(L,R) 

 

 

 

 

 

 

 

 

 



Code to SVM: 

load('pos_neg_hogs.mat') 
load('8500_negs_extra.mat') 

  
perc = 0.8; 

  
positives = ts_p_hog; 
negatives = ts_n_hog; 
positives(:,end+1) = 1; 
negatives(:,end+1) = 0; 

  
ts_total_hog_ind = [positives; negatives]; 
matrix=ts_total_hog_ind; 

  
[train,test] = Separa(matrix,perc); 

  

  

  
% PCA 
train2=train; 
ind = train(:,end); 
train2(:,end)=[]; 
[COEFF,SCORE,latent]=princomp(train2); 
lim=size(latent(latent>=mean(latent)),1); 
PCA=SCORE(:,1:lim); 

  
numPos = size(ind(ind==1),1); 
numNeg = size(ind(ind==0),1); 

  
SVMModel = fitcsvm(PCA,ind,'Cost',[0,numNeg;numPos,0]); 

  

  
w = SVMModel.Beta; 
b = SVMModel.Bias; 

  
H = COEFF(:,1:lim); 
wt = w'*H'; 

  
test2=test; 
ATEST=test2(test2(:,end)==1,:); 
BTEST=test2(test2(:,end)==0,:); 
test2(:,end)=[]; 
ind = test(:,end); 

  

  
ATEST(:,end)=[]; 
BTEST(:,end)=[]; 

  
Results_P=ATEST*wt'+b; 
Results_N=BTEST*wt'+b; 

  
Rpos=[Results_P>0]; 
Rneg=[Results_N<0]; 

  
display('--------------------------------------------------------'); 
display('Negatives hit rate wt (Test)'); 



sum(Rneg)/size(Rneg,1) 
display('Positives hit rate wt (Test)'); 
sum(Rpos)/size(Rpos,1) 

  
display('Total hit rate  wt (Test)'); 
(sum(Rpos)/size(Rpos,1)*size(ATEST,1)+sum(Rneg)/size(Rneg,1)*size(BTES

T,1))/(size(ATEST,1)+size(BTEST,1)) 
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