

Universidad Complutense de Madrid

 Visual object
detection in
live video
streams
 Apical LTD, United Kingdom

Elena Castilla, Pedro Chocano, Ander Irastorza, Marta López and Fernando
Sebastián
05/07/2016

ÍNDEX
Introduction .. 2

Approach and work plan .. 2

1. Working with the data ... 2

1.1 HOG: Histogram of oriented gradients .. 3

2. Fisher linear discriminant ... 4

3. Principal Components Analysis ... 5

3.1 What is Principal Components Analysis? ... 5

3.2 How to calculate Principal Components?... 5

3.3 Geometric Interpretation of PCA ... 6

3.4 Criteria for determining the number of components ... 7

4. Results... 7

5. Support Vector Machine .. 8

5.1 Mathematical formulation (Linear SVM) ... 8

5.2 Remarks ... 10

6. Results... 10

6.1 Hit Rate of 98% .. 10

6.2 Improving Hit Rate ... 11

7. Conclusions ... 12

8. Further Work ... 12

Appendix ... 13

Introduction

Nowadays, technology is not an option, it is a need. The detection in Live Video Streams is

everywhere, in our smart phones (detecting faces and also age), in security environments

(streets, preventing riots) and many important companies like Google and Tesla are working

on autonomous vehicles.

There are different mathematical models to resolve this problem but because of the

dimensionality of the data set, there are problems like:

1. Computational costs

2. Autonomy and energy consumption

3. The need of large data set of samples.

The objective of this problem is to train the system to detect a new object (we choice apples).

The system already knows hands and faces.

Approach and work plan

On the first day we attend a lecture about the basics of Machine Learning Theory that is

relevant for the Project. Our first task was to collect a lot of pictures from apples (the positives

ones) and the same amount of pictures from others objects (like hands, faces, etc.).

On the second day we used the fisher linear discriminant model to separate the two classes of

data. We had dimension problems of data, so we used principal components analysis (PCA) to

reduce the data dimension and avoid collinearity problems. We were working with two sets,

training and test. We tried to get the value of the coefficient b which represents the

translation of the hyperplane w. We calculated it using an entropy function, which tells us how

much information we have of the data set. We chose b subject to maximize entropy function.

After that we used the linear support vector machine model, which improves our results. And

finally we implemented our final model in the system.

1. Working with the data

We collected 1000 pictures negatives and 1000 pictures positives. We use MATLAB to work

with this data. First we use Histogram Oriented Gradient to transform pictures into a matrix,

where each row is a picture (2400 variables).

1.1 HOG: Histogram of oriented gradients

The main goal of HOG is to try to get a vector associated to a picture to characterize it. This

characterization is based on gradient orientation in localized portions of an image.

The first step is to divide the image into small adjacent, non-overlapping regions, called “cells”.

Cells can be either rectangle or radial (in this case square).

Next, we compute the gradient directions over the pixels of the cell. This gradient is expressed

on polar coordinates, with the angle constrained to be between 0 and 180 degree. More

specifically, if the input is a window I from a gray-scale image, the two components Ix and Iy of

the gradient of I are computed by central differences:

The gradient is then transformed to polar coordinates

 .

Once these gradients are calculated, we discretize their values in the so called Cell Orientation

Histograms.

Cells can also be grouped in “blocks”, in which accumulate histograms are normalized.

The HOG descriptor is then the concatenated vector of the components of the normalized cell

histograms from all of the block regions.

Then we split randomly the data in two: training and test.

2. Fisher linear discriminant

The fisher linear discriminant uses covariances (and means (for

each class. We search a hyperplane that separate the two classes the “best” possible.

We calculate a direction (vector) w* so that

 The distances between the centroids of projected points on w* are

maximized

 The “variance” is minimized

This leads to this problem

The optimal solution of this problem is:

 .

So, if
 decide class Where x is an observation from the data set, w the

coefficients of the vector and b the thresold. We chose b such that it maximizes Relative

Information Gain. We solved this problem over the training set.

We faced with the fact that is singular. In order to solve this we used Principal

Components Analysis (PCA).

