DERIVE for Windows version 5.00 DfW file saved on 26 Aug 2000 :ALTURAATRIANGULO(m, n, p, q, r, s):=n(q - s) + m(p - r) + y(s - q) + x(r - p) = 0 ALTURABTRIANGULO(m, n, p, q, r, s):=ALTURAATRIANGULO(p, q, r, s, m, n) ALTURACTRIANGULO(m, n, p, q, r, s):=ALTURAATRIANGULO(r, s, m, n, p, q) AREATRIANGULOV(a, b, c):=1/2ABS(DET([a1, a2, 1; b1, b2, 1; c1, c2, 1])) BARICENTROTRIANGULO(m, n, p, q, r, s):=[(r + p + m)/3, (s + q + n)/3] CIRCUNCENTROTRIANGULO(m, n, p, q, r, s):=[1/2(q(- s^2 - r^2 + qs) + p^2s - n(- s^2 - r^2 + q^2 + p^2) + n^2(q - s) + m^2(q - s))/(- qr + ps + n(r - p) + m(q - s)), - 1/2(q^2r - p(r^2 + s^2) + p^2r + n^2(p - r) - m(- s^2 - r^2 + q^2 + p^2) + m^2(p - r))/(- qr + ps + n(r - p) + m(q - s))] DISTANCIA(a, b, m, n, p):=ABS(p + nb + ma)(m^2 + n^2)^(- 1/2) DISTANCIAV(v, m, n, p):=ABS(p + nv2 + mv1)(m^2 + n^2)^(- 1/2) HOMOTETICODEVRESPECTOPRAZONK(u, v, p, q, k):=[p, q] + k[u - p, v - q] HOMOTETICODEVRESPECTOPRAZONKV(v, p, k):=p + k(v - p) INTERSECCIONRECTAS(, , , , , ):=[(߷ - )/( - ߷), ( - )/( - ߷)] INTERSECDIAGCUADR(m, n, p, q, r, s, t, u):=[(m(p(s - u) + t(q - s)) - r(qt - pu + n(p - t)))/(- st + ru - qr + ps + n(t - p) + m(q - u)), (s(pu - qt) - n(- ru + q(r - t) + pu) + ms(q - u))/(- st + ru - qr + ps + n(t - p) + m(q - u))] INVERSODEVRESPECTOPPOTENCIAK(u, v, p, q, k):=[p, q] + (kABS([u - p, v - q])^(-2))[u - p, v - q] INVERSODEVRESPECTOPPOTENCIAKV(v, p, k):=p + (kABS(v - p)^(-2))(v - p) MACROALTURASTRIANGULO(m, n, p, q, r, s):=[[m, n; p, q; r, s; m, n], [ALTURAATRIANGULO(m, n, p, q, r, s), ALTURABTRIANGULO(m, n, p, q, r, s), ALTURACTRIANGULO(m, n, p, q, r, s)]] MACROMEDIANASTRIANGULO(m, n, p, q, r, s):=[[m, n; p, q; r, s; m, n], [MEDIANAATRIANGULO(m, n, p, q, r, s), MEDIANABTRIANGULO(m, n, p, q, r, s), MEDIANACTRIANGULO(m, n, p, q, r, s)]] MACROMEDIATRICESTRIANGULO(m, n, p, q, r, s):=[[m, n; p, q; r, s; m, n], [MEDIATRIZATRIANGULO(m, n, p, q, r, s), MEDIATRIZBTRIANGULO(m, n, p, q, r, s), MEDIATRIZCTRIANGULO(m, n, p, q, r, s)]] MACRORECTAEULERTRIANGULO(m, n, p, q, r, s):=[[m, n; p, q; r, s; m, n], RECTAEULERTRIANGULO(m, n, p, q, r, s)] MEDIANAATRIANGULO(m, n, p, q, r, s):=RECTAPORDOSPUNTOS(m, n, (p + r)/2, (q + s)/2) MEDIANABTRIANGULO(m, n, p, q, r, s):=MEDIANAATRIANGULO(p, q, r, s, m, n) MEDIANACTRIANGULO(m, n, p, q, r, s):=MEDIANAATRIANGULO(r, s, m, n, p, q) MEDIATRIZ(a, b, c, d):=d^2 + c^2 - b^2 - a^2 + 2y(b - d) + 2x(a - c) = 0 MEDIATRIZATRIANGULO(m, n, p, q, r, s):=MEDIATRIZ(p, q, r, s) MEDIATRIZBTRIANGULO(m, n, p, q, r, s):=MEDIATRIZATRIANGULO(p, q, m, n, r, s) MEDIATRIZCTRIANGULO(m, n, p, q, r, s):=MEDIATRIZATRIANGULO(r, s, m, n, p, q) MEDIATRIZV(a, b):=(b - a)1(x - ((a + b)/2)1) + (b - a)2(y - ((a + b)/2)2) = 0 NORMALUNITARIA(a, b, m, n, p):=IF(p + nb + ma > 0, - (1(m^2 + n^2)^(- 1/2))[m, n], (1(m^2 + n^2)^(- 