
Local symmetry vs. 2nd-symmetry
When ∇rT = 0 ⇒ ∇T = 0?

Brinkmann spaces
Sketch of proof

On the classification of
Lorentzian r-th symmetric spaces

Miguel Sánchez Caja

Universidad de Granada

Workshop on Homogenous Lorentzian spaces
UCM, March 8th, 2013

M. Sánchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry
When ∇rT = 0 ⇒ ∇T = 0?

Brinkmann spaces
Sketch of proof

Introduction

Aim of the talk:

To classify the 2nd-symmetric Lorentzian manifolds, i.e.:

∇2R := ∇(∇R) = 0

To provide properties and open questions on the
rth-symmetric case ∇rR = 0 and, in general on the
implications of

∇rT = 0

for any tensor field.
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Senovilla ’08, who introduced its systematic study, pointed out a
good number of applications including:

Penrose limit type constructions

“Super-energy” tensor

Higher order Lagrangian theories, supergravity, vanishing of
quantum fluctuations...

Moreover,

this is a natural generalization of symmetric spaces whose
relation with homogeneous one must be clarified.
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But for me, the most basic mathematical reason suffices:

Riemannian case: ∇rR = 0⇒ ∇R = 0

So, instead of ∇2R = 0, semi-symmetric spaces were
introduced (Cartan, Szabó):

∇2R(X ,Y ; . . . ) −∇2R(Y ,X ; . . . ) =
= ∇X (∇Y R)−∇Y (∇XR)−∇[X ,Y ]R
=: R(X ,Y ) · R = 0

Lorentzian and higher signatures: ∇rR = 0 6⇒ ∇R = 0
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So, a ladder of conditions appear in the Lorentzian case:
Locally symmetric ⊂ 2nd-symmetric ⊂ semi-symmetric

How hadn’t 2nd-symmetry been studied before?
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Main result to be proven:

Theorem (Blanco, Senovilla, — )

Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

(Local classification). (M, g) is locally isometric to a product

a (non-flat) symmetric Riemannian space (N, gN)
a proper 2nd-order Cahen-Wallach space (Rd+2, gA),
gA = −2du

(
dv + (aiju + bij)x ix jdu

)
+ δijdx idx j

with some aij 6= 0.

(Global classification). Moreover, if (M, g) is 1-connected and
geodesically complete, then it is globally isometric to
(Rd+2 × N, gA ⊕ gN).
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Characterizations of local symmetry vs 2nd-symmetry

Local symmetry

Proposition

For a (connected) semi-Riemannian manifold (N, h), they are
equivalent:

(i) (N, h) is locally symmetric, i.e. ∇R = 0.

(ii) If X ,Y and Z are parallel vector fields along a curve γ, then
so is R(X ,Y )Z .

(iii) The sectional curvature of non-degenerate planes is invariant
under parallel transport

(iv) The local geodesic symmetry sp is an isometry at any p ∈ N.

(v) (N, h) is locally isometric to a symmetric space.

M. Sánchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry
When ∇rT = 0 ⇒ ∇T = 0?

Brinkmann spaces
Sketch of proof

Characterizations
Classification
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

Local symmetry

Proposition

For a (connected) semi-Riemannian manifold (N, h), they are
equivalent:

(i) (N, h) is locally symmetric, i.e. ∇R = 0.

(ii) If X ,Y and Z are parallel vector fields along a curve γ, then
so is R(X ,Y )Z .

(iii) The sectional curvature of non-degenerate planes is invariant
under parallel transport

(iv) The local geodesic symmetry sp is an isometry at any p ∈ N.

(v) (N, h) is locally isometric to a symmetric space.

M. Sánchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry
When ∇rT = 0 ⇒ ∇T = 0?

Brinkmann spaces
Sketch of proof

Characterizations
Classification
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

Remark

“(N, h) is locally isometric to a symmetric space”
 as a difference with the locally homogeneous case, as there
exists non-regular ones (Kowalski’97)
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2nd symmetry

Lemma

For a semi-Riemannian (N, h), they are equivalent:

Skew symmetry of ∇2R in the derivatives slots.

For any non-degenerate tangent plane Πp ⊂ TpN, its parallel
transport Πγ along any geodesic γ, the derivative of its
sectional curvature d

dτ (K (Πγ)) is a constant along γ.

