
Conformally 
at homogeneous LorentzianmanifoldsKazumi TsukadaO
hanomizu UniversityThank you the organizer for giving me an opportunity of a talk in this workshop.This is a joint work with Kyoko Honda.Our problem is to 
lassify 
onformally 
at homogeneous semi-Riemannian man-ifolds.Here a semi-Riemannian manifold (Mnq ; g) is said to be 
onformally 
at if forany point p of M , there exist a 
oordinate neighborhood (V; x1; � � � ; xn) of p and apositive smooth fun
tion � > 0 on V su
h that the following equation holds:g = �2(�dx21 � � � � � dx2q + dx2q+1 + � � �+ dx2n) on V :That is, it is lo
ally 
onformally equivalent to a semi-Eu
lidean spa
e. A semi-Riemannian manifold (Mnq ; g) is said to be homogeneous if for any two points p; p0of M , there exists an isometry � of M su
h that �(p) = p0.For the Riemannian 
ase, the following is known: Conformally 
at homogeneousRiemannian manifolds were 
lassi�ed by H. Takagi [10℄.Theorem. An n-dimensional simply 
onne
ted 
onformally 
at homogeneous Rie-mannian manifold is isometri
 to one of the following:(1) Mn(k);(2) Mm(k)�Mn�m(�k); k 6= 0; 2 � m � n� 2;(3) Mn�1(k)� R; k 6= 0;where Mm(k) denotes the simply 
onne
ted 
omplete Riemannian manifold of 
on-stant 
urvature k.Consequently, they are all symmetri
 spa
es. In this talk we would like to show thatin the semi-Riemannian 
ase, there exist many interesting examples whi
h are notsymmetri
 spa
es.In this talk, I would like to explain the following:Plan of talk1. Chara
terizations of 
onformally 
atness2. A 
lassi�
ation of 
onformally 
at symmetri
 spa
es1



3. A method of the 
onstru
tion of examples I4. A method of the 
onstru
tion of examples II5. A 
lassi�
ation of 
onformally 
at homogeneous Lorentzian manifoldsFirst we show two kinds of the 
hara
terizations of 
onformally 
atness. Nextwe explain a 
lassi�
ation of 
onformally 
at symmetri
 semi-Riemannian manifoldsgiven by Cahen and Kerbrat [1℄. And we show two methods of the 
onstru
tion ofexamples inspired by their results. Finally we show 
lassi�
ation of 
onformally 
athomogeneous Lorentzian manifolds.x1 Chara
terizations of 
onformally 
atnessWe re
all two kinds of the 
hara
terizations of 
onformally 
atness. LetMnq be ann(� 4)-dimensional semi-Riemannian manifold equipped with a semi-Riemannianmetri
 g of index q.It is known that the following three 
onditions are equivalent:(1) A semi-Riemannian manifold (Mnq ; g) is 
onformally 
at.(2) The 
urvature tensor R of M satis�es the following:R(X; Y ) = AX ^ Y +X ^ AY;A = 1n� 2 �Q� S2(n� 1)Id� ;where Q is the Ri

i operator and S is the s
alar 
urvature of M , respe
tively. Herethe operator A is 
alled the S
houten tensor.(3) There exists an isometri
 immersion of M into the light 
one � � Rn+2q+1 , wherethe light 
one is de�ned by� = fx 2 Rn+2q+1 � f0gj
x; x� = 0g:The third 
ondition is the key of our approa
h.x2 A 
lassi�
ation of 
onformally 
at symmetri
spa
esWe explain a 
lassi�
ation of 
onformally 
at symmetri
 semi-Riemannian man-ifolds given by Cahen and Kerbrat [1℄ and its simpli�ed arguments by K.Honda[4℄. LetMnq be an n(� 4)-dimensional symmetri
 semi-Riemannian manifold of indexq. Then its S
houten tensor A is parallel with respe
t to the Levi-Civita 
onne
tion.So the derivation of A by the 
urvature tensor R(X; Y ) is equal to 0, i.e., R(X; Y ) �A = 0. Then we have R(AX;X) = 0 for any tangent ve
tors X. Now we assumethat Mnq is 
onformally 
at. ThenA2X ^X = 0:2



