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Thank you the organizer for giving me an opportunity of a talk in this workshop.

This is a joint work with Kyoko Honda.

Our problem is to classify conformally flat homogeneous semi-Riemannian man-

ifolds.

Here a semi-Riemannian manifold (M, g) is said to be conformally flat if for
any point p of M, there exist a coordinate neighborhood (V,xy, -+ ,2,) of p and a
positive smooth function p > 0 on V such that the following equation holds:

g=p(—da}—-- —da] +da)  +---+dz)) onV.

That is, it is locally conformally equivalent to a semi-Euclidean space. A semi-
Riemannian manifold (M, g) is said to be homogeneous if for any two points p, p'
of M, there exists an isometry ¢ of M such that ¢(p) = p'.

For the Riemannian case, the following is known: Conformally flat homogeneous
Riemannian manifolds were classified by H. Takagi [10].

Theorem. An n-dimensional simply connected conformally flat homogeneous Rie-
mannian manifold is isometric to one of the following:

(1) M7 (),

(2) M™(k) x M™™(=k), k#0,2<m<n-—2,

(3) M" (k) xR, k+#0,

where M™(k) denotes the simply connected complete Riemannian manifold of con-
stant curvature k.

Consequently, they are all symmetric spaces. In this talk we would like to show that
in the semi-Riemannian case, there exist many interesting examples which are not
symmetric spaces.

In this talk, I would like to explain the following:
Plan of talk
1. Characterizations of conformally flatness
2. A classification of conformally flat symmetric spaces



3. A method of the construction of examples I
4. A method of the construction of examples IT
5. A classification of conformally flat homogeneous Lorentzian manifolds

First we show two kinds of the characterizations of conformally flatness. Next
we explain a classification of conformally flat symmetric semi-Riemannian manifolds
given by Cahen and Kerbrat [1]. And we show two methods of the construction of
examples inspired by their results. Finally we show classification of conformally flat
homogeneous Lorentzian manifolds.

§1 Characterizations of conformally flatness

We recall two kinds of the characterizations of conformally flatness. Let M be an
n(> 4)-dimensional semi-Riemannian manifold equipped with a semi-Riemannian
metric g of index q.

It is known that the following three conditions are equivalent:

(1) A semi-Riemannian manifold (M, g) is conformally flat.
(2) The curvature tensor R of M satisfies the following:

R(X,Y)=AX AY + X A AY,

1 S
A=1 (Q_z(n—nld)’

where @ is the Ricci operator and S' is the scalar curvature of M, respectively. Here
the operator A is called the Schouten tensor.

(3) There exists an isometric immersion of M into the light cone A C R}{7, where
the light cone is defined by

A={ze R} —{0}|(z, z) = 0}.

The third condition is the key of our approach.

§2 A classification of conformally flat symmetric
spaces

We explain a classification of conformally flat symmetric semi-Riemannian man-
ifolds given by Cahen and Kerbrat [1] and its simplified arguments by K.Honda
[4].

Let M be an n(> 4)-dimensional symmetric semi-Riemannian manifold of index
g.- Then its Schouten tensor A is parallel with respect to the Levi-Civita connection.
So the derivation of A by the curvature tensor R(X,Y) is equal to 0, i.e., R(X,Y) -
A = 0. Then we have R(AX,X) = 0 for any tangent vectors X. Now we assume
that M/ is conformally flat. Then

A2X A X =0.



So we have
A2 =)\1Id for some real number ).

According to the sign of A\, we consider three cases.

Case 1. A > 0: They are well-known ones. It is locally isometric to one of the
following:

(1) Mr2VA), MP(=2VX),

(2) M7 (VA) x MPH(—=VX), 2<m <n—2,

(3) MP='(k) x Ror Mp—' (k) x Ry, k==+VA,

where M (k) denotes the semi-Riemannian manifold of constant sectional curvature
k.

Case 2. A\ = 0: This case was classified by Cahen and Kerbrat. Here we show the
examples in a slightly different way.