3. Principal Components Analysis

3.1 What is Principal Components Analysis?

Principal component analysis (PCA) is a statistical method that uses an orthogonal

transformation to convert a set of observations of possibly correlated variables into a set of

values of linearly uncorrelated variables called principal components. These new variables are

a lineal combination of the original variables.

 PCA is usually used to reduce the dimension of a problem. However, the main idea of Principal

Components Analysis, according to Pearson, is to explain the data set through a coordinate

transformation. This transformation is defined in such a way that the first principal component

has the largest possible variance and the rest of components are ordered so that they explain

most of the variance.

In addition, PCA is closely related to factor analysis. Factor analysis typically incorporates more

domain specific assumptions about the underlying structure and solves eigenvectors of a

slightly different matrix. Also, it is also related to canonical correlation analysis (CCA). CCA

defines coordinate systems that optimally describe the cross-covariance between two datasets

while PCA defines a new orthogonal coordinate system that optimally describes variance in a

single dataset.

3.2 How to calculate Principal Components?

Let`s consider a data matrix, with column-wise zero empirical mean (the sample mean of

each column has been shifted to zero), where each of the n rows represents a different

repetition of the experiment, and each of the p columns gives a particular kind of feature.

The main idea is to calculate a new set of uncorrelated variables . In order to

calculate these variables, we need define a lineal transformation.

Mathematically, this transformation is defined by a set of p-dimensional vectors of weights

or loadings that map each row vector of to a new

vector of principal component scores , given by

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Canonical_correlation
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Empirical_mean

The vectors of components principals of this lineal transformation are

orthogonal because they are eigenvector of the covariance matrix, which is symmetric.

As we see, we need to calculate vectors of weight to get the principal components. So, we

need to resolve the next problem,

From this problem, it is easy to realize that principal components are a projection of the

original variables on the directions defined by the eigenvectors of the covariance matrix

3.3 Geometric Interpretation of PCA

PCA can be thought of as fitting an n-dimensional ellipsoid to the data, where each axis of the

ellipsoid represents a principal component. If some axis of the ellipse is small, then the

variance along that axis is also small, and by omitting that axis and its corresponding principal

component from our representation of the dataset, we lose only a commensurately small

amount of information.

https://en.wikipedia.org/wiki/Ellipsoid

3.4 Criteria for determining the number of components

As we saw before, the number of principal components is the same than the number of

original variables and we are interested in reducing the dimension of our problem. For that

reason it is very important to choose a good number of principal components. I mean a

number of components which explain the most of the data but it uses a few principal

components. There is no a perfect number of principal components but there are some rules

that can help to choose it.

For this problem, we used the Kaiser Rule. This criterion chooses all the principal components

whose eigenvalues are bigger than the average of all of them.

As we can see in the graphic, only a few principal components explain the most of the

variance. According to the Kaiser Rule, the “magic” number of principal components is 25 .

4. Results

After applying PCA to our problem, we could solve the singularity matrix problem. In this way,

we got 90% hit rate. It seems a good percentage, but for our problem that is not true.

This is not a traditional problem; we are working with streaming video. As consequence of this,

we are working with more than 150000 detections windows per frame.

If we do some math, we can see that 90% hit rate means that we have 15000 false positives

per frame, which are 375000 false positives per second. That`s something you can see with

your naked eye!

These results were expected for us because we were working with a simple model which only

uses covariance and means.

5. Support Vector Machine

This machine learning technique is also useful for our problem. The objective of this method is

find a hyperplane that separate the two class of data, maximizing the distance between the

hyperplane and the nearest point from either group. In other words, SVM maximize the

margin around the separating hyperplane.

Unlike the linear fisher discriminant, this method does not use any statistical information.

5.1 Mathematical formulation (Linear SVM)

A hyperplane can be represented by a normal vector w (which is perpendicular to the

hyperplane) and the intercept b. So, all the points in the hyperplane satisfy

We have the following optimization problem:

Class 1 Class 2

Where are the observations corresponding to the class 1 and to the other class. Now, we

transform the problem into a nicer one (quadratic optimization problem, computationally

cheap):

However, this formulation is not valid for non-linearly separable data.

