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Introduction

Aim of the talk:

m To classify the 2nd-symmetric Lorentzian manifolds, i.e.:

V2R :=V(VR) =0
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Introduction

Aim of the talk:
m To classify the 2nd-symmetric Lorentzian manifolds, i.e.:
V2R :=V(VR) =0

m To provide properties and open questions on the
rth-symmetric case V'R = 0 and, in general on the
implications of

V'T=0

for any tensor field.
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Introduction

Senovilla '08, who introduced its systematic study, pointed out a
good number of applications including:
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Senovilla '08, who introduced its systematic study, pointed out a
good number of applications including:

m Penrose limit type constructions
m “Super-energy” tensor

m Higher order Lagrangian theories, supergravity, vanishing of
quantum fluctuations...
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Introduction

Senovilla '08, who introduced its systematic study, pointed out a
good number of applications including:

m Penrose limit type constructions
m “Super-energy” tensor

m Higher order Lagrangian theories, supergravity, vanishing of
quantum fluctuations...

Moreover,

m this is a natural generalization of symmetric spaces whose
relation with homogeneous one must be clarified.
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Introduction

But for me, the most basic mathematical reason suffices:

m Riemannian case: V.R=0= VR =0
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Introduction

But for me, the most basic mathematical reason suffices:

m Riemannian case: V.R=0= VR =0

m So, instead of V2R = 0, semi-symmetric spaces were
introduced (Cartan, Szabd):

V2R(X,Y;...) —=V2R(Y,X;...)=
— VX(VYR) - VY(VXR) - V[ny]R
= R(X,Y)-R=0

M. Sanchez Lorentzian r-th symmetric spaces



Introduction

But for me, the most basic mathematical reason suffices:

m Riemannian case: V.R=0= VR =0

m So, instead of V2R = 0, semi-symmetric spaces were
introduced (Cartan, Szabd):

V2R(X,Y;...) —=V2R(Y,X;...)=
— VX(VYR) - VY(VXR) - V[ny]R
= R(X,Y)-R=0

m Lorentzian and higher signatures: V'R =0+ VR =0
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Introduction

m So, a ladder of conditions appear in the Lorentzian case:
Locally symmetric C 2nd-symmetric C semi-symmetric
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Introduction

m So, a ladder of conditions appear in the Lorentzian case:
Locally symmetric C 2nd-symmetric C semi-symmetric

How hadn’t 2nd-symmetry been studied before?
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Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, — )
Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

m (Local classification). (M, g) is locally isometric to a product
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Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, — )
Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

m (Local classification). (M, g) is locally isometric to a product

m a (non-flat) symmetric Riemannian space (N, gn)

m a proper 2nd-order Cahen-Wallach space (R9+2, ga),
ga = —2du (dv aF (aiju aF b;j)xijdu) aF AUC/X'-de
with some a;; # 0.
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Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, — )
Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

m (Local classification). (M, g) is locally isometric to a product
m a (non-flat) symmetric Riemannian space (N, gn)
m a proper 2nd-order Cahen-Wallach space (R9+2, ga),
ga = —2du (dv + (ajju + byj)x'x du) + 6;dx’ dx/
with some a;; # 0.
m (Global classification). Moreover, if (M, g) is 1-connected and
geodesically complete, then it is globally isometric to
(]Rd+2 X N, ga ® gN)-
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References
m Blanco, Senovilla, — : J. Eur. Math. Soc. (2013)
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Local symmetry vs. 2nd-symmetry Characterizations

Cla tion
Ger ation of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

Local symmetry

Proposition

For a (connected) semi-Riemannian manifold (N, h), they are
equivalent:

(i) (N, h) is locally symmetric, i.e. VR = 0.

(i) If X, Y and Z are parallel vector fields along a curve v, then
sois R(X,Y)Z.

(iii) The sectional curvature of non-degenerate planes is invariant
under parallel transport

(iv) The local geodesic symmetry s, is an isometry at any p € N.

(v) (N, h) is locally isometric to a symmetric space.
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Local symmetry vs. 2nd-symmetry Characterizations

Cla tion
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

Remark

“(N, h) is locally isometric to a symmetric space”

~> as a difference with the locally homogeneous case, as there
exists non-regular ones (Kowalski'97)
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

2nd symmetry

Lemma

For a semi-Riemannian (N, h), they are equivalent:

m Skew symmetry of V2R in the derivatives slots.

m For any non-degenerate tangent plane I, C T,N, its parallel
transport I, along any geodesic vy, the derivative of its
sectional curvature d%(K (My)) is a constant along .

m For any parallelly propagated vector fields X, Y, Z along any
geodesic v, the vector field (V. R)(X, Y)Z is itself parallelly
propagated along .
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Local symmetry vs. 2nd-symmetry Characterizations

Cla ion
ation of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

For a semi-Riemannian (N, h), they are equivalent:
(i) (N, h) is 2nd-symmetric, VVR = 0
(i) (N, h) is semi-symmetric (R(X,Y)R = 0) and satisfies any of
the equivalent conditions to skew-symmetry in the lemma .

(iii) If V,X,Y,Z are parallelly propagated vector fields along any
curve, then so is (VyR)(X,Y)Z.

M. Sanchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Characterizations of local symmetry vs 2nd-symmetry

For a semi-Riemannian (N, h), they are equivalent:
(i) (N, h) is 2nd-symmetric, VVR = 0
(i) (N, h) is semi-symmetric (R(X,Y)R = 0) and satisfies any of
the equivalent conditions to skew-symmetry in the lemma .