So we have A2 = � Id for some real number �:A

ording to the sign of �, we 
onsider three 
ases.Case 1. � > 0: They are well-known ones. It is lo
ally isometri
 to one of thefollowing:(1) Mnq (2p�); Mnq (�2p�),(2) Mmq0 (p�)�Mn�mq�q0 (�p�); 2 � m � n� 2;(3) Mn�1q (k)� R or Mn�1q�1 (k)� R1 ; k = �p� ,whereMmq (k) denotes the semi-Riemannian manifold of 
onstant se
tional 
urvaturek .Case 2. � = 0: This 
ase was 
lassi�ed by Cahen and Kerbrat. Here we show theexamples in a slightly di�erent way.Let (Rn+2q+1 ; h; i) be an (n + 2)-dimensional semi-Eu
lidean spa
e with an innerprodu
t h; i of index q+1 and � be the light 
one. Let F be a linear endomorphismof Rn+2q+1 whi
h satis�es the following 
onditions:(1) F is self-adjoint with respe
t to h; i ,i.e., hFx; yi = hx; Fyi.(2) F 2 = 0.(3) There exists a point x 2 � su
h that hFx; xi > 0.We 
onsider the following subset of Rn+2q+1� \ fx 2 Rn+2q+1 jhx; Fxi = 1gand we de�neM by one of its 
onne
ted 
omponents. ThenM is a semi-Riemanniansubmanifold in Rn+2q+1 with 
odimension 2 and its index is q. Moreover we obtain thefollowing.(i)M is an extrinsi
 symmetri
 submanifold in Rn+2q+1 . In parti
ular it is a symmetri
spa
e.(ii) M is a hypersurfa
e of the light 
one. Therefore it is 
onformally 
at.(iii) Its S
houten tensor A satis�es A2 = 0.Cahen and Kerbrat ([1℄) have shown that every 
onformally 
at symmetri
 spa
ewith A2 = 0 is obtained by this 
onstru
tion.Case 3. � < 0 : We de�ne a 
omplex sphere. Let C n+1 be an (n + 1)-dimensional
omplex ve
tor spa
e with a 
omplex inner produ
t (; ):(z;w) = n+1Xi=1 ziwi; z = (z1; � � � ; zn+1);w = (w1; � � � ; wn+1)and denote by h; i its real part,i.e,hz;wi = the real part of (z;w):3



Then the signature of the inner produ
t h; i is (n + 1; n + 1). We de�ne a 
omplexhypersurfa
e in C n+1 by the following equation(z; z) = z21 + � � �+ z2n+1 = 
; 
 2 C ; 
 6= 0:We denote it by C Sn(
) and 
all it a 
omplex sphere. The 
omplex sphere C Sn(
)with the indu
ed metri
 from h; i is a semi-Riemannian symmetri
 spa
e with thesignature (n; n). In parti
ular if 
 = p�1b (b 2 R) is pure imaginary, then the 
om-plex sphere C Sn(p�1b) is 
ontained in the light 
one. Therefore it is 
onformally
at. We 
ompute its S
houten tensor A and see that it has the form:12b0BBBBB� 0 �11 0 . . . 0 �11 0
1CCCCCAwith respe
t to an orthonormal basis fe1; � � � ; e2ng, he2i�1; e2i�1i = �he2i; e2ii = 1(i = 1; � � � ; n) .Cahen and Kerbrat ([1℄) have shown that a 
onformally 
at symmetri
 spa
e withA2 = � Id, � < 0 is isometri
 to a 
omplex sphere C Sn(p�1b) for � = � 14b2 . Ageneralization of their results is shown in [4℄.Inspired by these results, we obtain two kind of 
onstru
tions of 
onformally
at homogeneous semi-Riemannian manifolds. We will show them in the next twose
tions.x3 A method of the 
onstru
tion of examples IIn this se
tion, we show a method of a 
onstru
tion of 
onformally 
at semi-Riemannian manifolds with nilpotent S
houten tensor. In this 
onstru
tion, weshow interesting relations between the semi-Riemannian geometry and the aÆnedi�erential geometry of 
entro-aÆne hypersurfa
es.Let (Rn+2q+1 ; h; i) be an (n + 2)-dimensional semi-Eu
lidean spa
e with an innerprodu
t h; i of index q + 1. It is de�ned byhx; yi = k+1Xi=1fxiyk+1+i + xk+1+iyig+ n+2Xj=2(k+1)+1 "jxjyj; "j = 1 or �1:We denote by h the semi-Riemannian metri
 on Rn+2 indu
ed from h; iLet � : Rn+2 ! Rk+1 be the proje
tion de�ned by(x1; � � � ; xk+1; xk+2; � � � ; xn+2) 7! (x1; � � � ; xk+1):We denote by �� the restri
tion of � to � \ ��1(Rk+1 � f0g).Then �� : � \ ��1(Rk+1 � f0g)! Rk+1 � f0g is a �bre bundle over Rk+1 � f0g withthe standard �bre di�eomorphi
 to Rn�k .4