For any parallelly propagated vector fields X ,Y ,Z along any
geodesic γ, the vector field (∇γ′R)(X ,Y )Z is itself parallelly
propagated along γ.
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Characterizations of local symmetry vs 2nd-symmetry

Proposition

For a semi-Riemannian (N, h), they are equivalent:

(i) (N, h) is 2nd-symmetric, ∇∇R = 0

(ii) (N, h) is semi-symmetric (R(X ,Y )R = 0) and satisfies any of
the equivalent conditions to skew-symmetry in the lemma .

(iii) If V ,X ,Y ,Z are parallelly propagated vector fields along any
curve, then so is (∇V R)(X ,Y )Z .

Remark

Characterizations in terms of an analog of the geodesic symmetry
or local isometries to a model space are conspicuously absent.
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Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.

Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then
(M, g) is locally isometric to the direct product of a finite number
of irreducible symmetric spaces and a Euclidean d-space.
Moreover:

1 When (M, g) irreducible, then Ric = cg

2 When (M, g) Ricci-flat, then R ≡ 0

Proof. Use de Rham decomposition

M. Sánchez Lorentzian r-th symmetric spaces
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Classification locally symmetric vs 2nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.

1 When (M, g) irreducible, then Ric = cg

2 When (M, g) Ricci-flat, then R ≡ 0

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:

If a Riemannian (N, gR) admits a 2-cov. symmetric parallel L.
L 6= cgR , then locally:

gR es reducible: gR = g
(1)
R ⊕ g

(2)
R ⊕ . . .⊕ g

(s)
R .

L =
∑s

m=1 λmg
(m)
R for some λm ∈ R.

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld ’75)
—and locally homogeneous with Ric≤ 0 are regular (Spiro ’93)
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Lorentzian symmetric spaces

Theorem (Cahen, Wallach ’70)

A complete 1-connected Lorentzian symmetric space (M, g) is
isometric to the product of a simply-connected Riemannian
symmetric space and one of the following Lorentzian manifolds:

1 (R,−dt2)

2 The universal cover of de Sitter or anti-de Sitter d-spaces,
d ≥ 2,

3 A Cahen-Wallach space CW d(A) = (Rd , gA), d ≥ 2, where
A ≡ (Aij) is a (d − 2)× (d − 2) matrix and
gA = −2du

(
dv + Aijx

ix jdu
)

+
∑

ij δijdx idx j
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Classification locally symmetric vs 2nd-symmetric

Remark

Choosing A with trace(A) = 0:
there are Ricci flat non-flat Lorentzian symmetric spaces.

Remark

Lorentzian symmetric space with a parallel lightlike v.f. K ⇒:
Locally isometric to the product of a CW d(A), d > 2 and
Riemannian symmetric space.
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Classification locally symmetric vs 2nd-symmetric

2nd-symmetric:
The theorem to be proven shows:

proper 2nd-symmetric spaces only appear generalizing the
family of Cahen-Wallach spaces CW d(A), d > 2:

 allow an affine dependence of the matrix A in u
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Generalization of Cahen-Wallach family

Generalized Cahen-Wallach d-space of order r ,
CW d

r (A)= (Rd , gA), d ≥ 2: metric:

gA = −2du

dv +
∑
ij

Aij(u)x ix jdu

+
∑
ij

δijdx idx j

where A ≡ (Aij(u)) is a (d − 2)× (d − 2) matrix:

Aij(u) = A
(r−1)
ij ur−1 + · · ·+ A

(1)
ij u + A0

ij

for symmetric (constant) matrixes Ak
ij .
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Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space CW d
r (A) satisfies:

1 If A
(r−1)
ij 6= 0 (CW d

r (A) is proper) then it is proper
rth-symmetric

1. Direct computation: in an appropriate basis
{Eα} = {E0 = ∂u −

∑
Aijx

ix j∂v ,E1 = ∂v , ∂i} the only
non-vanishing components of ∇lR, l ∈ {0, ...r − 1} are:

∇0
(l). . . ∇0R1

i0j =
d lAij

du =
∑r−1

k=l
k!

(k−l)! A
(k)
ij uk−l �
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Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space CW d
r (A) satisfies:

1 If A
(r−1)
ij 6= 0 (CW d

r (A) is proper) then it is proper
rth-symmetric

2 K = ∂v is a lightlike parallel vector field

3 It is analytic

4 it is geodesically complete

Proof. 2,3: Trivial

4. Direct computation or general results (Candela, Romero, — ’13)
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Generalization of Cahen-Wallach family

Corollary

A complete 1-connected Lorentzian manifold locally isometric to
some CW d

r (A) is globally isometric too.