(iii) If V,X,Y,Z are parallelly propagated vector fields along any
curve, then so is (VyR)(X,Y)Z.

Characterizations in terms of an analog of the geodesic symmetry
or local isometries to a model space are conspicuously absent.
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Local symmetry vs. 2nd-symmetry

Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
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Local symmetry vs. 2nd-symmetry

Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan'’s.
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then
(M, g) is locally isometric to the direct product of a finite number
of irreducible symmetric spaces and a Euclidean d-space.
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then
(M, g) is locally isometric to the direct product of a finite number
of irreducible symmetric spaces and a Euclidean d-space.
Moreover:

When (M, g) irreducible, then Ric = cg
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then
(M, g) is locally isometric to the direct product of a finite number
of irreducible symmetric spaces and a Euclidean d-space.
Moreover:

When (M, g) irreducible, then Ric = cg

When (M, g) Ricci-flat, then R = 0
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then
(M, g) is locally isometric to the direct product of a finite number
of irreducible symmetric spaces and a Euclidean d-space.
Moreover:

When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R = 0

Proof. Use de Rham decomposition
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Local symmetry vs. 2nd-symmetry Characterizations
- aracterizations

Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Let (M, g) be a locally symmetric Riemannian manifold.
When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R =0
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Local symmetry vs. 2nd-symmetry

Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Let (M, g) be a locally symmetric Riemannian manifold.
When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R =0

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:

m If a Riemannian (N, gr) admits a 2-cov. symmetric parallel L.
L # cgg, then locally:
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Local symmetry vs. 2nd-symmetry

Classification locally symmetric vs 2nd-symmetric

Let (M, g) be a locally symmetric Riemannian manifold.
When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R =0

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
m If a Riemannian (N, gr) admits a 2-cov. symmetric parallel L.

L # cgg, then locally:

B gr es reducible: gg = g,(?l) D gf(;?) S...P g;(qs)-

B L=3%_ Angl™ for some A, € R.
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Local symmetry vs. 2nd-symmetry

Classification locally symmetric vs 2nd-symmetric

Let (M, g) be a locally symmetric Riemannian manifold.
When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R =0

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:

m If a Riemannian (N, gr) admits a 2-cov. symmetric parallel L.
L # cgr, then locally:
m gr es reducible: gg = g,(;) ® g,(;,z) ®...0 g,(;).
B L=3%_ Angl™ for some A, € R.

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld '75)

M. Sanchez Lorentzian r-th symmetric spaces



Local symmetry vs. 2nd-symmetry

Classification locally symmetric vs 2nd-symmetric

Let (M, g) be a locally symmetric Riemannian manifold.
When (M, g) irreducible, then Ric = cg
When (M, g) Ricci-flat, then R =0

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:

m If a Riemannian (N, gr) admits a 2-cov. symmetric parallel L.
L # cgg, then locally:
m gr es reducible: gg = g,(;) ® g,(;,z) ®...0 g,(;).

L= 1 An ,(?m) for some Am € R.

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld '75)
—and locally homogeneous with Ric< 0 are regular (Spiro '93)
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Lorentzian symmetric spaces

Theorem (Cahen, Wallach '70)

A complete 1-connected Lorentzian symmetric space (M, g) is
isometric to the product of a simply-connected Riemannian
symmetric space and one of the following Lorentzian manifolds:
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Local symmetry vs. 2nd-symmetry

Classification locally symmetric vs 2nd-symmetric

Lorentzian symmetric spaces

Theorem (Cahen, Wallach '70)

A complete 1-connected Lorentzian symmetric space (M, g) is
isometric to the product of a simply-connected Riemannian
symmetric space and one of the following Lorentzian manifolds:

(R, —dt?)
The universal cover of de Sitter or anti-de Sitter d-spaces,
d>2,

A Cahen-Wallach space CW9(A) = (R9, ga),d > 2, where
A= (Ajj) isa (d —2) x (d —2) matrix and
ga = —2du (dv + A,-jx"xjdu) + > Sijdx’ dx/
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Choosing A with trace(A) = 0:
there are Ricci flat non-flat Lorentzian symmetric spaces.
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Local symmetry vs. 2nd-symmetry

Characterizations
Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

Choosing A with trace(A) = 0:
there are Ricci flat non-flat Lorentzian symmetric spaces.

RENEILS

Lorentzian symmetric space with a parallel lightlike v.f. K =
Locally isometric to the product of a CW9(A), d > 2 and
Riemannian symmetric space.
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Local symmetry vs. 2nd-symmetry Characterizations
- L_haracterizations

Classification
Generalization of Cahen-Wallach family

Classification locally symmetric vs 2nd-symmetric

2nd-symmetric:
The theorem to be proven shows:

proper 2nd-symmetric spaces only appear generalizing the
family of Cahen-Wallach spaces CW9(A),d > 2:

m ~ allow an affine dependence of the matrix A in u
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Local symmetry vs. 2nd-symmetry

Generalization of Cahen-Wallach family

Generalized Cahen-Wallach d-space of order r,
CWA(A)= (RY, ga), d > 2: metric:

ga = —2du | dv + Z Aj(u)x'xdu | + Z Sdx" dx/
i i

where A = (Ajj(v)) is a (d —2) x (d — 2) matrix:

Aj(u) = AT Dt g Ay A

for symmetric (constant) matrixes AZ
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Local symmetry vs. 2nd-symmetry

Generalization of Cahen-Wallach family

Proposition
Any genera/ized Cahen-Wallach space CW9(A) satisfies:

lfA 75 0 (CWJ(A) is proper) then it is proper
rth- symmetrlc

1. Direct computation: in an appropriate basis

{Ea} = {EO =0, — ZA,'J'X’XJaV, E = 8\,, 8,} the only

non-vanishing components of V/R, | € {0,...r — 1} are:
_ dA, _ (k)

v()VRIOJ TR Zkl(kIA kll:l
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Local symmetry vs. 2nd-symmetry

Characterizations
Classif
Generalization of Cahen-Wallach family

Generalization of Cahen-Wallach family

Any genera/ized Cahen-Wallach space CW9(A) satisfies:
/fA 7é 0 (CWH(A) is proper) then it is proper
rth- symmetrlc
K = 0, is a lightlike parallel vector field
It is analytic

it is geodesically complete

Proof. 2,3: Trivial
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Local symmetry vs. 2nd-symmetry e

Classif
Generalization of Cahen-Wallach family

Generalization of Cahen-Wallach family

Proposition
Any genera/ized Cahen-Wallach space CW9(A) satisfies:
/fA 7é 0 (CWH(A) is proper) then it is proper
rth- symmetrlc
K = 0, is a lightlike parallel vector field
It is analytic

it is geodesically complete

Proof. 2,3: Trivial
4. Direct computation or general results (Candela, Romero, — '13)
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Local symmetry vs. 2nd-symmetry

n
Generalization of Cahen-Wallach family

Generalization of Cahen-Wallach family

Corollary

A complete 1-connected Lorentzian manifold locally isometric to
some CWE(A) is globally isometric too.

This will allow to go from the local to the global result.
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Local symmetry vs. 2nd-symmetry

n
Generalization of Cahen-Wallach family

Generalization of Cahen-Wallach family

Corollary

A complete 1-connected Lorentzian manifold locally isometric to
some CWI(A) is globally isometric too.

This will allow to go from the local to the global result.

Remark

By the way:

Lafuente '88 proved that, for locally symmetric semi-Riemannian
spaces, the three types of causal completeness (timelike, spacelike
and lighlike) coincide. Does this hold for second/rth symmetric?
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When V' T =0= VT =07

Must rth-symmetry imply local symmetry 7

This is a particular case of:

B When V' T=0=VT =07
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When V' T =0= VT =07

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.
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Riemannian case
When V' T =0= VT =07 Semi-Riemannian extension
Generic points
Old techniques and lightlike parallel vector fields

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT =0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

RENEILS

In particular, from (b), Riemmannian r-th symmetric implies
locally symmetric.

M. Sanchez Lorentzian r-th symmetric spaces



When V' T =0= VT =07

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.
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When V' T =0= VT =07

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case r = 2 suffices (replace otherwise T := V"2T).
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Riemannian case
When V' T =0= VT =07 annian extension
points
hniques and lightlike parallel vector fields

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT =0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case r = 2 suffices (replace otherwise T := V'~2T).
2. Put f:=g(T,T)/2. Using V°T = 0:

Hessf(X,Y) =g(VxT,VyT) and VHessf =0
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Riemannian case
When V' T =0= VT =07 Semi-Ri nian extension

s
chniques and lightlike parallel vector fields

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT =0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case r = 2 suffices (replace otherwise T := V'~2T).
2. Put f:=g(T,T)/2. Using V°T = 0:

Hessf(X,Y) =g(VxT,VyT) and VHessf =0

3. By Eisenhart thm: Hessf = cg, ¢ € R. Thus Z :=grad(f)
satisfies V xZ = cX (in particular, is homothetic)
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Riemannian case
When V' T =0= VT =07 Semi-Ri nian extension

s
chniques and lightlike parallel vector fields

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT =0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case r = 2 suffices (replace otherwise T := V'~2T).
2. Put f:=g(T,T)/2. Using V°T = 0:

Hessf(X,Y) =g(VxT,VyT) and VHessf =0

3. By Eisenhart thm: Hessf = cg, ¢ € R. Thus Z :=grad(f)
satisfies V xZ = cX (in particular, is homothetic)

4. Under irreducibility + completeness homothetic vectors are
Killing: c¢=0g(VxT,VyT)=0. As g is Riemannian VT = 0.



When V' T =0= VT =07

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that
V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: T = 0 on the flat part
of (local) de Rham decomposition (as well as on mixed elements)
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When V'T =0= VT =07

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: T = 0 on the flat part
of (local) de Rham decomposition (as well as on mixed elements)
2. As before, one has VxZ = ¢X and needs ¢ = 0.
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Riemannian case
When V' T =0= VT =07 annian extension
points
hniques and lightlike parallel vector fields

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that

V'T =0. Then VT = 0 if either

(a) (Nomizu-Ozeki '62) g is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: T = 0 on the flat part
of (local) de Rham decomposition (as well as on mixed elements)
2. As before, one has VxZ = ¢X and needs ¢ = 0.