Let N be a k-dimensional manifold and F : N ! Rk+1 � f0g be a 
entro-aÆnehypersurfa
e immersion. That is, it is an immersion su
h that for ea
h point p 2 N ,the position ve
tor F (p) is transversal to the tangent spa
e F�(TpN). We 
onsiderthe pull-ba
k bundle of the �bre bundle �� by the immersion F . We denote by Mand f the total spa
e of the pull-ba
k bundle and the bundle homomorphism of Minto � \ ��1(Rk+1 � f0g), respe
tively. That is, the following diagram holds:M f���! � \ ��1(Rk+1 � f0g)��??y ??y��N ���!F Rk+1 � f0g :Then M is an n-dimensional manifold di�eomorphi
 to the produ
t manifoldTN � Rn�2k of the tangent bundle over N and Rn�2k .M with the indu
ed metri
 by f has the following properties ([5℄).Theorem 1 (M; f �h) is a 
onformally 
at semi-Riemannianmanifold whose S
houtentensor A satis�es A2 = 0 (equivalently Q2 = 0).Theorem 2 There are interesting relations between (M; f �h) and (N;F ).(1) M is lo
ally symmetri
 if and only if there exists a symmetri
 bilinear form �b onRk+1 su
h that F (N) is 
ontained in a hypersurfa
e de�ned by �b(x; x) = �1.(2)M is geodesi
ally 
omplete if and only if N is geodesi
ally 
omplete with respe
tto the indu
ed aÆne 
onne
ton as a 
entro-aÆne hypersurfa
e.(3) If N is a homogeneous 
entro-aÆne hypersurfa
e, then M is a homogeneoussemi-Riemannian manifold.Here \homogeneous " in (3) means that there exist a 
onne
ted Lie group H whi
ha
ts transitively on N and a Lie group homomorphism � : H ! GL(k + 1;R) su
hthat F (ap) = �(a)F (p) for all a 2 H, p 2 N:There are many homogeneous 
entro-aÆne hypersurfa
es and hen
e by our re-sults we have many 
onformally 
at homogeneous semi-Riemannian manifolds withnilpotent S
houten tensor.Example When k = 1, it is easy to 
lassify homogeneous non-degenerate 
entro-aÆne 
urves in R2 . They are the follwing:1: y = x� (� > 1; x > 0);2: y = x� (� � �1; x > 0);3: (x = et 
os bty = et sin bt (b > 0);4: x2 + y2 = 1;5: y = x log x (x > 0):5