This will allow to go from the local to the global result.

Remark

By the way:
Lafuente ’88 proved that, for locally symmetric semi-Riemannian
spaces, the three types of causal completeness (timelike, spacelike
and lighlike) coincide. Does this hold for second/rth symmetric?
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Must rth-symmetry imply local symmetry ?

This is a particular case of:

When ∇rT = 0⇒ ∇T = 0?
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Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
∇rT = 0. Then ∇T = 0 if either
(a) (Nomizu-Ozeki ’62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) T is R, or Ric, Weyl, projective t.

Remark

In particular, from (b), Riemmannian r -th symmetric implies
locally symmetric.
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Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
∇rT = 0. Then ∇T = 0 if either
(a) (Nomizu-Ozeki ’62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case r = 2 suffices (replace otherwise T̃ := ∇r−2T ).
2. Put f := g(T ,T )/2. Using ∇2T = 0:

Hessf (X ,Y ) = g(∇XT ,∇Y T ) and ∇Hessf = 0

3. By Eisenhart thm: Hessf = cg , c ∈ R. Thus Z :=grad(f )
satisfies ∇XZ = cX (in particular, is homothetic)
4. Under irreducibility + completeness homothetic vectors are
Killing: c = 0 g(∇XT ,∇Y T ) = 0. As g is Riemannian ∇T = 0.
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Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
∇rT = 0. Then ∇T = 0 if either
(a) (Nomizu-Ozeki ’62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: T = 0 on the flat part
of (local) de Rham decomposition (as well as on mixed elements)

2. As before, one has ∇XZ = cX and needs c = 0.
3. As Z is homothetic, it is affine. Thus LZ∇ = 0 = LZT and:

0 = LZ∇T = ∇Z (∇T ) + (s + 1)c∇T = (s + 1)c∇T

(s: covar minus contrav slots for T ). That is, if c 6= 0 directly
∇T = 0. �
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Conclusion

Remark

∇rT = 0 6⇒ ∇T = 0 only when:

The manifold is reducible, with a flat part in de Rham
decomposition, OR

The manifold is incomplete with a proper (non-Killing)
homothetic vector field (necessarily without zeroes)

In the latter case the metric can be written locally as a cone:
M = I × S , I ⊂ (0,∞), (S , gS) Riemannian

g = dt2 + t2π∗SgS

being Z = t∂t proper homothetic . In particular:

∇Z = 2 · Id(6= 0) ∇2Z = 0
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Difficulties for the semi-Riemannian extension

1 The (full, local) de Rham decomposition cannot be carried
out when the subspaces invariant by local holonomy are
degenerate

2 The conclusion c = 0 only means g(T ,T ) constant and
g(∇T ,∇T ) = 0 i.e. ∇T is a lightlike tensor

3 Even in the non-degenerate irreducible case, to apply
Eisenhart one needs : if the restricted homogeneous holonomy
group is irreducible and a symm. 2-cov tensor h is invariant by
the group, then h = cg for some function c , which is constant
if h is parallel
However, this holds in Lorentzian signature and others
(Tanno’67, n = 2 or non-neutral signature)
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Further properties: ∇rT = 0 in generic points

Definition

A point p is generic if the curvature endomorphism:

R : Λ2(M)→ Λ2(M) v [ ∧ w [ 7→ 2R(v ,w)

is an isomorphism when restricted to p.

Theorem

If there exists a generic point, ∇rT = 0 implies ∇T = 0, for any
semi-Riemannian metric.
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∇rT = 0 in generic points

Theorem

If there exists a generic point, ∇rT = 0 implies ∇T = 0, for any
semi-Riemannian metric.

Proofs of increasing generality:

1 Simply, no conic metric (nor flat one) is generic.

Remarks

Valid only for the Riemannian case
Extensible to generic (non-degenerate) Ric, as Ric(∂t ,X ) = 0
in the conic metric
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∇rT = 0 in generic points

Theorem

If there exists a generic point, ∇rT = 0 implies ∇T = 0, for any
semi-Riemannian metric.