3. As Z is homothetic, it is affine. Thus LV =0=L;T and:

0=L,VT = Vz(VT) + (S+ 1)CVT = (5+ 1)CVT

(s: covar minus contrav slots for T). That is, if ¢ # 0 directly
VT =00



Riemannian case

When V' T = > = 07 Sen mannian extension
Generic points
Old techniques and lightlike para ctor fields

Conclusion

V'T =04 VT =0 only when:
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Riemannian case
When V' T =0= VT =07 Semi-Riemannian extension
G points
Old techniques and lightlike parallel vector fields

Conclusion

V'T =04 VT =0 only when:

m The manifold is reducible, with a flat part in de Rham
decomposition, OR
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[IENCEES
When V' T =0= VT =07 iemannian nsion

ghtlike parallel vector fields

Conclusion

V'T =04 VT =0 only when:

m The manifold is reducible, with a flat part in de Rham
decomposition, OR

m The manifold is incomplete with a proper (non-Killing)
homothetic vector field (necessarily without zeroes)
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Riemannian case
When V' T =0= VT =07 Semi-Riemannian extension
Generic points
Old techniques and lightlike parallel vector fields

Conclusion

V'T =04 VT =0 only when:

m The manifold is reducible, with a flat part in de Rham
decomposition, OR

m The manifold is incomplete with a proper (non-Killing)
homothetic vector field (necessarily without zeroes)

In the latter case the metric can be written locally as a cone:
M=1xS5,1cC(0,00),(S,gs) Riemannian

g =dt>+ t2w§g5
being Z = td; proper homothetic . In particular:
VZ=2-ld(#0) V?Z=0



Riemannian case

When V' T =0= VT =07

Difficulties for the semi-Riemannian extension
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4 nnian case
When V' T =0= VT =07 iemannian extension

nd lightlik

Difficulties for the semi-Riemannian extension

The (full, local) de Rham decomposition cannot be carried
out when the subspaces invariant by local holonomy are
degenerate
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When V' T =0= VT =07

Difficulties for the semi-Riemannian extension

The (full, local) de Rham decomposition cannot be carried
out when the subspaces invariant by local holonomy are
degenerate

The conclusion ¢ = 0 only means g(T, T) constant and
g(VT,VT)=0ie VT is a lightlike tensor
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R a
When V' T =0= VT =07 ian extension

Difficulties for the semi-Riemannian extension

The (full, local) de Rham decomposition cannot be carried
out when the subspaces invariant by local holonomy are
degenerate

The conclusion ¢ = 0 only means g(T, T) constant and
g(VT,VT)=0ie VT is a lightlike tensor

Even in the non-degenerate irreducible case, to apply
Eisenhart one needs : if the restricted homogeneous holonomy
group is irreducible and a symm. 2-cov tensor h is invariant by
the group, then h = cg for some function ¢, which is constant
if his parallel
However, this holds in Lorentzian signature and others
(Tanno'67, n = 2 or non-neutral signature)
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Riemannian case
When V' T =0= VT =07 Semi-Riemannian extension
Generic points
Old techniques and lightlike parallel vector fields

Further properties: V' T = 0 in generic points

A point p is generic if the curvature endomorphism:
R:N(M) = A2 (M) v’ Aw’ = 2R(v, w)

is an isomorphism when restricted to p.

Theorem
If there exists a generic point, V' T =0 implies VT = 0, for any
semi-Riemannian metric.
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When V' T =0= VT =07 Semi-Riemsz xtension

Old techniques and lightlike parallel vector fields

V'T =0 in generic points

If there exists a generic point, V' T =0 implies VT = 0, for any
semi-Riemannian metric.

Proofs of increasing generality:

1 Simply, no conic metric (nor flat one) is generic.
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When V' T =0= VT =07

V'T =0 in generic points

Theor
If there exists a generic point, V' T =0 implies VT = 0, for any
semi-Riemannian metric.
Proofs of increasing generality:
1 Simply, no conic metric (nor flat one) is generic.
Remarks

m Valid only for the Riemannian case
m Extensible to generic (non-degenerate) Ric, as Ric(d;, X) =0
in the conic metric
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Riemannian cas
When V' T =0= VT =07 >emi-Ri nnian extensio
nts
Old techniques and lightlike parallel vector fields

V'T =0 in generic points

Theorem

If there exists a generic point, V' T = 0 implies VT = 0, for any
semi-Riemannian metric.

Proofs of increasing generality:

2 (Tanno '72) As we had Z with VxZ = cX:
0=Ly;V=V2Z+R(Z,)=R(Z,)
So R is not invertible except if Z = 0.
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When V' T =0= VT =07

ts
Old techniques and lightlike parallel vector fields

V'T =0 in generic points

Theorem

If there exists a generic point, V' T = 0 implies VT = 0, for any
semi-Riemannian metric.

Proofs of increasing generality:
2 (Tanno '72) As we had Z with VxZ = cX:
0=1LzV=V2Z+R(Z,-)=R(Z.")

So R is not invertible except if Z = 0.
Remarks:

m Also valid for Riemannian and extensible to generic Ric
m For Lorentz and non-neutral sign. + irreducibility, it applies,
but then implies only g(VT,VT) =0 and g(T, T) =const.
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Riemannian cas
When V' T =0= VT =07 >emi-Ri nnian extensio
nts
Old techniques and lightlike parallel vector fields

V'T =0 in generic points

Theorem

(Senovilla "08) If there exists a generic point, V" T = 0 implies
VT =0 on all M, for any semi-Riemannian metric.