Let M be a semi-Riemannian manifold 
onstru
ted from one of 
entro-aÆne 
urvesin the above. Then M is a symmetri
 spa
e if and only it is 
onstru
ted from
ase 2 with � = �1 and 
ase 4. It is easily seen that the other are geodesi
allyin
omplete. By Theorem 2 (3), we see that M admits a large isometry group, thatis, dim Isom(M) = 12n(n� 1)+1. It is known as a kind of an Egorov spa
e (
f. [8℄).x4 A method of the 
onstru
tion of examples IIIn this se
tion, we explain the se
ond method of the 
onstru
tion of examples.We 
onsider the linear isotropy representation of a semisimple symmetri
 spa
eand �nd its orbits whi
h are hypersurfa
es in the light 
one. At the present, we haveno systemati
 way of investigations and I only show some examples. Now we showthe examples whi
h 
orrespond to the following symmetri
 pairs:(SO+(p; q + 2); SO+(p; q)� SO(2));(SO+(p+ 1; q + 1); SO+(p; q)� SO+(1; 1)):We des
ribe the linear isotropy representation of these symmetri
 spa
es. We de�nean inde�nite inner produ
t h ; i on Rm (n = 2m� 2) byhx; yi = � pXi=1 xiyi + mXi=p+1xiyi = txIp;qy x; y 2 Rm :Here Ip;q denotes the diagonal matrixIp;q = ( pz }| {�1; � � � ;�1; qz }| {1; � � � ; 1); (p+ q = m):We denote by M(m; 2 : R) the linear spa
e of real m� 2 matri
es. For two matri
esX; Y 2M(m; 2 : R), we de�ne two kinds of inner produ
ts by(X; Y )1 = tr(tXIp;qY) = hx1; y1i+ hx2; y2i;(X; Y )2 = tr(I1;1tXIp;qY) = �hx1; y1i+ hx2; y2i:Here we 
onsider a matrix X as a pair of two 
olumn ve
tors x1 and x2. These innerprodu
ts ( ; )i are nondegenerate and have the following signature:The signature of ( ; )1 = (2q; 2p); index 2pThe signature of ( ; )2 = (m;m); index mWe 
onsider the produ
t Lie groups:K1 = SO+(p; q)� SO(2);K2 = SO+(p; q)� SO+(1; 1):6



Here SO+(p; q) denotes a 
onne
ted 
omponent whi
h 
ontains the identity elementof the group of orthogonal transformations of (Rm ; h ; i).The a
tion of Ki (i = 1; 2) on M(m; 2 : R) by(k1; k2)�X 7! k1Xk�12 (k1 2 SO+(p; q); k2 2 SO(2) or SO+(1; 1)):Then Ki a
ts as the group of orthogonal transformations with respe
t to ( ; )i(i = 1; 2), respe
tively. If we �nd a lightlike ve
tor in M(m; 2 : R) whose orbitby Ki is a hypersurfa
e in the light 
one and has a nondegenerate indu
ed metri
,we obtain a 
onformally 
at homogeneous semi-Riemannian manifold of signature(2q � 1; 2p� 1), index 2p� 1 or of signature (m� 1; m� 1), index m� 1.Now we show some examples of lightlike ve
tors:X1 = (e1; ep+1); X2 = (ep+1; ep+2); X3 = (e1 +p2ep+1; ep+1);where ei is a 
olumn ve
tor with tei = (0; � � � ; 0; i-th1 ; 0; � � � ; 0). Then X1 is lightlikewith respe
t to ( ; )1 andX2; X3 are lightlike with respe
t to ( ; )2. We denote byM1the K1 -orbit through X1 and by M2;M3 the K2 -orbits through X2; X3,respe
tively.Then they are hypersurfa
es in the light 
ones and hen
e 
onformally 
at homoge-neous semi-Riemannian manifolds.The S
houten tensors A of M1 and M2 have the form:A = 120BB� 0 �11 0 �Im�2 Im�2 1CCAwith respe
t to some semi-orthonormal basis.The S
houten tensor A of M3 has the form:
A = 12

0BBBBBBBBB�
�1 00 1 0 �11 0 . . . 0 �11 0

1CCCCCCCCCAwith respe
t to some orthonormal basis.To �nd more examples, we need to investigate \semisimple symmetri
 spa
es ofrank 2. "
7