Proofs of increasing generality:

2 (Tanno ’72) As we had Z with ∇XZ = cX :
0 = LZ∇ = ∇2Z + R(Z , ·) = R(Z , ·)
So R is not invertible except if Z = 0.

Remarks:

Also valid for Riemannian and extensible to generic Ric
For Lorentz and non-neutral sign. + irreducibility, it applies,
but then implies only g(∇T ,∇T ) = 0 and g(T ,T ) =const.
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So R is not invertible except if Z = 0.
Remarks:
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∇rT = 0 in generic points

Theorem

(Senovilla ’08) If there exists a generic point, ∇rT = 0 implies
∇T = 0 on all M, for any semi-Riemannian metric.

Proofs of increasing generality:

3 (Senovilla ’08) Apply the Ricci identities to T and ∇T :
The invertibility of R allows to clear ∇T = 0.

Remarks:

Independent of both, signature or previous computations
Extensible to: all semi-symmetric spaces have constant
curvature around generic points
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∇rT = 0 in generic points

Theorem

(Senovilla ’08) If there exists a generic point, ∇rT = 0 implies
∇T = 0 on all M, for any semi-Riemannian metric.

Proofs of increasing generality:

3 (Senovilla ’08) Apply the Ricci identities to T and ∇T :
The invertibility of R allows to clear ∇T = 0.
Remarks:

Independent of both, signature or previous computations
Extensible to: all semi-symmetric spaces have constant
curvature around generic points
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Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let (M, g) be semi-Riemannian and r-th symmetric. If there exists
a vector field Z :

∇XZ = cX c ∈ R ∀X ∈ X(M)

then either Z is parallel or R = 0 .

Proof. As Z is homothetic, LZ∇ = 0, LZ∇kR l
ijk = 0 and:

0 = LZ (∇r−1R) = ∇Z (∇r−1R) + (1 + r)c∇r−1R = (1 + r)c∇r−1R

So, if c 6= 0, use induction. �
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Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel
lightlike direction or satisfies that ∇r−1R is (parallel and) null and
g(∇r−2R,∇r−2R) is a constant.

Proof. The first possibility occurs either when degenerately
reducible or when admits a lightlike parallel v.f.

Otherwise, in each irreducible part, put again T = ∇r−2R,
f = g(T ,T ), Hessf (X ,Y ) = g(∇XT ,∇Y T ) and Z = gradf
By previous Prop., necessarily Z ≡ 0. �

Remark

Limit of “old” results: this suggests that at least 2nd-symmetric
Lorentzian spaces must admit a parallel lightlike v.f. K .
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Existence of a lightlike parallel vector field

Theorem

(Senovilla ’08). Any proper 2nd-symmetric Lorentzian space
admits a unique lightlike parallel vector field K .

(Alternative proof by Aleeksevski & Galaev, ’11.)

Steps of direct original proof (as simplified in Blanco’s thesis):

Previous result for ∃ parallel light. vector, not only a line:
∃ Parallel L 6= cg plus no decomposable (non-degenerately
reducible) ⇒ ∃! independent parallel lightlike vector K .
(proof by discussing possible Segre types )

Uniqueness: a linear combination of K1 ± K2 would be (parallel
and) timelike in contradiction with no-decompsability/properness.
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Existence of a lightlike parallel vector field

Theorem

(Senovilla ’08). Any proper 2nd-symmetric Lorentzian space
admits a unique independent lightlike parallel vector field K .

Analyze the curvature concomitants showing that, either such
a K exists, or they vanish:
(a) 1-form concomitants of order m and degree up to m + 1
(b) scalar or 2-cov. concomitants of equal order and degree.

Using Ricci identity, such restrictions force the existence of K
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Brinkmann spaces

Definition

A Brinkmann space is any Lorentzian n-manifold endowed with a
complete lightlike parallel vector field K .

Brinkmann decomposition {u, v}:

1 K parallel: fix u (up to a constant) s.t.: K = gradu

2 K lightlike: K⊥ degenerate totally geodesic integrable
foliation with leaves Σu

3 Choose a hypersup. Ω transverse to K so that
M̄ := Σu=0 ∩ Ω is spacelike a transverse

4 Let φ the flow of K , define v so that φ−v(p)(p) ∈ Ω
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Construction of the Brinkmann decomposition
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Construction of a Brinkmann chart

Brinkmann chart {u, v , x i}: complete u, v to a chart by
choosing n − 2 coordinates x i independent of u in Ω.