Let (RP/7,(,)) be an (n + 2)-dimensional semi-Euclidean space with an inner
product {,) of index ¢+ 1 and A be the light cone. Let F be a linear endomorphism
of jo_’f which satisfies the following conditions:

(1) F is self-adjoint with respect to (,) ,i.e., (Fx, y) = (x, F'y).

(2) F?2 =0.

(3) There exists a point & € A such that (Fa, ) > 0.

We consider the following subset of Rgif

An{ze Ry |(z, Fa) = 1}

and we define M by one of its connected components. Then M is a semi-Riemannian
submanifold in jo_’f with codimension 2 and its index is ¢. Moreover we obtain the

following.

(i) M is an extrinsic symmetric submanifold in R}{7. In particular it is a symmetric
space.

(ii) M is a hypersurface of the light cone. Therefore it is conformally flat.

(iii) Tts Schouten tensor A satisfies A? = 0.

Cahen and Kerbrat ([1]) have shown that every conformally flat symmetric space
with A% = 0 is obtained by this construction.

Case 3. A\ < 0: We define a complex sphere. Let C**! be an (n + 1)-dimensional
complex vector space with a complex inner product (,):

n+1
(zw) =Y 2w, 2= (21, 2001), W= (W1, -, Wny1)
=1

and denote by (,) its real part,i.e,

(z, w) = the real part of (z, w).



Then the signature of the inner product (,) is (n + 1,n + 1). We define a complex
hypersurface in C**! by the following equation

(z,2) =27 +--+22,,=¢, c€Cc#0.

We denote it by CS™(¢) and call it a complex sphere. The complex sphere CS™(c)
with the induced metric from (,) is a semi-Riemannian symmetric space with the
signature (n,n). In particular if ¢ = \/—1b (b € R) is pure imaginary, then the com-
plex sphere CS™(v/—1b) is contained in the light cone. Therefore it is conformally
flat. We compute its Schouten tensor A and see that it has the form:

0 —1
1 0
2b
0 —1
1 0
with respect to an orthonormal basis {e1, - ,ea}, (€2 1,€0 1) = —(€9;,€9;) = 1

(t1=1,---,n).

Cahen and Kerbrat ([1]) have shown that a conformally flat symmetric space with
A% = X\ Id, A\ < 0 is isometric to a complex sphere CS™(y/—1b) for A = —ﬁ. A
generalization of their results is shown in [4].

Inspired by these results, we obtain two kind of constructions of conformally
flat homogeneous semi-Riemannian manifolds. We will show them in the next two
sections.

§3 A method of the construction of examples I

In this section, we show a method of a construction of conformally flat semi
-Riemannian manifolds with nilpotent Schouten tensor. In this construction, we
show interesting relations between the semi-Riemannian geometry and the affine
differential geometry of centro-affine hypersurfaces.

Let (RP7,(,)) be an (n + 2)-dimensional semi-Euclidean space with an inner
product (,) of index ¢ + 1. It is defined by

k+1 n+2
(z, y) = Z{xiykJrlJri + Tpp1+i¥i} + Z €j¢5Yj, €;= lor—l.
i=1 J=2(k+1)+1

We denote by h the semi-Riemannian metric on R**? induced from (,)
Let 7 : R**2 — R**! be the projection defined by
(1‘17 oty T4y Th42, " 7xn+2) = (1‘17 e 7l‘k+1)-

We denote by 7 the restriction of 7 to A N7 1(RFHE — {0}).
Then 7 : AN7 YR¥! —{0}) — R¥*t — {0} is a fibre bundle over R¥** — {0} with
the standard fibre diffeomorphic to R*7*.
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Let N be a k-dimensional manifold and F': N — R¥*! — {0} be a centro-affine
hypersurface immersion. That is, it is an immersion such that for each point p € N,
the position vector F(p) is transversal to the tangent space F,(T,N). We consider
the pull-back bundle of the fibre bundle 7 by the immersion F'. We denote by M
and f the total space of the pull-back bundle and the bundle homomorphism of M
into AN L (R¥ — {0}), respectively. That is, the following diagram holds:

M —L Ana (R - {0))

di |7

N — R+1 — {0}
F

Then M is an n-dimensional manifold diffeomorphic to the product manifold
TN x R"2k of the tangent bundle over N and R*~2¢.
M with the induced metric by f has the following properties ([5]).

