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Abstract 

 
General non-linear polynomial system solving defied mathematicians for many years. 
Approximate methods were the only alternative until the sixties, when the first general and 
effective method was found (Gröbner bases method). Although implementations of Gröbner bases' 
algorithm are incorporated to all Computer Algebra Systems, they are only known to a small 
number of members of the scientific community, most of them mathematicians. Although non-
linear polynomial system solving is many times a huge task, there are situations where an exact 
solution is needed. We present an elementary introduction to the geometric interpretation of 
DERIVE's SOLVE command for polynomial equations and systems.  
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1  Introduction 
 
Research articles in Biology, Medicine, Pharmacy, Social Sciences... are usually supported 
by statistical analysis, directly computed by the authors themselves, thanks to the facilities 
provided by statistical packages like BMDP, SPSS, Minitab, Statgraphics... Very often, the 
users of these packages have no idea of the theory in the background. The statistical 
analysis supporting the hypotheses of the authors is many times restricted to check that a 
certain value, obtained by clicking on an icon of a windows-based piece of software, lies in 
an certain interval or is greater than a certain percentage. Typical examples of this situation 
are “hypotheses tests” and “cluster analysis”. 
 

It is clear that new situations arise with the arrival of technology. For instance, now it is 
accepted to ask a student to calculate the length of the side of a depot of cubic shape, which 
volume has to be 10 m3, using a calculator. The student probably doesn't know (and will 
never know!) the algorithm of the cubic root. That is, the process inside the calculator will 
be kept forever as a black-box [1]. Therefore, in the whole solving process: 
 

real world problem 

↓ 
rewriting the problem in the language of mathematics 

↓ 
determining the algorithm to be used 

↓ 
computing of the solution (applying the algorithm) 

↓ 
adapting the solution to the real problem 

 
learning the algorithm is neglected. This is a situation that has offended the mentality of 
mathematicians for a long time. 
 

The orientation given to the subject is very important in Mathematics teaching. There 
are two possibilities to develop a Mathematics curriculum: 
 
• to understand Mathematics as a beautiful subject with an interest in itself, and to present 

(only) topics that can be fully justified, selecting the topics and the order in which they 
are presented accordingly 

 
or 
 
• to understand Mathematics as a tool, of which most topics will be fully justified, but 

where some will (only) be intuitively justified. 
 

Curiously, the first option is usually a strict rule of the School of Mathematics, 
meanwhile the second one is the usual approach at the School of Physics. 
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General non-linear polynomial system solving is not a simple task. This problem defied 

mathematicians for many years. Approximate methods were the only alternative until the 
late sixties, when the first general and effective method was found (Gröbner bases method) 
[2]. Although implementations of Gröbner bases' algorithm (Buchberger's algorithm) are 
incorporated to all Computer Algebra Systems (CASs): DERIVE, Maple, Mathematica, 
MuPad, Reduce, Macsyma, Axiom, CoCoA..., they are only known to a small number of 
members of the scientific community, most of them mathematicians. 
 

Although non-linear polynomial system solving is many times a huge task that has to be 
faced using numerical methods, there are situations where an exact solution is needed (and 
can be easily computed!). 
 

We present an elementary introduction to the geometric interpretation of DERIVE's 
SOLVE command for polynomial equations and systems (this command calculates 
internally a Gröbner basis of the corresponding ideal if the system isn’t linear). An 
introduction to Ideals Theory can be found in [3] (in Spanish). An elementary introduction 
to Gröbner bases and a short review of their applications can be found in [4] and [5], 
respectively. More details about Gröbner bases can be found, for instance, in [6,7,8]. A 
review of applications, detailing the algebraic background, can be found in [9].   
 
 
2 Solving linear equations and linear systems 
 
2.1  Solving a linear equation (univariate case)  
 
What does DERIVE when we ask it to SOLVE a polynomial equation in one variable, i.e., 
an equation of the form: univariate linear polynomial=0, like the following? 
 
#1:   SOLVE(3·x - 6 = 0, x) 
 
#2:                              x = 2 
 
We are asking DERIVE to look for the (unique) value of x that makes the equality true. 
From the geometrical point of view, we are looking for an isolated point on the Real Line.  
 