Expression of g in a Brinkmann chart:

g = −2du
(
dv + H(u, xk)du + Wi (u, xk)dx i

)
+ gij(u, xk)dx idx j

(natural sum in repeated indexes, K ≡ −∂v )

Remark

Being more careful, one could get H = 0 and Wi = 0!
But it is preferred as above, as we wish to remove the
u-dependence of gij(u, x i ).
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Geometric developments

In general:

Study of degenerate hypersurfaces
 Transverse vector field ξ

Non-unique ξ: wise choice when possible.

This happens in Brinkmann spaces too:

degenerate hypersurfaces Σu with transverse ∂u
(non-univocally determined)

Issues on Brinkmann spaces:

Relations between different choices of ∂u (and Ω)
To introduce associated geometric objects with nice properties
Study potentially extensible to other degenerate cases
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Geometric developments

Foliations

1 Spacelike (n − 2)-foliation M: {u = u0, v = v0}
2 Timelike 2 foliation: U : {x i = x i

0}

Tangent bundle decompositions:

1 Non-orthogonal: TM = TM⊕ TU
2 Orthogonal: TM = TU ⊕ (TU)⊥

Natural bases:

1 TU = span{E0 := ∂u − H∂v ,E1 := ∂v}
2 (TU)⊥ = span{Ei := ∂i −Wi∂v}
3 TM = span{∂i}
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The spacelike foliation M

Foliation M: {u = u0, v = v0}
Metric induced bundle by the foliation:

g = gijdx i dx j

(Notation: if dx i , α on M, then dx i , α on the foliation)
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Exterior derivative d

For any 1-form α on M:

d α = dα.

Satisfies the properties of a derivation for ω, τ ∈ ΛqM:

1 Linearity plus d(ω ∧ τ) = dω ∧ τ + (−1)sω ∧ dτ .

2 d(dω) = 0.

3 If ω = 1
s!ωi1...is dx i1 ∧ . . . dx is , then

dω = 1
s!∂k(ωi1...is )dxk ∧ dx i1 ∧ . . . dx is

4 Poincaré Lemma: d-closed implies d-exact.
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Covariant derivative ∇ for M

Vector fields on M are naturally on M

M is endowed with a Riemannian metric and then a natural ∇

∇XY (∈ X(M)) ∀X ,Y ∈ X(M)

Extended to tensor fields on M satisfies

∇g = 0

Defines a foliation curvature R:

R(X ,Y )Z = (∇X∇Y−∇Y∇X−∇[X ,Y ])Z ∈ X(M), ∀X ,Y ,Z ∈ X(M)

plus Ricci tensor Ric and scalar curvature S.
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Covariant derivative ∇ for M

Definition

M is flat (resp. locally symmetric) if R = 0 (resp. ∇ R = 0)

u-Einstein if Ric = µg for some µ s.t. dµ ∧ du = 0 (Schur
lemma Ric= fg ⇒ f ≡ c does not apply to foliations) and:

1 M is Einstein if µ = const.,
2 M is Ricci-flat if µ ≡ 0.
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Covariant derivative ∇ for M

From Riemannian results:

Proposition

Let (M, g) be a Brinkmann space:

1 ∇rR = 0 (rth-symmetric) =⇒ ∇ R = 0 (locally symmetric).

2 ∇ R = 0 (locally symmetric) and Ric = 0 (Ricci-flat)
=⇒ R = 0 (flat)

3 If M is flat, there exists a chart {u, v , y i} s.t.:
g = −2du(dv + Hdu + Widy i ) + δijdy idy j .
(gij = δij independent of u )
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Transverse operators for M: dot derivative

For T ∈ Γ(T r
sM):

Ṫ = L∂u T̊ ∈ Γ(T r
sM)

That is, in the base {∂i}:

Ṫ i1...ir
j1...js

= ∂u(T i1...ir
j1...js

)
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Transverse operators for M: D0 derivative

Recall E0 = ∂u − H∂v

D0 : Γ(T r
sM) −→ Γ(T r

sM)

T → D0T = (∇E0T̊ )

Properties:

1 Algebraic properties of a tensor derivation

2 D0g = 0

Lemma

Each vector field on a leave of M can be extended to a unique
K (= −∂v )-invariant D0-parallel vector field in X(M).
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Reducibility in M
T ∈ Γ(T k

sM) is reducible if, there are foliations M(1),M(2) s.t.,
in a natural sense:

TM = TM(1) ⊕ TM(2) T = T (1) ⊕ T (2)

i.e. there exists a Brinkmann chart {u, v , x i} and a partition of the
indexes I1 = {2, . . . , d + 1}, I2 = {d + 2, . . . , n − 1} s.t.