Theorem 1 (M, f*h) is a conformally flat semi-Riemannian manifold whose Schouten
tensor A satisfies A2 = 0 (equivalently Q* = 0).

Theorem 2 There are interesting relations between (M, f*h) and (N, F').

(1) M is locally symmetric if and only if there exists a symmetric bilinear form b on
R¥+! such that F (V) is contained in a hypersurface defined by b(z, z) = —1.

(2) M is geodesically complete if and only if N is geodesically complete with respect

to the induced affine connecton as a centro-affine hypersurface.
(3) If N is a homogeneous centro-affine hypersurface, then M is a homogeneous

semi-Riemannian manifold.

Here “homogeneous ” in (3) means that there exist a connected Lie group H which
acts transitively on N and a Lie group homomorphism ¢ : H — GL(k + 1, R) such
that

F(ap) = ¢(a)F(p) forallae H,p e N.

There are many homogeneous centro-affine hypersurfaces and hence by our re-
sults we have many conformally flat homogeneous semi-Riemannian manifolds with
nilpotent Schouten tensor.

Example When k£ = 1, it is easy to classify homogeneous non-degenerate centro-
affine curves in R?. They are the follwing:
Ly=2zA>1,2>0),
2.y=2> (A< —1,2>0),
= el cos bt
3. {‘” CEPT > 0),
y = e'sin bt
4. 2%+ =1,
5.y =zxlogx (x > 0).



Let M be a semi-Riemannian manifold constructed from one of centro-affine curves
in the above. Then M is a symmetric space if and only it is constructed from
case 2 with A = —1 and case 4. It is easily seen that the other are geodesically
incomplete. By Theorem 2 (3), we see that M admits a large isometry group, that

is, dim Isom(M) = 3n(n—1)+ 1. It is known as a kind of an Egorov space (cf. [8]).

§4 A method of the construction of examples 11

In this section, we explain the second method of the construction of examples.

We consider the linear isotropy representation of a semisimple symmetric space
and find its orbits which are hypersurfaces in the light cone. At the present, we have
no systematic way of investigations and I only show some examples. Now we show
the examples which correspond to the following symmetric pairs:

(SO (p,q+2),S04(p,q) x SO(2)),
(SO4+(p+1,+1),504+(p,q) x SO4(1,1)).

We describe the linear isotropy representation of these symmetric spaces. We define
an indefinite inner product (, ) on R™ (n = 2m — 2) by

p m
(z,y) = — Z%yz + Z vy =2y x,yecR™.
=1 i=p+1

Here I, , denotes the diagonal matrix

P q
fp,q:(—l,---,—l,l,---,l, (p—i—qzm).

We denote by M(m,2 : R) the linear space of real m x 2 matrices. For two matrices
X,Y € M(m,?2 :R), we define two kinds of inner products by

(X7 Y)l = tr(tX[P,q Y) = <$17 y1> + <$27 y2>7
(X, V) = tr(11,' X1, Y) = —(21, 41) + (22, Uo)-

Here we consider a matrix X as a pair of two column vectors ; and @x,. These inner
products ( , ); are nondegenerate and have the following signature:

The signature of (1, ); = (2¢, 2p), index 2p
The signature of (1, )2 = (m,m), index m

We consider the product Lie groups:
Ky = SO4(p,q) x SO(2),

Ky = S04 (p,q) x SOL(1,1).



Here SO (p, q) denotes a connected component which contains the identity element
of the group of orthogonal transformations of (R™, (, )).
The action of K; (i =1,2) on M(m,2: R) by

(k1y ko) X X s By Xy (k1 € SO4(p,q), k2 € SO(2) or SO4(1,1)).