1/2))[m, n]) NORMALUNITARIAV(v, m, n, p):=IF(p + nv2 + mv1 > 0, - (1(m^2 + n^2)^(- 1/2))[m, n], (1(m^2 + n^2)^(- 1/2))[m, n]) ORTOCENTROTRIANGULO(m, n, p, q, r, s):=[- (m(rs - pq + n(p - r)) + (qs + pr - n(q + s) + n^2)(q - s))/(- qr + ps + n(r - p) + m(q - s)), (- qrs + p(qs - r^2) + p^2r + n(rs - pq) + m(r^2 - p^2 + n(q - s)) + m^2(p - r))/(- qr + ps + n(r - p) + m(q - s))] PMEDIO(a, b, c, d):=[(a + c)/2, (b + d)/2] PUNTOMEDIOV(a, b):=(a + b)/2 RECTACARTAPUNTOPENDIENTE(m, n, p):=IF(n 0, SOLVE(p + ny + mx = 0, y), SOLVE(p + ny + mx = 0, x)) RECTAEULERTRIANGULO(m, n, p, q, r, s):=[BARICENTROTRIANGULO(m, n, p, q, r, s), ORTOCENTROTRIANGULO(m, n, p, q, r, s), CIRCUNCENTROTRIANGULO(m, n, p, q, r, s)] RECTAPARALELA(m, n, p, a, b):=m(x - a) + n(y - b) = 0 RECTAPARALELAV(m, n, p, v):=m(x - v1) + n(y - v2) = 0 RECTAPENDIENTEARECTACART(a, b, m):=IF(m = , x = a, b - ma - y + mx = 0) RECTAPENDIENTEARECTACARTV(a, m):=IF(m = , x = a1, a2 - ma1 - y + mx = 0) RECTAPERPENDICULAR(m, n, p, a, b):=n(x - a) - m(y - b) = 0 RECTAPERPENDICULARV(m, n, p, v):=n(x - v1) - m(y - v2) = 0 RECTAPORDOSPUNTOS(a, b, c, d):=- bc + ad + y(c - a) + x(b - d) = 0 RECTAPORDOSPUNTOSV(u, v):=- u2v1 + u1v2 + y(v1 - u1) + x(u2 - v2) = 0 ROTACION(v, p, ang):=p + [(v1 - p1)COS(ang) - (v2 - p2)SIN(ang), (v1 - p1)SIN(ang) + (v2 - p2)COS(ang)] SIMETRICO(a, b, m, n, p):=[a, b] + 2DISTANCIA(a, b, m, n, p)NORMALUNITARIA(a, b, m, n, p) SIMETRICODEPUNTORESPECTOPUNTO(a, b, p, q):=2[p, q] - [a, b] SIMETRICODEPUNTORESPECTOPUNTOV(v, p):=2p - v SIMETRICOPUNTORESPECTORECTA(a, b, m, n, p):=[(- 2pm - 2bmn + a(n^2 - m^2))/(m^2 + n^2), (- 2pn - 2amn + b(m^2 - n^2))/(m^2 + n^2)] SIMETRICOPUNTORESPECTORECTAV(v, m, n, p):=[(- 2pm - 2v2mn + v1(n^2 - m^2))/(m^2 + n^2), (- 2pn - 2v1mn + v2(m^2 - n^2))/(m^2 + n^2)] SIMETRICOV(v, m, n, p):=v + 2DISTANCIAV(v, m, n, p)NORMALUNITARIAV(v, m, n, p) macro(a, b, c, d, e, f):=[[a, 0], [0, b], [c, 0], [0, d], [e, 0], [0, f], ab - ay + - bx = 0, - de + ey + dx = 0, [ae(d - b)/(ad - be), bd(a - e)/(ad - be)], bc - cy + - bx = 0, - ef + ey + fx = 0, [ce(b - f)/(be - cf), bf(e - c)/(be - cf)], cd - cy + - dx = 0, - af + ay + fx = 0, [ac(d - f)/(ad - cf), df(a - c)/(ad - cf)], be(a(b(c(d - f) + ef) - def) - cde(b - f))/((ad - be)(cf - be)) + y((- de + cd + be)/d + cf(c - e)/(be - cf) + be^2(b - d)/(d(ad - be))) + x(be(b - d)/(ad - be) + be(b - f)/(be - cf)) = 0] ang:= hCross:=APPROX(- 20833333333333331/100000000000000000) vCross:=APPROX(4147727272727273/2500000000000000) := := := := := := #CTextObj x[{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern\fcharset2 DfW5 Printer;}} {\colortbl\red0\green0\blue0;} \deflang1034\pard\plain\f2\fs24 Una demostraci\'f3n interesante del teorema de Papus con DERIVE. \par Primero se introduce como UTILITY FILE el fichero adecuado para estudiar la