Taa′ = 0 y ∂a′Tab = 0,

where a, b belong to some Im and a′, b′ to the other one.

In particular, when g ∈ Γ(T2M) is reducible the sum is orthogonal
and we write M =M(1) ×M(2) ,

g = −2du(dv + Hdu + W̊ ) + g̊
(1) ⊕ g̊

(2)
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Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and {u, v , x i} a Brinkmann
chart. If there exist a symmetric L ∈ Γ(T 0

2M), L 6= cg, which is
v-invariant, ∇-parallel and D0-parallel.

Then there exists a Brinkmann chart {u, v , y i} in the Brinkmann
decomposition {u, v} such that:

1 g is reducible: g = g (1) ⊕ . . .⊕ g (s), s ≥ 2 (u-dependent)

2 L =
∑s

m=1 λm g (m) for some λm ∈ R (u-independent,
λ̇m = 0).
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Local version of the theorem

Aim:

Theorem

A properly 2nd-symmetric Brinkmann space is locally isometric to
a product of:

a proper 2nd-order Cahen-Wallach space (Rd+2, gA),
gA = −2du

(
dv + (aiju + bij)x ix jdu

)
+ δijdx idx j

with some aij 6= 0, and

symmetric Riemannian space (N, gN).
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Step 1: define appropriate elements on M
Express the non-trivial parts of R,∇R in terms of tensors on M

Tensors for R: A ∈ T2M, B ∈ T3M, R ∈ T 1
3M

A(X ,Y ) = θ1(R(E0, Y̊ )X̊ ), i.e. Aij = R1
i0j

B(X ,Y ,Z ) = θ1(R(Y̊ , Z̊ )X̊ ), i.e., Bijk = R1
ijk

R(X ,Y )Z = R(X̊ , Y̊ )Z̊ , i.e., R
i
jkl = R i

jkl

Tensors for ∇R: Ã ∈ T2M, Â, B̃ ∈ T3M, B̂, R̃ ∈ T 1
3M

Ã(X ,Y ) = θ1
(

(∇E0
R)(E0, Y̊ )X̊

)
, Â(X ,Y ,Z) = θ1

(
(∇X̊R)(E0, Z̊)Y̊

)
,

B̃(X ,Y ,Z) = θ1
(

(∇E0
R)(Y̊ , Z̊)X̊

)
, B̂(X ,Y ,Z ,V ) = θ1

(
(∇X̊R)(Z̊ , V̊ )Y̊

)
,

R̃(X ,Y )Z = ∇E0
R(X̊ , Y̊ )Z̊ .

Ãij = ∇0R1
i0j ; Âsij = ∇sR1

i0j

B̃ijk = ∇0R1
ijk ; B̂sijk = ∇sR1

ijk ; R̃ i
jkl = ∇0R i

jkl
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Step 2: simplification of chart-dependent elements

Proposition

For any 2nd-symmetric Brinkmann decomposition {u, v}:

(a) All the (chart-dependent) elements for ∇R vanish but Ã, i.e.
B̂ = R̃ = Â = B̃ = 0.

(b) Ã is independent of the chosen chart

(c) The equations of 2nd symmetry reduce to:

∇Ã= 0, D0Ã= 0
∇ R= 0, D0R= 0

with B̂ = 0, B̃ = 0, Â = 0.
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Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from

∇2
R = 0⇒ ∇R = 0.

Then:

Use the conditions of integrability of 2nd symmetry equations

(∇kD0 − D0∇k )F i
j = (H,k )(∂vF

i
j ) + F i

mBkj
m − Fm

jBkm
i − tm k∇mF

i
j

(∇n∇m−∇m∇n)T
i1...ik
j1...js

=
s∑

b=1

R
l
jbnmT

i1...ik
j1...jb−1 ljb+1...js

−
k∑

a=1

R
ia

lnmT
i1...ia−1 lia+1...ik
j1...js

Use the equations derived from 2nd Bianchi identity
∇[αRβλ]νµ = 0 =⇒ R̃ijkl = −2B̂[ij]kl , B̃kij = 2Â[ij]k .