Proofs of increasing generality:

3 (Senovilla '08) Apply the Ricci identities to T and VT
The invertibility of R allows to clear VT = 0.
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Riemannian
When V' T =0= VT =07 Semi-R tension
Generic points
Old techniques and lightlike parallel vector fields

V'T =0 in generic points

Theorem

(Senovilla "08) If there exists a generic point, V" T = 0 implies
VT =0 on all M, for any semi-Riemannian metric.

Proofs of increasing generality:

3 (Senovilla '08) Apply the Ricci identities to T and VT
The invertibility of R allows to clear VT = 0.
Remarks:
m Independent of both, signature or previous computations

m Extensible to: all semi-symmetric spaces have constant
curvature around generic points
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When V' T =0= VT =07 e F\’\Pmanmw extension

old technlques and lightlike parallel vector fields

Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let (M, g) be semi-Riemannian and r-th symmetric. If there exists
a vector field Z:

UxZ=cX ceR V¥XeX(M)

then either Z is parallel or R =0 .
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When V' T =0= VT =07 ?' e n extension
Generic points
Old techniques and lightlike parallel vector fields

Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let (M, g) be semi-Riemannian and r-th symmetric. If there exists
a vector field Z:

VxZ=cX ceR VYXecXM)
then either Z is parallel or R =0 .
Proof. As Z is homothetic, LzV =0, LzV*Rj; =0 and:
0=Lz(VIR)=VV IR)+(1+r)cV IR = (1+r)cV R

So, if ¢ # 0, use induction. [J



When V'T =0= VT =07 .?7 Riemannian extensio
Generic points
Old techniques and lightlike parallel vector fields

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel
lightlike direction or satisfies that V' ~1R is (parallel and) null and
g(V"2R,V'72R) is a constant.

Proof. The first possibility occurs either when degenerately
reducible or when admits a lightlike parallel v.f.
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When V' T =0 = VT =07 Ser <tension
C

pc s
Old techniques and lightlike parallel vector fields

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel
lightlike direction or satisfies that V' ~1R is (parallel and) null and
g(V"2R,V'72R) is a constant.

Proof. The first possibility occurs either when degenerately
reducible or when admits a lightlike parallel v.f.

Otherwise, in each irreducible part, put again T = V2R,
f=g(T,T), Hessf(X,Y)=g(VxT,VyT) and Z = gradf
By previous Prop., necessarily Z = 0. [J
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When V' T =0= VT =07 ?' e n extension

Generic points
Old techniques and lightlike parallel vector fields

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel
lightlike direction or satisfies that V' ~1R is (parallel and) null and
g(V™2R,V"2R) is a constant.

Proof. The first possibility occurs either when degenerately
reducible or when admits a lightlike parallel v.f.

Otherwise, in each irreducible part, put again T = V2R,
f=g(T,T), Hessf(X,Y)=g(VxT,VyT) and Z = gradf
By previous Prop., necessarily Z = 0. [J

RENEILS

Limit of “old” results: this suggests that at least 2nd-symmetric
Lorentzian spaces must admit a parallel lightlike v.f. K.

M. Sanchez Lorentzian r-th symmetric spaces



When V' T =0= VT =07

Old techniques and lightlike parallel vector fields

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space
admits a unique lightlike parallel vector field K.

(Alternative proof by Aleeksevski & Galaev, '11.)
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old techniques and lightlike parallel vector fields

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space
admits a unique lightlike parallel vector field K.

(Alternative proof by Aleeksevski & Galaev, '11.)
Steps of direct original proof (as simplified in Blanco's thesis):
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When V' T =0 = VT =07 Ser <tension
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Old techniques and lightlike parallel vector fields

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space
admits a unique lightlike parallel vector field K.

(Alternative proof by Aleeksevski & Galaev, '11.)
Steps of direct original proof (as simplified in Blanco's thesis):

m Previous result for 3 parallel light. vector, not only a line:
3 Parallel L # cg plus no decomposable (non-degenerately
reducible) = 3! independent parallel lightlike vector K .
(proof by discussing possible Segre types )
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Old techniques and lightlike parallel vector fields

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space
admits a unique lightlike parallel vector field K.

(Alternative proof by Aleeksevski & Galaev, '11.)
Steps of direct original proof (as simplified in Blanco's thesis):

m Previous result for 3 parallel light. vector, not only a line:
3 Parallel L # cg plus no decomposable (non-degenerately
reducible) = 3! independent parallel lightlike vector K .
(proof by discussing possible Segre types )

Uniqueness: a linear combination of Kj + K, would be (parallel
and) timelike in contradiction with no-decompsability/properness.
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When V'T =0= VT =07 .?7 FI'\emsn’n'un extensio
Generic points
Old techniques and lightlike parallel vector fields

Existence of a lightlike parallel vector field

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space
admits a unique independent lightlike parallel vector field K.

m Analyze the curvature concomitants showing that, either such
a K exists, or they vanish:
(a) 1-form concomitants of order m and degree up to m+1
(b) scalar or 2-cov. concomitants of equal order and degree.

m Using Ricci identity, such restrictions force the existence of K
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Understanding Brinkmann
Adapte etric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Brinkmann spaces

A Brinkmann space is any Lorentzian n-manifold endowed with a
complete lightlike parallel vector field K.
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Understanding Brinkmann
Adap ometric elements

Brinkmann spaces »
P and Eisenhart thm

Brinkmann spaces

Definition
A Brinkmann space is any Lorentzian n-manifold endowed with a
complete lightlike parallel vector field K.