As Derive can't draw 1D plots, we'll plot the point in the 2D-Plot Window introducing a 
fake null y-coordinate (see Figure 1). 
 
#3:   [2 0] 

 
Nevertheless, there is a more interesting interpretation from the geometrical point of 

view: we can consider this solution (i.e., this numerical value) as the x-coordinate of the 
point of intersection of line y = 3x − 6 with the x-axis (see Figure 2) 
     
#4:   y = 3·x - 6 
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Figure 1: Solution of a linear equation in one variable. 
 

 

 
 

Figure 2: Another geometric interpretation of the solution of a linear equation in one variable. 
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2.2  Solving a linear system (univariate case) 
 
And when we ask it to SOLVE a polynomial system (in one variable)?       
         
#5:   SOLVE([3·x - 6 = 0, 2·x - 4 = 0], x) 
                       
#6:                             [x = 2] 
 
We are asking DERIVE to check if the value of x that satisfies the first equation makes all 
the equalities true (what will not be normally the case). 
 

From the geometrical point of view, we are looking for an isolated point on the Real 
Line (see Figure 3). Again, as DERIVE can't draw 1D plots, we'll plot the points 
introducing a fake null y-coordinate. In this particular case a solution exists. 

 
#7:   [2,0] 
 

 
 

Figure 3: Solution of a polynomial system in one variable 
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Figure 4: Another geometric interpretation of the solution of a polynomial system in one variable. 
But, again, there is a more interesting interpretation from the geometrical point of view: 

if a solution exists, it is the x-coordinate of the point of intersection of the lines y = 3x − 6 
and y = 2x − 4 and the x-axis (see Figure 4).  

 
#8:   [y = 3·x - 6, y = 2·x - 4] 
 
Therefore, such an intersection point exists in this example (its coordinates are (2,0)), so the 
only solution is x = 2. 
 
 

2.3 Solving a linear equation (multivariate case) 
  
What does DERIVE when we ask it to SOLVE a linear equation in two (or more) variables, 
i.e., an equation of the form: multivariate linear polynomial = 0, like the following?            
 
#9:   SOLVE(x - y + 2·z, [x, y, z]) 
                                
#10:                          x - y + 2·z = 0 
 
We are asking DERIVE to look for the values of x, y and z that make the equality true. For 
instance (x = 0, y = 0,  z = 0) or (x = 2, y = 6, z = 2) are both solutions of this equation. 
From the geometrical point of view (see Figure 5), the solution set is a line, plane or 
hyperplane (if two, three or more than three variables appear in the polynomial, 
respectively). That’s why DERIVE returns the input with no changes. 
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Figure 5: Geometric interpretation of the solution of a multivariate polynomial equation. 

 
 
2.4  Explicit solution of a single linear equation (multivariate case) 
  
But if we ask DERIVE to SOLVE a linear equation in two (or more) variables, i.e. an 
equation of the form: multivariate linear polynomial = 0, w.r.t. one single variable, like in 
the following example: 
 
#11:   SOLVE(x - y + 2·z, z) 
 
                                  y - x  
#12:                         z =  
                                    2 
 
DERIVE expresses explicitly the chosen variable as a linear function of the other variables 
(what is always straightforward). 

 
 

2.5 Solving a linear system (multivariate case) 
 
And when we ask DERIVE to SOLVE a linear system in two or more variables w.r.t. all 
variables? 
 
#13:   SOLVE([y = x + 2, y = - 2·x - 1], [x, y]) 
 
#14:                       [x = -1 ∧ y = 1] 
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Figure 6: Geometric interpretation of the solution of a multivariate polynomial system. 
 
We are asking DERIVE to look for the values of x and y that satisfy all the equations 
simultaneously (see Figure 6). From the geometrical point of view, we are asking for the 
intersection of the solution sets corresponding to each equation (lines in this case, where 
two variables appear in the polynomials; planes if three variables appear and hyperplanes if 
more than three variables appear). In this example such intersection is point (-1,1). 
 
 
3  Solving algebraic systems: distinguishing the univariate and 
multivariate cases  
 
An algebraic equation is an equation of the form: general polynomial = 0. An algebraic 
system, also called polynomial system, is a set of algebraic equations.  
 