Technical point: algebraic criteria for the vanishing of tensor fields
are also introduced, as:
In an Euclidean vector space, Tijk vanishes if
Ti [jk] = Tijk , Tijk + Tjki + Tkij = 0 and T(ij)

rTrnm = 0
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Step 2: simplification of chart-dependent elements

Remark

∇R 6= 0 iff Ã 6= 0.

The scalar curvature S (not only of M but also ) of M is
constant.
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Step 3: Reducibility of Ã and Ric

From the equations of 2nd-symmetry:

∇Ã= 0, D0Ã= 0
∇ R= 0, D0R= 0

Ã and Ric (and also g) are D0- ∇-invariant so that Extended
Eisenhart theorem applies and:

M. Sánchez Lorentzian r-th symmetric spaces
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Step 3: Reducibility of Ã and Ric

M =M(1) ×M(2) with M(1) flat and M(2) locally
symmetric non Ricci-flat.

g = g (1) ⊕ g (2) with g (1) = δabdxadxb (ġ
(1)

= 0, i.e.,
u-independent)

R = R
(1) ⊕ R

(2)
with R

(1)
= 0 and R

(2) 6= 0 with ∇R
(2)

= 0.

Ã = Ã(1) ⊕ Ã(2) with Ã(2) = 0 .

Remark

For any Brinkmann decomposition {u, v}:
Ã, Ric and g are simultaneously reducible

The non-trivial part of Ã lies in M(1) and the non-trivial one
of Ricci on M(2)

M. Sánchez Lorentzian r-th symmetric spaces
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Step 4: reduction to two independent Lorentzian problems

From previous result in a Brinkmann chart:

g = −2du(dv + Hdu + W̊ ) + g̊
(1) ⊕ g̊

(2)

and one can check that H, W are also simultaneously reducible, so
that in some new chart:

g = −2du(dv + (H(1) + H(2))du + W̊ (1) + W̊ (2)) + g̊
(1) ⊕ g̊

(2)
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Step 4: reduction to two independent Lorentzian problems

Now, define two lower dimensional Lorentzian spaces

M [m] = R2 ×M
(m)

, m = 1, 2:

g [m] = −2du(dv + H(m)du + W (m)) + g̊
(m)
.

Remark

These two Lorentzian spaces are 2nd symmetric as so was the
original one.

So, the problem is reduced to the 2nd symmetry of two simple
spaces

M. Sánchez Lorentzian r-th symmetric spaces
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Step 4: reduction to two independent Lorentzian problems

(M [2], g [2]) 2nd symmetric with Ã[2] = 0:

Locally symmetric
Cahen-Wallach space (order 1) compatible with parallel
K = −∂v (and A[2] = 0)

 Locally symmetric Riemannian part in Thm

(M [1], g [1]) 2nd-symmetric with flat M[1] (Ã[1] 6= 0):
2nd-symmetric plane wave: directly computable obtaining a
generalized Cahen-Wallach of orden 2 :

gA = −2du
(
dv + (aiju + bij)x ix jdu

)
+ δijdx idx j

�
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2nd-symmetric plane wave: directly computable obtaining a
generalized Cahen-Wallach of orden 2 :

gA = −2du
(
dv + (aiju + bij)x ix jdu

)
+ δijdx idx j

�

M. Sánchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry
When ∇rT = 0 ⇒ ∇T = 0?

Brinkmann spaces
Sketch of proof

Step 1/4
Step 2/4
Step 3/4
Step 4/4

Step 4: reduction to two independent Lorentzian problems

(M [2], g [2]) 2nd symmetric with Ã[2] = 0:
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Further open questions

Modest:

1 Characterize accurately when ∇2T = 0 6⇒ ∇T = 0 in the
Lorentzian case.

2 Classify 3rd symmetric Lorentzian spaces.

Ambitious:

1 Generalize to Lorentzian rth-symmetric spaces

2 Idem to higher signatures.

Senovilla’s:

1 Solve all the linear conditions for curvature:

∇rR +t1⊗∇r−1R +t2⊗∇r−2R + · · ·+tr−1⊗∇R +tr⊗R = 0

for some m- covariant tensors tm.
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