x5 A 
lassi�
ation of 
onformally 
at homogeneousLorentzian manifoldsFinally we explain our 
lassi�
ation results of 
onformally 
at homogeneousLorentzian manifolds ([6℄,[7℄).The key of our approa
h is to determine the form of the S
houten tensor A.We 
lassify the possible forms of the operator A. For this purpose, we show theuseful identity of the eigenvalues of A. We assume that M is a homogeneous semi-Riemannian manifold. Then evidently, the |possibly 
omplex| eigenvalues of Aand their algebrai
 multipli
ities are 
onstant on M . It is a similar situation to theshape operators for isoparametri
 hypersurfa
es in the semi-Riemannian spa
e form.Hahn obtained the basi
 identity 
on
erning prin
ipal 
urvatures of an isoparametri
hypersurfa
e ([2℄ Theorem 2.9). We have the same result for the eigenvalues of A.Theorem 3 Let Mnq be a 
onformally 
at homogeneous semi-Riemannian manifoldand �1; � � � ; �r be the distin
t eigenvalues of the S
houten tensor A on M withalgebrai
 multipli
ities m1; � � � ; mr, respe
tively. If for some i 2 f1; � � � ; rg, theeigenvalue �i is real and the dimension of its eigenspa
e 
oin
ides with its algebrai
multipli
ity, then we have Xj 6=imj �j + �i�j � �i = 0:Here the sum runs over all j whi
h are not equal to i.As an appli
ation of Theorem 3 we 
onsider the 
ase that the S
houten tensorA is diagonalizable with real eigenvalues. By the identity above we see that A hasat most two distin
t eigenvalues. In this 
ase, the 
lassi�
ation is same as that ofthe Riemannian 
ase.Theorem 4 Let Mnq be a 
onformally 
at homogeneous semi-Riemannian manifoldwhose S
houten tensor A is diagonalizable with real eigenvalues. Then Mnq is lo
allyisometri
 to one of the following: (1)Mnq (k); (2)Mmq0 (k) �Mn�mq�q0 (�k); k 6= 0; 2 �m � n � 2; (3)Mn�1q (k) � R or Mn�1q�1 (k) � R1 , k 6= 0; where Mmq0 (k) denotes asemi-Riemannian manifold of 
onstant 
urvature k and index q0.As a se
ond appli
ation of Theorem 3, we give a 
lassi�
ation of possible 
an-didates for the S
houten tensor A of a 
onformally 
at homogeneous Lorentzianmanifold. From now on we assume that M is an n(� 4) dimensional 
onformally
at homogeneous Lorentzian manifold whose S
houten tensor A is not diagonalizablewith real eigenvalues.As our main result, we have the following.Theorem 5 Under the assumption above, the S
houten tensor A has exa
tly one
8



of the following three forms:
Case 1:

0BBBBBBBBBBB�
a �bb a � . . . � �� . . . ��

1CCCCCCCCCCCA a2 + b2 = �2b 6= 0dimT� = dimT��
In 
ase 1, the tensor A has the 
omplex eigenvalues a�p�1b and real eigenvalues��. And the dimensions of the eigenspa
es of �� 
oin
ide. Here T� and T�� denotethe eigenspa
es of eigenvalues � and ��, respe
tively.

Case 2: 0BBBBB� � "� � . . . �
1CCCCCA " = 1 or � 1� � 0In 
ase 2, the tensor A has the only one nonpositive real eigenvalue �.

Case 3:
0BBBBBBBBBBBBB�

� 0 00 � 11 0 � � . . . � �� . . . ��
1CCCCCCCCCCCCCA � < 0dimT�� � dimT� � 2

In 
ase 3, the tensor A has one negative eigenvalue � and the dimension of itseigenspa
e does not 
oin
ide with its algebrai
 multipli
ity. In this 
ase it is possiblethat A does not have the eigenvalue ��.Here our expressions of matri
es are those with respe
t to a semi-orthonormalbasis 
e1; e2� = 1; 
ei; ej� = Æij (i; j � 3) .Now we dis
uss 
ase by 
ase. 9