Brinkmann decomposition {u, v}:

K parallel: fix u (up to a constant) s.t.: K = gradu

K lightlike: K+ degenerate totally geodesic integrable
foliation with leaves ¥,

Choose a hypersup. 2 transverse to K so that
M =% ,_0NQ is spacelike a transverse

Let ¢ the flow of K, define v so that ¢_,(,)(p) € Q
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Understandmg Brinkmann
etric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Construction of a Brinkmann chart

m Brinkmann chart {u, v, x'}: complete u, v to a chart by
choosing n — 2 coordinates x' independent of u in .
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Understanding Brinkmann
Adap ometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Construction of a Brinkmann chart

m Brinkmann chart {u, v, x'}: complete u, v to a chart by
choosing n — 2 coordinates x' independent of u in .

m Expression of g in a Brinkmann chart:
g = —2du (dv + H(u, x*)du + Wi(u, x*)dx") + gij(u, x*¥)dx'dx/

(natural sum in repeated indexes, K = —0,)
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Understanding Brinkmann
Adap ometric elements

Brinkmann spaces »
P and Eisenhart thm

Construction of a Brinkmann chart

m Brinkmann chart {u, v, x'}: complete u, v to a chart by
choosing n — 2 coordinates x' independent of u in .

m Expression of g in a Brinkmann chart:
g = —2du (dv + H(u, x*)du + Wi(u, x*)dx") + gij(u, x*¥)dx'dx/

(natural sum in repeated indexes, K = —0,)

Remark

Being more careful, one could get H =0 and W; = 0!
But it is preferred as above, as we wish to remove the
u-dependence of gjj(u, x').
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m In general:

Study of degenerate hypersurfaces
~~ Transverse vector field &

Non-unique &: wise choice when possible.
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m In general:
Study of degenerate hypersurfaces
~~ Transverse vector field &
Non-unique &: wise choice when possible.
m This happens in Brinkmann spaces too:

degenerate hypersurfaces ¥, with transverse 0,
(non-univocally determined)
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m In general:

Study of degenerate hypersurfaces
~~ Transverse vector field &

Non-unique &: wise choice when possible.
m This happens in Brinkmann spaces too:

degenerate hypersurfaces ¥, with transverse 0,
(non-univocally determined)

m Issues on Brinkmann spaces:

m Relations between different choices of 9, (and Q)
m To introduce associated geometric objects with nice properties
m Study potentially extensible to other degenerate cases
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m Foliations

Spacelike (n — 2)-foliation M: {u = up,v = v}
Timelike 2 foliation: U: {x = x}}
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m Foliations
Spacelike (n — 2)-foliation M: {u = up,v = v}
Timelike 2 foliation: U: {x = x}}

m Tangent bundle decompositions:

Non-orthogonal: TM = TM & TU
Orthogonal: TM = TU & (TU)*
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Geometric developments

m Foliations
Spacelike (n — 2)-foliation M: {u = up,v = v}
Timelike 2 foliation: U: {x = x}}

m Tangent bundle decompositions:

Non-orthogonal: TM = TM & TU
Orthogonal: TM = TU & (TU)*

m Natural bases:
TU = span{Ey :== 0, — HO,, E; == 0, }
(TU)* = span{E; :=0; — W;0,}
TM = span{9;}
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

The spacelike foliation M

Foliation M: {u = ug,v = w}
Metric induced bundle by the foliation:

g = g,-jdxi @

(Notation: if dx’, o on M, then W,a on the foliation)
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Exterior derivative d

For any 1-form « on M:
da=da.

Satisfies the properties of a derivation for w, 7 € AIM:
Linearity plus d(w A7) = dw AT+ (=1)w A dT .
d(dw) = 0.

Ij w = éw;l..,;saxiLA .. .gx’?, theni
dw = é@k(w;lm,-s)dxk ANdxt AL dx's
Poincaré Lemma: d-closed implies d-exact.

M. Sanchez Lorentzian r-th symmetric spaces



Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Covariant derivative V for M

m Vector fields on M are naturally on M

m M is endowed with a Riemannian metric and then a natural V
V x Y(e X(M)) VX, Y € X(M)
Extended to tensor fields on M satisfies

Vg =0
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces
P Reducibility and Eisenhart thm

Covariant derivative V for M

m Vector fields on M are naturally on M

m M is endowed with a Riemannian metric and then a natural V
VxY(€ X(M)) VX, Y € X(M)
Extended to tensor fields on M satisfies
Vg =0
Defines a foliation curvature R:
R(X,Y)Z = (ﬁxﬁy—vyﬁx—ﬁ[x’y])Z € X(M), ¥X,Y,Z € X(M)
plus Ricci tensor Ric and scalar curvature S.
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Understanding Brinkmann
Adapted geometric elements
Reducibility and Eisenhart thm

Brinkmann spaces

Covariant derivative V for M

m M is flat (resp. locally symmetric) if R = 0 (resp. V R = 0)
m u-Einstein if Ric = ug for some u s.t. du A du =0 (Schur
lemma Ric= fg = f = c does not apply to foliations) and:

M is Einstein if . = const.,
M is Ricci-flat if = 0.
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Understanding Brinkmann
Adapted geometric elements
Reducibility and Eisenhart thm

Brinkmann spaces

Covariant derivative V for M

From Riemannian results:

Let (M, g) be a Brinkmann space:

V'R =0 (rth-symmetric) = V R = 0 (locally symmetric).
V R =0 (locally symmetric) and Ric = 0 (Ricci-flat)

= R =0 (flat)
If M is flat, there exists a chart {u,v,y'} s.t.:

g = —2du(dv + Hdu + W;dy") + 6;idy’dy.