Then K; acts as the group of orthogonal transformations with respect to ( , );
(1 = 1,2), respectively. If we find a lightlike vector in M(m,2 : R) whose orbit
by K; is a hypersurface in the light cone and has a nondegenerate induced metric,
we obtain a conformally flat homogeneous semi-Riemannian manifold of signature
(2¢ — 1,2p — 1), index 2p — 1 or of signature (m — 1, m — 1), index m — 1.

Now we show some examples of lightlike vectors:

X = (61, ep—l—l)a Xy = (€p+1, ep+2)> X3 = (61 + \/iep-i—la 8p+1),

where e; is a column vector with fe; = (0,---,0, 1 ,0,---,0). Then X is lightlike
with respect to (, ); and X5, X3 are lightlike with respect to (', ). We denote by M;
the K -orbit through X; and by M,, M3 the K, -orbits through X, X3, respectively.
Then they are hypersurfaces in the light cones and hence conformally flat homoge-
neous semi-Riemannian manifolds.

The Schouten tensors A of M; and M, have the form:

with respect to some semi-orthonormal basis.
The Schouten tensor A of M; has the form:

NN

with respect to some orthonormal basis.

To find more examples, we need to investigate “semisimple symmetric spaces of
rank 2. 7



§5 A classification of conformally flat homogeneous
Lorentzian manifolds

Finally we explain our classification results of conformally flat homogeneous
Lorentzian manifolds ([6],[7]).

The key of our approach is to determine the form of the Schouten tensor A.
We classify the possible forms of the operator A. For this purpose, we show the
useful identity of the eigenvalues of A. We assume that M is a homogeneous semi-
Riemannian manifold. Then evidently, the —possibly complex— eigenvalues of A
and their algebraic multiplicities are constant on M. It is a similar situation to the
shape operators for isoparametric hypersurfaces in the semi-Riemannian space form.
Hahn obtained the basic identity concerning principal curvatures of an isoparametric
hypersurface ([2] Theorem 2.9). We have the same result for the eigenvalues of A.

Theorem 3 Let M be a conformally flat homogeneous semi-Riemannian manifold
and Ay, ---, . be the distinct eigenvalues of the Schouten tensor A on M with
algebraic multiplicities my,--- ,m,, respectively. If for some i € {1,---,r}, the
eigenvalue J; is real and the dimension of its eigenspace coincides with its algebraic
multiplicity, then we have

Aj+ A
ij =0.
AT
Here the sum runs over all j which are not equal to .

As an application of Theorem 3 we consider the case that the Schouten tensor
A is diagonalizable with real eigenvalues. By the identity above we see that A has
at most two distinct eigenvalues. In this case, the classification is same as that of
the Riemannian case.

Theorem 4 Let M be a conformally flat homogeneous semi-Riemannian manifold
whose Schouten tensor A is diagonalizable with real eigenvalues. Then M/ is locally
isometric to one of the following: (1)Mp(k), (2)M7 (k) x M7 7"(=k),k # 0,2 <
m < n—2, B)M (k) x R or M7 (k) x Ry , k # 0, where M?(k) denotes a
semi-Riemannian manifold of constant curvature k£ and index ¢'.

As a second application of Theorem 3, we give a classification of possible can-
didates for the Schouten tensor A of a conformally flat homogeneous Lorentzian
manifold. From now on we assume that M is an n(> 4) dimensional conformally
flat homogeneous Lorentzian manifold whose Schouten tensor A is not diagonalizable
with real eigenvalues.

As our main result, we have the following.

Theorem 5 Under the assumption above, the Schouten tensor A has exactly one



of the following three forms:

. a’ + b = \?
Case 1. ' b#0
dim T)\ == dimT,/\

-2

In case 1, the tensor A has the complex eigenvalues a + /—1b and real eigenvalues
+)\. And the dimensions of the eigenspaces of £\ coincide. Here T and T_, denote
the eigenspaces of eigenvalues A and —\, respectively.

A€
A

Case 2. A e=lor —1

A<0
A

In case 2, the tensor A has the only one nonpositive real eigenvalue .