We introduce a penalized vector in order to solve this problem.

Solving this problem using the training data, we get a classificator that only depends on w and

b. So, in our case the classifier has the parameters

And if

5.2 Remarks

 The maximum points that a hyperplane in a real n dimensional space will separate

with probability 1 is n+1.

 In order to avoid trivial classification, we introduce a cost function.

We penalize more the largest class (which is easy to classify)

 We get an approximately 98 % hit rate in cross-validation in the original dimension

(2400) and 85% in the reduced dimension (250)

 In this method, like Fisher Linear Discriminant, the belonging to a class does not

depend on the distance to the hyperplane

6. Results

6.1 Hit Rate of 98%

As we have seen before, a high hit rate could not be enough to detect an object in live video

streams, because of the large amount of false positives or miss detections. In fact, for a 98%

hit rate, we have a 2% of error (either false positives or miss detections).

In a pessimistic estimation (where all the error were false positives), for our problem, if we

have approximately 150 000 detection windows for a picture, we could have 3 000 false

positives, which means (as we have 25 frames per second) that we could have 75 000 false

positives per second. This number of false positives will be easily detected by human eye.

Again, as we proceeded before, our goal is improving our hit rate. But a 98% hit rate would be

hardly improved changing our model, almost without a high computational cost. So, why are

not we able to improve this hit rate?

Now, we have to look into the data. First of all, an apple has a very common shape. This is a

remarkable problem, because the apple’s shape could be easily confused with other objects

like other rounded fruits or a lot of rounded objects.

Also, using PCA has not helped us to solve this problem, because using it we have lost valuable

information by reducing variables, which may have help us to distinguish apples.

So, once we have rejected improving our hit rate improving our models, we have to improve

our data.

6.2 Improving Hit Rate

There is one thing left we can do to improve our model before we change our data. We can

add a colour classification. We have been using samples in grayscale, but colour is a very

particular specification of an object. So, if we add this criterion, we can improve our model.

This increases the computational cost, but as we have seen in out tests, also improves the

accuracy of the model making it worthwhile.

In our tests, this allowed us to detect our apple, but also we got a lot of false positives.

Also, for our very first tests, we tried reducing the size of the sample. We took only 20

positives. In fact, we took 20 pictures of the same apple. This helped us to distinguish one

simple apple. The reason this works is because in high dimensional spaces, one object is close

to the border. So then, is easy to split one object from the rest of the universe.

This technique helped us to clearly distinguish one single apple in a live video stream with a hit

rate of 100%.

However, we want to establish a general method, so we need other techniques.

The key for generalizing the method is to increase our samples. Also, we do not want just more

samples but quality samples.

To obtain these new samples, we use a technique called prototyping. Our goal is to clearly

separate positives and negatives. That is, to find a hyperplane (or a band) which separates our

two sets.

As we have seen before, this hyperplane is closely related to the distance between the mass

centres of both sets. Also, our problem with the false positives remains on the fact that there

are a lot of points in the border of the two sets.

Hyperplane which separates the two sets and the mass centres

So, we want now to take samples close to the border. These will be our quality samples. If we

take samples this way, we could accumulate points in both sides of the border. This makes the

mass centres to get close to the border, so the distances between them is too small, and we

will find a hyperplane that splits both sets –which will be almost the border.

But first we have to get the samples close to the border. This is achieved by the prototyping

technique. It is based on taking all the false positives given by the method, and putting them

into the negative’s set. Then you retrain your model with the new samples. If you repeat it

again (adding samples), you get the quality samples you need, and this approaches the model’s

hit rate to 100%.

NOTE: In spite of this technique improves a lot the model, especially to generalize it, we were

running out of time in our test, so we did not apply this method to our experiments. Our last

change was to reduce the sample to one single apple and add colour classification.

7. Conclusions

 We had obtained first-hands experience in training a real functional object detection

system. We also acquire practical data mining and data analysis skills and

experimented with measure concentration effects in high dimensions.

 Our purpose was detecting a specific object in live video streaming. In order to get it,

we have learnt HOG, Fisher Linear Discriminant, SVM, PCA and some concepts of

Machine Learning.