(gij = dj; independent of u )
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces Reducibility and Eisenhart thm

Transverse operators for M: dot derivative

For T e [(TIM):
T =1Ly, Tel(TIM)
That is, in the base {0;}:

i dr 0.y
7}1~~~js - au(—rjl_ls)
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces Reducibility and Eisenhart thm

Transverse operators for M: Dy derivative

Recall Eg = 0, — HO,

Do: T(TIM) — r(TiM)

T —  DoT = (Vg T)
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Understanding Brinkmann
Adapted geometric elements

Brinkmann spaces Reducibility and Eisenhart thm

Transverse operators for M: Dy derivative

Recall Eg = 0, — HO,

Do: T(TIM) — r(TiM)

T —  DoT = (Vg T)

Properties:
Algebraic properties of a tensor derivation
Dog =0

Lemma

Each vector field on a leave of M can be extended to a unique
K (= —0\)-invariant Dy-parallel vector field in X(M).
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Brinkmann
c elements

Brinkmann spaces Reducibility and Eisenhart thm

Reducibility in M

T € T(TEM) is reducible if, there are foliations M) M®?) st
in a natural sense:

TM=TMBDaTM?  T=TOgTO

i.e. there exists a Brinkmann chart {u, v, x'} and a partition of the
indexes [} ={2,...,d+ 1}, h={d+2,...,n—1} s.t.

T, =0 y 0yTo =0,

where a, b belong to some /,,, and &', b’ to the other one.
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Brinkmann spaces

Reducibility in M

T € T(TEM) is reducible if, there are foliations M) M®?) st
in a natural sense:

TM=TMBDaTM?  T=TOgTO

i.e. there exists a Brinkmann chart {u, v, x'} and a partition of the
indexes [} ={2,...,d+ 1}, h={d+2,...,n—1} s.t.

To =0y Oz Tap = 0,

where a, b belong to some /,,, and &', b’ to the other one.
In particular, when g € (T2 M) is reducible the sum is orthogonal
and we write M = M1 x M?)

g = —2du(dv + Hdu + W) + 8 & ?
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Brinkmann spaces

Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and {u,v,x'} a Brinkmann
chart. If there exist a symmetric L € T(T9M), L # cg, which is
v-invariant, NV -parallel and Dq-parallel.
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elements

Brinkmann spaces R N g,

Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and {u, v,x'} a Brinkmann
chart. If there exist a symmetric L € T(T9M), L # cg, which is
v-invariant, NV -parallel and Dq-parallel.

Then there exists a Brinkmann chart {u, v,y'} in the Brinkmann
decomposition {u, v} such that:

g is reducible: g =gV & ... ® g, s > 2 (u-dependent)

Z = Ay 2™ for some A\, € R (u-independent,
Am = 0).
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Local version of the theorem

Aim:

A properly 2nd-symmetric Brinkmann space is locally isometric to
a product of:

m a proper 2nd-order Cahen-Wallach space (IRC’_+2,_gA),
ga = —2du (dv + (ajju + b;j)xixjdu) + 0jjdx’ dx/
with some aj; # 0, and

m symmetric Riemannian space (N, gy).

M. Sanchez Lorentzian r-th symmetric spaces



Step 1/4
S

Sketch of proof

Step 1: define appropriate elements on M

Express the non-trivial parts of R, VR in terms of tensors on M
m Tensors for R: A€ ToM, Be TzM, R € T31./\/l

m A(X,Y) =01 (R(E, Y)X), ie. Aj =R i
m B(X,Y,Z) =0 R(Y,Z2)X), ie., Bj = R* ji
m R(X,Y)Z=R(X,Y)Z ie, R ju=Ru

= Tensors for VR: Ac ToM, A,Be TsM, B,R e TiM

A(X,Y) = 0} ((VEOR)(EO, S'/))”(), AX,Y,Z) =0} ((VXR)(EO, 2) S’/),
B(X,Y,Z) =0 ((VEO R)(Y, 2))’(), B(X,Y,Z,V) =0 ((V)-(R)(Z, \"/)\'7),
R(X,Y)Z =VgR(X,Y)Z.
Aj = VoR! joj; Asj = VsR! i
Bjjk = VoR! ji; Bsjik = VsRY jui R jy = VoR' jy
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 2: simplification of chart-dependent elements

Proposition

For any 2nd-symmetric Brinkmann decomposition {u,v}:

(a) All the (chart-dependent) elements for VR vanish but A ie.
B=R=A=B=0.
(b) A is independent of the chosen chart

(c) The equations of 2nd symmetry reduce to:
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Step 1/4
Step 2/4
Ste, 4
Sketch of proof Step 4/4

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from
V'R=0=VR=0.
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St
Sketch of proof Step 4/4

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from
V’R =0= VR = 0.Then:
m Use the conditions of integrability of 2nd symmetry equations

(VkDo — DoVik)F' j = (Hk)(OvF )+ F' mBij ™ — F™ B ' — t™ kVmF'

~ BHia ’1 ig—1lig41. ik
ViVm—VmVa Tk — E R Tk E R
(Vn ) Jieeds Jonm Ty 1libr1--Js nm Ty e
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from
V’R =0= VR = 0.Then:
m Use the conditions of integrability of 2nd symmetry equations