—_ O >
o > O
> = O

A<0

Case 3. dim7_y < dimT) — 2

-2

In case 3, the tensor A has one negative eigenvalue A\ and the dimension of its
eigenspace does not coincide with its algebraic multiplicity. In this case it is possible
that A does not have the eigenvalue —\.

Here our expressions of matrices are those with respect to a semi-orthonormal
basis (e1,e2) =1, (ej,e;) = &;; (i,7 > 3) .

Now we discuss case by case.



Case 1.
The local classification of case 1 is given by the following.
Theorem 6 Let M be an n(> 4)-dimensional conformally flat homogeneous Lorentzian

manifold whose Schouten tensor A has the form of Case 1. Then M is locally iso-
metric to M; constructed in section 4 up to homothety.

Therefore the local classification of case 1 is complete.

Case 2 with A = 0.

Next we consider Case 2 with A = 0. These conformally flat homogeneous
Lorentzian manifolds are constructed in section 3. Here we show another description,
i.e., the structures of Lie algebras:

Example Let € be a real linear space with the basis E; (3 <i<mn), Fj; (3<i<
j <n), X; (1 <i<n). We define a bracket operation [, ] on ¢ as follows:

[Ei,Ej]=0 [Fij, Frt) = =0 Fjy + 0 Fy+
[Ei, F]k] = 5ijEk 5ikEj 5le]k - 5leik
[Ei, Xi] = [Fij, X1] =0
[Ei, Xo] = —X; — cE; [Fij, X2] =0
[EZ',X]‘] == 6i]‘X1 [Egan] = _6szg + 6Jk:Xz
[Xl,XQ] = —CX1
[Xlan] =0 [Xi,Xj] =0
[XQ,X]‘] = —€E]‘

1,7, k>3 ceR e=1lor —1

The space spanned by Fj; (3 < i < j < n) is the Lie algebra of skew-symmetric
endomorphisms. We define the action of the Lie algebra on the space spanned by
E; (3 < i < n) and the space spanned by X; (1 < i < n). We remark that the
constant ¢ is contained in these brackets [E;, X5] = —X; — cE; and [X{, X3] = —cXj.
Then [, | satisfies the Jacobi identity and € becomes a Lie algebra. Let h be a
linear subspace of ¢ spanned by {F;, Fj;}. Then § is a Lie subalgebra of £. And the
dimension of the Lie algebra of € is equal to zn(n — 1) +1

From this pair (¢, h) of Lie algebra and its Lie subalgebra, we construct a homo-
geneous Lorentzian manifold by the standard method. Let K be a simply connected
Lie group corresponding to € and H be the connected Lie subgroup of K which
corresponds to h. Then H is a closed subgroup of K and hence we obtain the ho-
mogeneous space M = K/H. Let 7 : K — K/H = M be the projection. We put
w(H) = o. The differential of m at the unit element e € K defines the projection
7wt — T,M. Let p be the subspace spanned by {X; (1 <i < n)}. We identify
t/h with p. Under this identification, we define an inner product on ¢/h by

<X1,X2> =1, <XZ-,X]-> =0;; (3 <14,5 <n), otherwise 0.
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This inner product < , > is invariant by the adjoint representation of h on €/h.
Therefore we can define the K-invariant Lorentzian metric ¢ on M such that

g(n(X),m(YV)) =(X,Y) X,YeEp

at o € M. Thus we obtain the homogeneous Lorentzian manifold (M, g). Moreover
we see that it is conformally flat and its Schouten tensor A has the form:

Furthermore we have

Theorem 7 Let M be an n(> 4)-dimensional conformally flat homogeneous Lorentzian
manifold whose Schouten tensor A has the form of case 2 with A = 0. Then M is
locally isometric to the model constructed in Example above.

Remark Let ¢ be the parameter in the Lie algebra €. Then we see that (M, g) in

Example is a Lorentzian symmetric space if and only if ¢ = 0.

Case 2 A <0 .