 We have dealt with problems related to Big Data. Maybe the most difficult of this

project was to work with a big dimensionality of data set.

8. Further Work

 Collecting more negatives and positives for our data set. With more pictures we can

distinguish a specific object of the others which are in the real world.

 Using quadratic Kernel in the model Support Vector Machine. Nowadays, this method

is not available in the system that we used to detect object in live streaming video.

Appendix

Code to Split the data:

% Separa una matriz en test y training

function [train,test] = split(matrix,perc)
 seq = randperm(size(matrix,1));
 point = floor(size(matrix,1)*perc);
 train = matrix(seq(1:point),:);
 test = matrix(seq(point+1:end),:);
end

Code to Fisher Linear Discriminant:

function [r,r1,r2]=Fisher_lim(test,train,lim)

A=train(train(:,end)==1,:);
B=train(train(:,end)==0,:);
A(:,end)=[];
B(:,end)=[];
covA=cov(A);
covB=cov(B);

% means
m1=sum(A)/size(A,1);
m2=sum(B)/size(B,1);

mean_all=m1-m2;

%% PCA

train2=train;
train2(:,end)=[];
[COEFF,SCORE,latent] = princomp(train2);
ind = train(:,end);
PCA=SCORE(:,1:lim);
PCA = [PCA ind];
A=PCA(PCA(:,end)==1,:);
B=PCA(PCA(:,end)==0,:);
A(:,end)=[];
B(:,end)=[];

covA=cov(A);
covB=cov(B);

mean_all = sum(A)/size(A,1) - sum(B)/size(B,1);
sigm=covA+covB;

mean_all = mean_all(:);
w=sigm\mean_all;
H = COEFF(:,1:lim);
wt = w*H';

%% Training
Results_P=A*w';
Results_N=B*w';

Rpos=[Results_P>0];
Rneg=[Results_N<0];

%% Test

%[COEFF,SCORE,latent] = princomp(test2);

ATEST=test(test(:,end)==1,:);
BTEST=test(test(:,end)==0,:);
ATEST(:,end)=[];
BTEST(:,end)=[];

% RESULTS

Results_P=ATEST*wt';
Results_N=BTEST*wt';

Rpos=[Results_P>0];
Rneg=[Results_N<0];

r1=sum(Rneg)/size(Rneg,1);
r2=sum(Rpos)/size(Rpos,1);
r=(sum(Rpos)/size(Rpos,1)*size(A,1)+sum(Rneg)/size(Rneg,1)*size(B,1))/

(size(A,1)+size(B,1));

% %% Using b
% Results_P=A*w';
% Results_N=B*w';
%
% % means
% mA=1/size(A,1)*sum(A);mA=mA*w';
% mB=1/size(B,1)*sum(B);mB=mB*w';
% S=[Results_P;Results_N];
%
% if (mB<mA)
% grid = linspace(mB,mA,100);
% else
% grid = linspace(mA,mB,100);
% end
% PA=size(Results_P,1)/size(S,1);
% PB=size(Results_N,1)/size(S,1);
% H_S = -(PA*log(PA)+PB*log(PB));
%
% P = Results_P;
% N = Results_N;
% RIG = 0;
% for i=1:length(grid)
% b = grid(i);
% % S_RIGHT
% S_right = S(S>=b);
% Size_S_right = size(S_right,1);
% Size_P_right = size(P(P>=b),1);
% Size_N_right = size(N(N>=b),1);
%
% % S_LEFT
% S_left = S(S<b);
% Size_S_left = size(S_left,1);
% Size_P_left = size(P(P<b),1);
% Size_N_left = size(N(N<b),1);
%
% % Probabilities
% Prob_P_right = Size_P_right/Size_S_right;
% Prob_N_right = Size_N_right/Size_S_right;
%
% Prob_P_left = Size_P_left/Size_S_left;
% Prob_N_left = Size_N_left/Size_S_left;
%
% H_right = -(Prob_P_right*log(Prob_P_right) +