3.1 Solving an algebraic equation (univariate case) 
  
What does DERIVE when we ask it to SOLVE a polynomial equation in one variable, i.e., 
an equation of the form: univariate polynomial = 0, like the following? 
 
              3             
#15:   SOLVE(x  - x = 0, x) 
 
#16:                x = -1 ∨ x = 1 ∨ x = 0 
 
We are asking DERIVE to look for the values of x that make the equality true. From the 
geometrical point of view, we are looking for isolated points on the Real Line.  
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As DERIVE can't draw 1D plots, we'll plot the points in the 2D-Plot Window 

introducing a fake null y-coordinate and choosing Options/Display/Points/Connect=No (see 
Figure 7). 
 
        -1  0  
               
#17:     0  0  
               
         1  0  

 
Nevertheless, there is a more interesting interpretation from the geometrical point of 

view: we can consider these solutions (i.e., these numerical values) as the x-coordinates of 
the points of intersection of the curve y = x3 − x with the x-axis (see Figure 8): 

 
            3     
#18:   y = x  - x 
 
(in this interpretation, the intersection points (-1,0), (0,0) and (1,0) correspond to the 
solutions –1, 0 and 1, respectively). 
 

 
 

Figure 7: Solutions of a polynomial equation in one variable. 
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Figure 8: Another geometric interpretation of the solutions of a polynomial equation in one variable. 
 
 

3.2 Solving an algebraic system (univariate case) 
 
And when we ask DERIVE to SOLVE a polynomial system (in one variable)?       
 
              2             2                 
#19:   SOLVE(x  - 1 = 0, - x  - x + 2 = 0, x) 
                       
#20:                              [x = 1] 
 
We are asking DERIVE to look for the values of x that make all equalities true. From the 
geometrical point of view, we are looking for isolated points on the Real Line (see Figure 
9). Again, as DERIVE can't draw 1D plots, we'll plot the points introducing a fake null y-
coordinate (and choosing Options/Display/Points/Connect=No in the 2D-Plot Window). In 
this particular case there is only one solution. 
 
#21:   [1,0] 
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Figure 9: Solutions of an algebraic system in one variable 
 

But, again, there is a more interesting interpretation from the geometrical point of view: 
we can consider the solutions as the x-coordinates of the points of intersection of the curves 
y = x2 −1 and y = −x2 − x + 2 and the x-axis (see Figure 10).  

 
        2             2             
#22:   x  - 1 = y, - x  - x + 2 = y 
 
(in this interpretation, the intersection point (1,0) corresponds to the only solution x = 1). 
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Figure 10: Another geometric interpretation of the solution of an algebraic system in one variable. 
 
 

3.3 Solving an algebraic equation (multivariate case) 
 
What does DERIVE when we ask it to SOLVE a polynomial equation in two (or more) 
variables, i.e. an equation of the form: multivariate polynomial = 0, like the following? 
 
        3             
#23:   x  - x - y = 0 
 
              3                      
#24:   SOLVE(x  - x - y = 0, [x, y]) 
 
                              3             
#25:                         x  - x - y = 0 
 
We are asking DERIVE to look for the values of x and y that make the equality true. For 
instance (x = 0, y = 0) or ( x= 2, y = 6) are both solutions of the equation. From the 
geometrical point of view (see Figure 11), the solution set of the equation is the whole 
curve (or a surface, if three variables appear in the polynomial, or a hypersurface if more 
than three variables appear). That’s why DERIVE returns the input with no changes. 
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Figure 11: Geometric interpretation of the solution of a multivariate polynomial equation. 
 

 
3.4  Explicit solution of a single algebraic equation (multivariate case) 
  
What happens if we ask DERIVE to SOLVE a polynomial equation in two (or more) 
variables, i.e. an equation of the form: multivariate polynomial = 0, w.r.t. one single 
variable, like in the following example: 
 
             2    y 2            
#26:   SOLVEx  +   - 4 = 0, y 
                  2              
 
                               2                 2  
#27:            y = - 2·√(4 - x ) ∨ y = 2·√(4 - x ) 
 
DERIVE is given an implicit expression and is asked to express the selected variable as an 
explicit expression in the rest of the variables. It is not always possible to achieve such an 
expression. And it normally happens that, although calculated, it is not a polynomial 
expression, like in this example (the expression involves radicals). So SOLVE is not 
usually used this way if we are restricting calculations to polynomial rings. 
 