In this case, we can construct examples similarly to Example in the above and
characterize them.

Case 3.

In this case, we can construct examples of Lie algebras similarly to Example in
the above. However we cannot solve the classification problem for this case at the
present. So our classification problem for Lorentzian manifolds is still open.

Our classification is local. In this talk our approach is a classification by local
isometric classes. We think that a global classification is a difficult problem. It may
be complicated, compared with the Riemannian case. For example, the homogeneity
of a semi-Riemannian metric does not imply the geodesically completeness.

Our method of a classification is due to the theory of infinitesimally homogeneous
spaces by Singer. We explain this theory quickly. The essential local invariants
of a semi-Riemannian manifold M are the curvature tensor R and its covariant
derivatives VR, V2R, -+ - . In particular, if M is conformally flat, then the Schouten
tensor A and its covariant derivatives VA, V2A,--- are essential local invariants.
Singer’s theory discusses the relation between the homogeneity and the curvature
tensor and its covariant derivatives .

We recall the notion of a curvature homogeneous space introduced by Singer [9].
For a non-negative integer [, we consider the following condition:

11



P(l) : for every p,q € M there exists a linear isometry ¢ : T,M — T,M such
that . .
¢*(V'R), = (V'R), i=0,1,...,1.

That is, ¢ preserves the curvature tensors and their higher covariant derivatives up
to order [. If M is locally homogeneous, then it satisfies P(l) for any [. A semi-
Riemannian manifold which satisfies P([) is said to be curvature homogeneous up to
order [ .

We denote by so(7,M) the Lie algebra of the endomorphisms of 7, M which are
skew-symmetric with respect to (,). For a non-negative integer [, we define a Lie
subalgebra g;(p) of so(T,M) by

a(p) ={X €50(T,M) | X-(V'R), =0, i=0,1,....1},

where X acts as a derivation on the tensor algebra on T,M. Since g;(p) 2 g14+1(p),
there exists a first integer s(p) such that gy, (p) = gsp)+1(p). Namely we have

50(T,M) D go(p) 2 g1(p) 2 92(P) 2 -+ 2 Fs(p)(P) = Fs)+1(P)-

Following Singer we say that (M, (,)) is infinitesimally homogeneous if M satisfies
P(s(p) + 1) for some point p € M. If M is infinitesimally homogeneous, s(q) does
not depend on ¢ € M. We put s); = s(p) for some point p € M and call it the
Singer invariant of an infinitesimally homogeneous semi-Riemannian manifold M.
The remarkable result by Singer is the following.

Theorem S.1 A connected infinitesimally homogeneous semi-Riemannian manifold
is locally homogeneous.

The proof of Theorem S.1 implies the following.

Theorem S.2 Let M and M’ be two locally homogeneous semi-Riemannian man-
ifolds and p € M and p’ € M’'. Suppose that there exists a linear isometry
¢ : T,M — T,y M' such that

¢*(V'R)y = (V'R), i=0,1,....s0+1,

where sp; denotes the Singer invariant of M. Then there exists a local isometry
¢ of a neighborhood of p onto a neighborhood of p’ which satisfies ¢(p) = p’ and

Pxp — P.

As a corollary, the following holds. It gives us a fundamental method for our
classification problems .

Corollary Let M and M’ be two conformally flat locally homogeneous semi-
Riemannian manifolds and p € M and p’ € M’'. Suppose that there exists a linear
isometry ¢ : T,M — T,, M’ such that

¢*(V'A",y = (V'A), i=0,1,...sp+ 1.

Then there exists a local isometry ¢ of a neighborhood of p onto a neighborhood of
p' which satisfies p(p) = p’ and ., = ¢.

12



Finally we show the Singer invariants of conformally flat homogeneous Lorentzian

manifolds:
the Singer invariant
Case 1 dim =4 0
Case 1 dim > 6 1
Case 2 A <0 1
Case 2 A =0 0
Case 3 ?

one

We think that there are examples of higher Singer invariants in case 3. So it is
of reasons why the classification problem in case 3 is difficult.
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