Prob_N_right*log(Prob_N_right));
% H_left = -(Prob_P_left*log(Prob_P_left) +

Prob_N_left*log(Prob_N_left));
%
% Size_S = size(S,1);
%

% H_cond = Size_S_right/Size_S*H_right +

Size_S_left/Size_S*H_left;
%
% RIG_aux = (H_S-H_cond)/H_S;
% if (RIG_aux>RIG)
% RIG = RIG_aux;
% b_best = b;
% end
%
% end
%
% b = b_best;
% Results_P=ATEST*w'+b;
% Results_N=BTEST*w'+b;
%
% Rpos=[Results_P>0];
% Rneg=[Results_N<0];
%
% %display('--

');
% %display('Negatives hit rate (using b)');
% r1=sum(Rneg)/size(Rneg,1);
% %display('Positives hit rate (using b)');
% r2=sum(Rpos)/size(Rpos,1);
% %display('Total hit rate (using b)');
%

r=(sum(Rpos)/size(Rpos,1)*size(A,1)+sum(Rneg)/size(Rneg,1)*size(B,1))/

(size(A,1)+size(B,1));

Code to Crossvalidation:

clear all

% Data
%load('E:\problem 5\Data\pos_neg_hogs.mat')

positives = ts_p_hog;
negatives = ts_n_hog;
positives(:,end+1) = 1;
negatives(:,end+1) = 0;

ts_total_hog_ind = [positives; negatives];
matrix=ts_total_hog_ind;

% Parameters
perc=0.8;
n=10;
lim=250;
delta_lim=100;
t=20;
L=linspace(lim-delta_lim,lim + delta_lim,t);

% Training & Test tables
[train,test] = split(matrix,perc);

%PCA Study
for j=1:length(L)

 % Cross Validation
 for i=1:n
 [train,~] = split(matrix,perc);
 [r(i),~,~]=Fisher_lim(test,train,floor(L(i)));
 end

 R(j)=mean(r);
end

plot(L,R)

Code to SVM:

load('pos_neg_hogs.mat')
load('8500_negs_extra.mat')

perc = 0.8;

positives = ts_p_hog;
negatives = ts_n_hog;
positives(:,end+1) = 1;
negatives(:,end+1) = 0;

ts_total_hog_ind = [positives; negatives];
matrix=ts_total_hog_ind;

[train,test] = Separa(matrix,perc);

% PCA
train2=train;
ind = train(:,end);
train2(:,end)=[];
[COEFF,SCORE,latent]=princomp(train2);
lim=size(latent(latent>=mean(latent)),1);
PCA=SCORE(:,1:lim);

numPos = size(ind(ind==1),1);
numNeg = size(ind(ind==0),1);

SVMModel = fitcsvm(PCA,ind,'Cost',[0,numNeg;numPos,0]);

w = SVMModel.Beta;
b = SVMModel.Bias;

H = COEFF(:,1:lim);
wt = w'*H';

test2=test;
ATEST=test2(test2(:,end)==1,:);
BTEST=test2(test2(:,end)==0,:);
test2(:,end)=[];
ind = test(:,end);

ATEST(:,end)=[];
BTEST(:,end)=[];

Results_P=ATEST*wt'+b;
Results_N=BTEST*wt'+b;

Rpos=[Results_P>0];
Rneg=[Results_N<0];

display('--');
display('Negatives hit rate wt (Test)');

sum(Rneg)/size(Rneg,1)
display('Positives hit rate wt (Test)');
sum(Rpos)/size(Rpos,1)

display('Total hit rate wt (Test)');
(sum(Rpos)/size(Rpos,1)*size(ATEST,1)+sum(Rneg)/size(Rneg,1)*size(BTES

T,1))/(size(ATEST,1)+size(BTEST,1))

References

1. Lectures’ Teacher, Ivan Tyukin, Leicester University, United Kingdom

2. https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

3. http://www.mdpi.com/1424-8220/14/11/20713/htm

4. https://en.wikipedia.org/wiki/Support_vector_machine

5. https://en.wikipedia.org/wiki/Principal_component_analysis

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://www.mdpi.com/1424-8220/14/11/20713/htm
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Principal_component_analysis