Anyway, the solution set has the same clear geometric interpretation: the solution points 
are the points in the corresponding implicit plot (see Figure 12):  
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Figure 12: Geometric interpretation of the solution of a multivariate polynomial equation. 
 
Obtaining an explicit expression can be very hard an depends on the variable chosen. 

For instance in the example of the previous subsection (see Figure 11), it is trivial for one 
variable (y) but it is very complicated for the other (x), and the expression obtained involves 
trigonometric functions.  

 
              3                 
#28:   SOLVE(x  - x - y = 0, y) 
  
                                     2      
#29:                          y = x·(x  - 1) 

 
              3                 
#30:   SOLVE(x  - x - y = 0, x) 
 
#31:                            ........ 
 

In the following example (see Figure 13), one explicit expression can also be trivially 
obtained, meanwhile DERIVE can’t do anything to express explicitly the other one: 
  
              5      4    3      2             
#32:   SOLVE(x  - 4·x  + x  + 6·x  - y = 0, y) 
 
                            2   3      2          
#33:                   y = x ·(x  - 4·x  + x + 6) 
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              5      4    3      2 
#34:   SOLVE(x  - 4·x  + x  + 6·x  - y = 0, x) 
 
                        5      4    3      2     
#35:                   x  - 4·x  + x  + 6·x  = y 
 

 
 

Figure 13: Geometric interpretation of the solution of a multivariate polynomial equation. 
 
 

3.5 Solving an algebraic system (multivariate case) 
 
And when we ask DERIVE to SOLVE a system (in two or more variables) w.r.t. all 
variables? 
 
              2             2                      
#36:   SOLVE(x  - 1 = y, - x  - x + 2 = y, [x, y]) 
 
                                          3         5  
#37:                x = 1 ∧ y = 0, x = -  ∧ y =  
                                          2         4  
 
We are asking DERIVE to look for the values of x and y that satisfy all the equations 
simultaneously (see Figure 14). From the geometrical point of view, we are asking for the 
intersection of the solution sets corresponding to the equations (curves in this case, where 
two variables appear in the polynomials; surfaces if three variables appear and 
hypersurfaces if more than three variables appear). In this example such intersection are 
points (1,0) and (−3/2,5/4). The solution set of an algebraic system is also denoted 
algebraic variety. 
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Figure 14: Geometric interpretation of the solution of a multivariate polynomial system. 
 
 

 
 
 

Figure 15: Geometric interpretation of the solution of a linear system in two variables. 
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4  Number of solutions of a linear system 
 
The solution set of a linear system is the intersection of the solution sets (hyperplanes) 
corresponding to its equations (see Figure 15). 
 
#38:   [2·x - y + 1 = 0, - 2·x – y + 1 = 0, 3·x - y + 1 = 0] 

 
Linear systems can have: one solution, no solution or infinite solutions, as shown in the 

next three examples (see figures 16, 17, 18): 
 
#39:   SOLVE([x - y + 1 = 0, x + y – 3 = 0], [x, y]) 
 
#40:                     [x = 1 ∧ y = 2] 
 

 
 

Figure 16: A linear system in two variables with a unique solution. 
 
#41:   SOLVE([x - y + 1 = 0, x - y - 1 = 0], [x, y]) 
 
#42:                           [] 
 
#43:   SOLVE([x - y = 0, - 2·x + 2·y = 0], [x, y]) 
 
#44:                     [x - y = 0] 
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Figure 17: A linear system in two variables with no solution. 
 