Case 1.The lo
al 
lassi�
ation of 
ase 1 is given by the following.Theorem 6 LetM be an n(� 4)-dimensional 
onformally 
at homogeneous Lorentzianmanifold whose S
houten tensor A has the form of Case 1. Then M is lo
ally iso-metri
 to M1 
onstru
ted in se
tion 4 up to homothety.Therefore the lo
al 
lassi�
ation of 
ase 1 is 
omplete.Case 2 with � = 0.Next we 
onsider Case 2 with � = 0. These 
onformally 
at homogeneousLorentzian manifolds are 
onstru
ted in se
tion 3. Here we show another des
ription,i.e., the stru
tures of Lie algebras:Example Let k be a real linear spa
e with the basis Ei (3 � i � n); Fij (3 � i <j � n); Xi (1 � i � n). We de�ne a bra
ket operation [ ; ℄ on k as follows:[Ei; Ej℄ = 0[Ei; Fjk℄ = ÆijEk � ÆikEj[Ei; X1℄ = 0[Ei; X2℄ = �Xi � 
Ei[Ei; Xj℄ = ÆijX1 [Fij; Fkl℄ = �ÆikFjl + ÆjkFil+ÆilFjk � ÆjlFik[Fij; X1℄ = 0[Fij; X2℄ = 0[Fij; Xk℄ = �ÆikXj + ÆjkXi[X1; X2℄ = �
X1[X1; Xj℄ = 0[X2; Xj℄ = �"Ej [Xi; Xj℄ = 0i; j; k; l � 3 
 2 R " = 1 or � 1The spa
e spanned by Fij (3 � i < j � n) is the Lie algebra of skew-symmetri
endomorphisms. We de�ne the a
tion of the Lie algebra on the spa
e spanned byEi (3 � i � n) and the spa
e spanned by Xi (1 � i � n). We remark that the
onstant 
 is 
ontained in these bra
kets [Ei; X2℄ = �Xi�
Ei and [X1; X2℄ = �
X1.Then [ ; ℄ satis�es the Ja
obi identity and k be
omes a Lie algebra. Let h be alinear subspa
e of k spanned by fEi; Fijg. Then h is a Lie subalgebra of k. And thedimension of the Lie algebra of k is equal to 12n(n� 1) + 1From this pair (k; h) of Lie algebra and its Lie subalgebra, we 
onstru
t a homo-geneous Lorentzian manifold by the standard method. Let K be a simply 
onne
tedLie group 
orresponding to k and H be the 
onne
ted Lie subgroup of K whi
h
orresponds to h. Then H is a 
losed subgroup of K and hen
e we obtain the ho-mogeneous spa
e M = K=H. Let � : K �! K=H = M be the proje
tion. We put�(H) = o. The di�erential of � at the unit element e 2 K de�nes the proje
tion� : k �! ToM . Let p be the subspa
e spanned by fXi (1 � i � n)g. We identifyk=h with p. Under this identi�
ation, we de�ne an inner produ
t on k=h by
X1; X2� = 1; 
Xi; Xj� = Æij (3 � i; j � n); otherwise 0:10



This inner produ
t 
 ; � is invariant by the adjoint representation of h on k=h.Therefore we 
an de�ne the K-invariant Lorentzian metri
 g on M su
h thatg(�(X); �(Y )) = 
X; Y � X; Y 2 pat o 2M . Thus we obtain the homogeneous Lorentzian manifold (M; g). Moreoverwe see that it is 
onformally 
at and its S
houten tensor A has the form:A = 0BBBBB� 0 "0 0 . . . 0
1CCCCCA :

Furthermore we haveTheorem 7 LetM be an n(� 4)-dimensional 
onformally 
at homogeneous Lorentzianmanifold whose S
houten tensor A has the form of 
ase 2 with � = 0. Then M islo
ally isometri
 to the model 
onstru
ted in Example above.Remark Let 
 be the parameter in the Lie algebra k. Then we see that (M; g) inExample is a Lorentzian symmetri
 spa
e if and only if 
 = 0.Case 2 � < 0 .In this 
ase, we 
an 
onstru
t examples similarly to Example in the above and
hara
terize them.Case 3.In this 
ase, we 
an 
onstru
t examples of Lie algebras similarly to Example inthe above. However we 
annot solve the 
lassi�
ation problem for this 
ase at thepresent. So our 
lassi�
ation problem for Lorentzian manifolds is still open.Our 
lassi�
ation is lo
al. In this talk our approa
h is a 
lassi�
ation by lo
alisometri
 