(VkDo — DoVik)F' j = (Hk)(OvF )+ F' mBij ™ — F™ B ' — t™ kVmF'
- v ik 11 Lk ia 11 g1 ligpy. ik
(VaVa=Vm Vi )Tn Js ZR Jpnm J1 db—1lb+1---Js ZR inm T, J1eeds

m Use the equations derived from 2nd Bianchi identity
ViaRoxuu = 0 = R = —2Bjju,  Brj = 24
Technical point: algebraic criteria for the vanishing of tensor fields
are also introduced, as:
In an Euclidean vector space, Tjj vanishes if
Titii) = Tijks Tijk + Tjki + T = 0 and Ty "Trpm =0



Step 1/4
Step 2/4

Step 3/4
Sketch of proof Step 4/4

Step 2: simplification of chart-dependent elements

m VR#O0iff A#£0.

m The scalar curvature S (not only of M but also ) of M is
constant.
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 3: Reducibility of A and Ric

From the equations of 2nd-symmetry:

VA= 0, DoA= 0
VvV R=0, DyR=0

A and Ric (and also g) are Dp- V-invariant so that Extended
Eisenhart theorem applies and:
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 3: Reducibility of A and Ric

n M =MD x MO with MO flat and M) locally
symmetric non Ricci-flat.
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Sketch of proof

Step 3: Reducibility of A and Ric

n M =MD x MO with MO flat and M) locally
symmetric non Ricci-flat.

(1)

g =g @g® with gV = §,,dx%dx? (8 =0, ie.,

u-independent)
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 3: Reducibility of A and Ric

n M =MD x MO with MO flat and M) locally
symmetric non Ricci-flat.

nz =20 az® with gV = 5,,dx?dx? G =0, ie.,
u-independent)

s R=RY 2R with R = 0 and R® # 0 with VR = 0.
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Step 1/4
Step 2/4
Step 3/4
Sketch of proof Step 4/4

Step 3: Reducibility of A and Ric
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Step 3: Reducibility of A and Ric

n M =MD x MO with MO flat and M) locally

symmetric non Ricci-flat.

nz =20 az® with gV = 5,,dx?dx? G =0, ie.,
u-independent)

s R=RY 2R with R = 0 and R® # 0 with VR = 0.
B A=AD g A@ with A? =0 .

For any Brinkmann decomposition {u, v}:

= A, Ric and g are simultaneously reducible

m The non-trivial part of A lies in M) and the non-trivial one
of Ricci on M3
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Sketch of proof

Step 4: reduction to two independent Lorentzian problems

From previous result in a Brinkmann chart:

g = —2du(dv + Hdu + W) +§(1) @5(2)

and one can check that H, W are also simultaneously reducible, so
that in some new chart:

g = —2du(dv + (H® + H®)du + WO 1 W) 4 g 55
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Step 4: reduction to two independent Lorentzian problems

Now, define two lower dimensional Lorentzian spaces
MIm = R2 x M, m=1,2:

g™ = —2du(dv + H™ du + wmy + 5™,

m These two Lorentzian spaces are 2nd symmetric as so was the
original one.

m So, the problem is reduced to the 2nd symmetry of two simple
spaces
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m (M2 gl 2nd symmetric with Al2l =

m Locally symmetric
m Cahen-Wallach space (order 1) compatible with parallel
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Step 4: reduction to two independent Lorentzian problems

m (M2 gl 2nd symmetric with Al2l = 0:
m Locally symmetric
m Cahen-Wallach space (order 1) compatible with parallel
K = -0, (and AP = 0)
~> Locally symmetric Riemannian part in Thm
m (MU, gll1) 2nd-symmetric with flat M (AL £ 0):
2nd-symmetric plane wave:
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Sketch of proof

Step 4: reduction to two independent Lorentzian problems

m (M2 gl 2nd symmetric with Al2l =

m Locally symmetric
m Cahen-Wallach space (order 1) compatible with parallel
K = -0, (and AP = 0)

~> Locally symmetric Riemannian part in Thm

m (MU, gll1) 2nd-symmetric with flat M (AL £ 0):
2nd-symmetric plane wave: directly computable obtaining a
generalized Cahen-Wallach of orden 2 :

ga = —2du (dv + (aju + by)x'x/ du) + d;;dx"dx/
U
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Further open questions

Modest:

Characterize accurately when V2T =0 VT =0 in the
Lorentzian case.

Classify 3rd symmetric Lorentzian spaces.
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Further open questions

Modest:

Characterize accurately when V2T =0 VT =0 in the
Lorentzian case.

Classify 3rd symmetric Lorentzian spaces.
Ambitious:
Generalize to Lorentzian rth-symmetric spaces
Idem to higher signatures.
Senovilla's:

Solve all the linear conditions for curvature:
V R+t 9V IR+t:,0V 2R+ +t,_ 19VR+t,®R =0

for some m- covariant tensors t,.

M. Sanchez Lorentzian r-th symmetric spaces



	Local symmetry vs. 2nd-symmetry 
	Characterizations
	Classification
	Generalization of Cahen-Wallach family

	When rT=0 T=0?
	Riemannian case
	Semi-Riemannian extension
	Generic points
	Old techniques and lightlike parallel vector fields

	Brinkmann spaces
	Understanding Brinkmann
	Adapted geometric elements
	Reducibility and Eisenhart thm

	Sketch of proof
	Step 1/4
	Step 2/4
	Step 3/4
	Step 4/4