 

 

 
 

Figure 18: A linear system in two variables with an infinite number of solutions (the solution sets of both 
equations coincide, so the solution set of the linear system is an hyperplane). 
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But, if the dimension of the space is greater than 2, the solution set of the linear system 
could be a linear variety that is neither the empty set nor a hyperplane (i.e., a linear variety 
of intermediate dimension). For instance, the solution set of 
 
#45:   SOLVE([x - y + 2·z = 0, x - y = 0], [x, y, z]) 
 
#46:                    [x - y = 0 ∧ z = 0] 
 
is a line (see Figure 19). Clearly, all we can do is express it in a simpler way --it is not 
possible to express a line in the 3D space using a single equation. 
 

 
 

Figure 19: A linear system in three variables with an infinite number of  solutions (which solution set is 
not an hyperplane). 

 
 
5 Number of solutions of an algebraic system 

 
As shown in the previous section, linear systems can have one solution, no solution or 
infinite solutions. 
  

As said above, the solution set of an algebraic system is the intersection of the solution 
sets (hypersurfaces) corresponding to its equations, so algebraic systems with one solution, 
no solution or infinite solutions must exist (because linear systems are particular cases of 
algebraic systems). Let us give non-linear examples of each situation (see figures 20, 21, 
22): 
 
                  2            2     
#47:   SOLVE(x - y  = 0, -x - y  = 0, [x, y]) 
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#48:                        [x = 0 ∧ y = 0] 
 
                  2           2         
#49:   SOLVE(x - y  = 0, x - y  + 1 = 0, [x, y]) 
 
#50:                               [] 
 
                  2               2     
#51:   SOLVE(x - y  = 0, 3·x - 3·y  = 0, [x, y]) 
 
                                   2     
#52:                          x - y  = 0 

 

 
 

Figure 20: An algebraic system in two variables with a unique solution. 
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Figure 21: An algebraic system in two variables with no solution. 
 
 
 

 
 

Figure 22: A linear system in two variables with an infinite number of solutions (the solution sets of both 
equations coincide, so the solution set of the algebraic system is a hypersurface). 
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Figure 23: An algebraic system in two variables which solution set consists of three unconnected 
components (points). 

 
But observe that in the case of algebraic systems a fourth case arises: the solution set of 

an algebraic system can consist of unconnected components. In the following example, the 
system has three solutions! (see Figure 23). 
 
              3                   3                          
#53:   SOLVE(x  - x - y + 1 = 0, x  - x + y - 1 = 0, [x, y]) 
 
#54:        [x = 0 ∧ y = 1, x = 1 ∧ y = 1, x = -1 ∧ y = 1] 

 
Moreover, if the dimension of the space is greater than 2, the solution set of the 

polynomial system could be an algebraic variety that is neither the empty set nor a 
hypersurface, i.e., an algebraic variety of intermediate dimension (see Figure 24). 
 
              2    2                        
#55:   SOLVE(x  + y  - z - 1 = 0, y - z = 0, [x,y,z]) 
 
                      2    2                     
#56:                 x  + y  - z = 1 ∧ y - z = 0 
 
(we shall discuss this kind of answers afterwards). 
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Figure 24: An algebraic system in three variables with an infinite number of solutions (which solution set 
is not an hypersurface). 

    
 
6 Real and complex solutions of an algebraic system 
 
Whether the system has solutions or not also depends on the set where we are looking for 
such solutions. The following two systems have no real solutions, as can be clearly deduced 
from the figures 25 and 26. 
 
        2    2                 2    2             
#57:   x  + y  - z + 1 = 0, - x  - y  - z - 1 = 0 
 
 
        2    2           2    2             
#58:   x  + y  - z = 0, x  + y  - z + 3 = 0 
 

But let’s look for their complex solutions. The first one has complex solutions: 
 
              2    2                 2    2             
#59:   SOLVE(x  + y  - z + 1 = 0, - x  - y  - z - 1 = 0, [x, y]) 
 
                  2    2             2    2      
#60:             x  + y  - z = -1 ∧ x  + y  = -1 
 
DERIVE has expressed the solution as the intersection of one of the given elliptic 
paraboloids (x2 + y2 − z = −1) with the imaginary cylinder x2 + y2 = −1 and for instance (x = 
i, y = 0, z = 0) satisfies both equations. We can't illustrate it with a figure because Cn can't 
be drawn for n > 1 (we can draw R, R2, R3 or C). 
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Figure 25: An algebraic system in three variables with no real solution (but with complex solutions). 
 