lasses. We think that a global 
lassi�
ation is a diÆ
ult problem. It maybe 
ompli
ated, 
ompared with the Riemannian 
ase. For example, the homogeneityof a semi-Riemannian metri
 does not imply the geodesi
ally 
ompleteness.Our method of a 
lassi�
ation is due to the theory of in�nitesimally homogeneousspa
es by Singer. We explain this theory qui
kly. The essential lo
al invariantsof a semi-Riemannian manifold M are the 
urvature tensor R and its 
ovariantderivatives rR;r2R; � � � . In parti
ular, ifM is 
onformally 
at, then the S
houtentensor A and its 
ovariant derivatives rA;r2A; � � � are essential lo
al invariants.Singer's theory dis
usses the relation between the homogeneity and the 
urvaturetensor and its 
ovariant derivatives .We re
all the notion of a 
urvature homogeneous spa
e introdu
ed by Singer [9℄.For a non-negative integer l, we 
onsider the following 
ondition:11



P (l) : for every p; q 2 M there exists a linear isometry � : TpM ! TqM su
hthat ��(riR)q = (riR)p i = 0; 1; :::; l:That is, � preserves the 
urvature tensors and their higher 
ovariant derivatives upto order l. If M is lo
ally homogeneous, then it satis�es P (l) for any l. A semi-Riemannian manifold whi
h satis�es P (l) is said to be 
urvature homogeneous up toorder l .We denote by so(TpM) the Lie algebra of the endomorphisms of TpM whi
h areskew-symmetri
 with respe
t to h; i. For a non-negative integer l, we de�ne a Liesubalgebra gl(p) of so(TpM) bygl(p) = fX 2 so(TpM) j X � (riR)p = 0; i = 0; 1; :::; l g;where X a
ts as a derivation on the tensor algebra on TpM . Sin
e gl(p) � gl+1(p),there exists a �rst integer s(p) su
h that gs(p)(p) = gs(p)+1(p). Namely we haveso(TpM) � g0(p) ) g1(p) ) g2(p) ) � � � ) gs(p)(p) = gs(p)+1(p):Following Singer we say that (M; h; i) is in�nitesimally homogeneous if M satis�esP (s(p) + 1) for some point p 2 M . If M is in�nitesimally homogeneous, s(q) doesnot depend on q 2 M . We put sM = s(p) for some point p 2 M and 
all it theSinger invariant of an in�nitesimally homogeneous semi-Riemannian manifold M .The remarkable result by Singer is the following.Theorem S.1 A 
onne
ted in�nitesimally homogeneous semi-Riemannian manifoldis lo
ally homogeneous.The proof of Theorem S.1 implies the following.Theorem S.2 Let M and M 0 be two lo
ally homogeneous semi-Riemannian man-ifolds and p 2 M and p0 2 M 0. Suppose that there exists a linear isometry� : TpM ! Tp0M 0 su
h that��(riR0)p0 = (riR)p i = 0; 1; :::; sM + 1;where sM denotes the Singer invariant of M . Then there exists a lo
al isometry' of a neighborhood of p onto a neighborhood of p0 whi
h satis�es '(p) = p0 and'�p = �.As a 
orollary, the following holds. It gives us a fundamental method for our
lassi�
ation problems .Corollary Let M and M 0 be two 
onformally 
at lo
ally homogeneous semi-Riemannian manifolds and p 2 M and p0 2 M 0. Suppose that there exists a linearisometry � : TpM ! Tp0M 0 su
h that��(riA0)p0 = (riA)p i = 0; 1; :::; sM + 1:Then there exists a lo
al isometry ' of a neighborhood of p onto a neighborhood ofp0 whi
h satis�es '(p) = p0 and '�p = �.12



Finally we show the Singer invariants of 
onformally 
at homogeneous Lorentzianmanifolds: the Singer invariant　　Case 1 dim = 4 0Case 1 dim � 6 1Case 2 � < 0 1Case 2 � = 0 0Case 3　 ?We think that there are examples of higher Singer invariants in 
ase 3. So it isone of reasons why the 
lassi�
ation problem in 
ase 3 is diÆ
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