colinealidad. \par Se toman los ejes coordenados para mayor facilidad de c\'e1lculo para DERIVE. \par Sobre Ox se toman A,C,E y sobre Oy se toman B,D,F. \par Lo que sigue demuestra que los puntos AB\'8dDE, BC\'8dEF y DE\'8dFA est\'e1n alineados. \par } CExpnObj8UserLOAD("FuncionesBasicas.mth")8hUser[a,0]8hUser[0,b]8hUser[c,0]8hUser[0,d]8hUser[e,0]8h User[0,f]8,H8UserRECTAPORDOSPUNTOSV([a,0],[0,b])HDPSimp(#8)Mb`? -b*x-a*y+a*b=08\HhUser RECTAPORDOSPUNTOSV([0,d],[e,0])Pt Simp(User){Gzt?  d*x+e*y-d*e=08User &INTERSECCIONRECTAS(-b,-a,a*b,d,e,-d*e)  Simp(#12)Mb? )[a*e*(d-b)/(a*d-b*e),b*d*(a-e)/(a*d-b*e)]8HUserRECTAPORDOSPUNTOSV([c,0],[0,b])H Simp(#14)y&1|?-b*x-c*y+b*c=08HUserRECTAPORDOSPUNTOSV([0,f],[e,0])P( Simp(#16){Gzt? f*x+e*y-e*f=084@User&INTERSECCIONRECTAS(-b,-c,b*c,f,e,-e*f) Lp Simp(#18)/$?)[c*e*(b-f)/(b*e-c*f),b*f*(e-c)/(b*e-c*f)]8|HUserRECTAPORDOSPUNTOSV([c,0],[0,d])H Simp(#20){Gzt?-d*x-c*y+c*d=08HUserRECTAPORDOSPUNTOSV([0,f],[a,0])P Simp(#22)Q? f*x+a*y-a*f=08User&INTERSECCIONRECTAS(-d,-c,c*d,f,a,-a*f)  Simp(#24)9v?)[a*c*(d-f)/(a*d-c*f),d*f*(a-c)/(a*d-c*f)]8$xUserAREATRIANGULOV([a*e*(d-b)/(a*d-b*e),b*d*(a-e)/(a*d-b*e)],[c*e*(b-f)/(b*e-c*f),b*f*(e-c)/(b*e-c*f)],[a*c*(d-f)/(a*d-c*f),d*f*(a-c)/(a*d-c*f)]) Simp(#26){Gz?0{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern\fcharset2 DfW5 Printer;}} {\colortbl\red0\green0\blue0;} \deflang1034\pard\plain\f2\fs24 De la misma forma se puede proceder para muchas conjeturas a las que se puede llegar mediante la experimentaci\'f3n. \par \par Para ver gr\'e1ficamente de lo que se trata se puede hacer una gr\'e1fica de todo ello \par } 8&UsergRECTAPORDOSPUNTOSV([a*e*(d-b)/(a*d-b*e),b*d*(a-e)/(a*d-b*e)],[c*e*(b-f)/(b*e-c*f),b*f*(e-c)/(b*e-c*f)])82 Simp(#28)V-?x*(b*e*(b-d)/(a*d-b*e)+b*e*(b-f)/(b*e-c*f))+y*(b*e^2*(b-d)/(d*(a*d-b*e))+c*f*(c-e)/(b*e-c*f)+(b*e+c*d-d*e)/d)+b*e*(a*(b*(c*(d-f)+e*f)-d*e*f)-c*d*e*(b-f))/((a*d-b*e)*(c*f-b*e))=08Usermacro(a,b,c,d,e,f):=[[a,0],[0,b],[c,0],[0,d],[e,0],[0,f],-b*x-a*y+a*b=0,d*x+e*y-d*e=0,[a*e*(d-b)/(a*d-b*e),b*d*(a-e)/(a*d-b*e)],-b*x-c*y+b*c=0,f*x+e*y-e*f=0,[c*e*(b-f)/(b*e-c*f),b*f*(e-c)/(b*e-c*f)],-d*x-c*y+c*d=0,f*x+a*y-a*f=0,[a*c*(d-f)/(a*d-c*f),d*f*(a-c)/(a*d-c*f)],x*(b*e*(b-d)/(a*d-b*e)+b*e*(b-f)/(b*e-c*f))+y*(b*e^2*(b-d)/(d*(a*d-b*e))+c*f*(c-e)/(b*e-c*f)+(b*e+c*d-d*e)/d)+b*e*(a*(b*(c*(d-f)+e*f)-d*e*f)-c*d*e*(b-f))/((a*d-b*e)*(c*f-b*e))=0]#{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern\fcharset2 DfW5 Printer;}} {\colortbl\red0\green0\blue0;} \deflang1034\pard\plain\f2\fs24 \par } 8/;Usermacro(1,1,2,3,-2,4) CDispOleObjG%w CDispItemࡱ>   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root EntryF?*XOle CONTENTSNtCompObj{ F5Imagen (Mapa de bits independiente del dispositivo ) StaticDib9q      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABBMNt(@0t (