 
 

Figure 26: An algebraic system in three variables with neither real nor complex solutions. 
 
Meanwhile the second one has no complex solutions either: 
 
               2    2           2    2             
#61:    SOLVE(x  + y  - z = 0, x  + y  - z + 3 = 0, [x,y]) 

 
#62:                               [] 
 

Let us remember that Q and R are not algebraically closed, that is, there are polynomials 
with coefficients in Q (respectively R) with no rational (respectively real) roots. Meanwhile 
C is algebraically closed. Moreover, C is the algebraic closure of Q (respectively R), that is, 
it is the minimum algebraically closed set that contains Q (respectively R). 

 
 

7 Gröbner bases 
 
Let us analyze the last example of Section 5. We asked DERIVE to compute 



25 

 
              2    2                        
#63:   SOLVE(x  + y  - z - 1 = 0, y - z = 0, [x,y,z]) 
 
                      2    2                     
#64:                 x  + y  - z = 1 ∧ y - z = 0 
 

 
 

(see Figure 24). The “solution” was identical to the input. The reason is that this is the 
“simplest” way to describe such curve. That is not usually the case. 
 

 
Figure 27: A circumference in the 3D space. 

 
Let us consider the following example (see Figure 27): 

 
              2    2                                    
#65:   SOLVE(x  + y  - z - 1 = 0, z - 1 = 0, [x, y, z]) 
 
 
                          2    2             
#66:                     x  + y  = 2 ∧ z = 1 

 
SOLVE expresses the intersection the simplest possible way (as an intersection of a vertical 
cylinder and a horizontal plane, see Figure 28). In fact, this command is based in internal 
Gröbner bases computations.  

 
                       2    2                            
#67:   GROEBNER_BASIS(x  + y  - z - 1, z - 1, [x, y, z]) 
 
                                 2    2     
#68:                     z - 1, x  + y  - 2 

 
The polynomial ideal generated by a set of polynomials is the set of linear algebraic 

combinations of the given polynomials. The polynomials of the algebraic system generate 
an ideal that can be generated by different bases (sets of generators). For instance, the 
previous input and output are two different ways of generating the same ideal. What 
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Gröbner bases’ algorithm provides is a canonical basis of any given ideal, that characterizes 
it (once the variable ordering and term ordering are chosen). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: The same circumference in the 3D space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29: Another way of expressing the same circumference in the 3D space. 
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For example, the same circumference of Figures 27 and 28 can be described in different 
ways, but the corresponding Gröbner basis (once the variable order and the term order are 
fixed) is always the same: 
 
• Intersection of a sphere and a horizontal plane (see Figure 29): 
  
                       2    2    2                        
#69:   GROEBNER_BASIS(x  + y  + z  - 3, z - 1, [x, y, z]) 
 
                                 2    2     
#70:                     z - 1, x  + y  - 2 
 
• Intersection of a sphere, a vertical cylinder and a horizontal plane (see Figure 30): 
 
                       2    2    2       2    2                    
#71:   GROEBNER_BASIS(x  + y  + z  - 3, x  + y  - 2, z – 1,  
                      [x, y, z]) 
 
                                 2    2     
#72:                     z - 1, x  + y  - 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30: Yet another way of expressing the same circumference in the 3D space. 
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Intersection of a sphere, an elliptic paraboloid and a vertical cylinder (see Figure 31): 
 

                       2    2    2       2    2           2    2                 
#73:   GROEBNER_BASIS(x  + y  + z  - 3, x  + y  - z – 1, x  + y  - 2,  
                      [x, y, z]) 
 
                                 2    2     
#74:                     z - 1, x  + y  - 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31: And another way of expressing the same circumference in the 3D space. 
 
Despite Derive 6 can’t draw implicit 3D plots, it can call DGraph 2000 (a specialized 
software  for performing such task) [10]. Figures 29-31 plots have been created this way. 
 
 
Conclusions 
 
Understanding all the details of the Gröbner bases’ calculations behind a SOLVE command 
requires of some algebraic background, but understanding what’s going on when solving 
equations and systems is rather intuitive.  
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