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NotationNotation



Ricci Ricci solitonssolitons: : motivationmotivation



Plan Plan ofof thethe talktalk

AIM:
To investigate homogeneous gradient Ricci solitons, both for Riemannian
and Lorentzian metrics.

1. Riemannian gradient Ricci solitons with constant scalar
curvature: curvature homogeneity

4. Three-dimensional homogeneous Lorentz gradient Ricci
solitons

3. Three-dimensional homogeneous Walker metrics

2. Homogeneous Lorentzian gradient Ricci solitons



Constant Constant scalarscalar curvaturecurvature –– RiemannianRiemannian casecase

→ Scalar curvature depends on the dimension of the level set sub-
manifolds of the potential function.

Theorem (Petersen, Wylie; 2009)
If (M, g) has constant scalar curvature, then

(1) If λ = 0, then Sc = 0 and (M, g) is Ricci flat.
(2) If λ > 0, then Sc ∈ [0, nλ].
(3) If λ < 0, then Sc ∈ [nλ, 0].

Moreover, the extreme values are achieved only in the Einstein case.

Theorem (Fernandez-Lopez, G-R; 2013)
Let (M,g) be a non-steady complete gradient Ricci soliton with constant scalar
curvature. Then the scalar curvature Sc = kλ, where k = 1, . . . , n − 1. More-
over, the extreme values k = 1 and k = n− 1 are achieved only in the Einstein
and the rigid cases, respectively.



Constant Constant scalarscalar curvaturecurvature –– RiemannianRiemannian casecase

A gradient Ricci soliton is said to be rigid if it is isometric to a quotient of
N × Rk where N is Einstein and f = λ

2 |x|
2 on the Euclidean factor.

Theorem (Fernandez-Lopez, G-R; 2011; Munteanu-Sesum; 2011)
A complete gradient shrinking Ricci soliton is rigid if and only if its Weyl
tensor is harmonic.

→ Complete locally conformally flat gradient shrinking Ricci solitons are rigid.

Theorem (Petersen, Wylie; 2009)
Let (M, g) be a complete shrinking or expanding gradient Ricci soliton.
If any of the following conditions holds, then the Ricci soliton is rigid

(1) Sc is constant and the radial curvature K( · ,∇f) is nonnegative
or nonpositive.

(2) Sc is constant and 0 · Ric · λg or λg · Ric · 0.
(3) Ric ≥ 0 or Ric · 0 and the radial curvature K( · ,∇f) vanishes.



Constant Constant scalarscalar curvaturecurvature –– RiemannianRiemannian casecase

Any locally homogeneous manifold is k-curvature homogeneous for all k and
the converse holds true if k is sufficiently large.

→ Complete gradient Ricci solitons with constant scalar curvatur are rigid
in dimension · 4.

Theorem (Petersen, Wylie; 2009)
Any homogeneous gradient Ricci soliton is rigid.

(M,g) is said to be k-curvature homogeneous if for each pair of points p, q ∈M
there is a linear isometry Φpq : TpM → TqM such that

Φ∗pqR(q) = R(p), Φ∗pq∇R(q) = ∇R(p), . . . Φ∗pq∇
kR(q) = ∇kR(p).

Theorem (Fernandez-Lopez, G-R; 2013)
Let (M,g) be a non-steady complete gradient Ricci soliton with constant
scalar curvature. Then (M, g) is rigid, provided that the Ricci operator
has at most four distinct eigenvalues.

Theorem (Fernandez-Lopez, G-R; 2013)
Let (M, g) be a 0-curvature homogeneous complete gradient Ricci soli-
ton. Then it is rigid.



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

→ If gradX(f) is null, then (M, g) is a Walker manifold.

→ If gradX(f) is timelike/spacelike, then (M, g) splits a 1-dimensional factor.

Theorem
Let (M,g) be a homogeneous Lorentzian manifold. If (M, g, f) is a non-steady
gradient Ricci soliton, then it splits as a product M = N × Rk for some k ≥ 0,
where either

(1) (N, gN ) is a Lorentzian Einstein manifold and the soliton is rigid, or
(2) (N, gN ) is a Lorentzian Walker manifold admitting a parallel null vector

field.

• Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature.
If X is a Killing vector field, then gradX(f) is a parallel vector field.
Moreover, if λ 6= 0, then gradX(f) = 0 if and only if X(f) = 0.

0 = ∇f(· ) = ∇f(X(f)) = ∇∇fg(∇f,X) = g(∇∇f∇f,X) + g(∇f,∇∇fX)
= Hesf (∇f,X) + 1

2
(LXg)(∇f,∇f)

= −Ric(∇f,X) + λ g(∇f,X) = λ · ,



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

• Some consequences of the gradient Ricci soliton equation

Hesf +Ric = λg

→ ∇Sc = 2R̂ic(∇f), and hence Ric(∇f, · ) = 0 if Sc is constant.

In the steady case (λ = 0) hesf , and hence R̂ic, is isotropic if Sc is constant.

→ Bochner identity 1
2 ∆ g(∇f,∇f) = k hesf k

2+Ric(∇f,∇f)+g(∇∆f,∇f)
shows that λ((n+ 2)λ− τ) = k hesf k2 if Sc is constant.

In the steady case (λ = 0) hesf (∇f) = 0, and hence ∇f is a geodesic vector
field if Sc is constant.

→ Sc+k∇fk2 − 2λf = cont., and thus in the steady case (λ = 0) f is a
solution of the Eikonal equation k∇fk2 = μ, if Sc is constant.

We will consider separately the cases μ < 0, μ = 0 and μ > 0.



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

Theorem
Let (M, g, f) be a homogeneous steady gradient Ricci soliton such that
k∇fk2 = μ < 0.
Then (M, g) splits isometrically as a product (R × N,−dt2 + gN ), where
(N, gN ) is a flat Riemannian manifold and f is the projection on R.

→ Bochner identity

1

2
∆ g(∇f,∇f) = k hesf k

2 +Ric(∇f,∇f) + g(∇∆f,∇f).



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

Theorem
Let (M, g, f) be a homogeneous steady gradient Ricci soliton such that
k∇fk2 = μ < 0.
Then (M, g) splits isometrically as a product (R × N,−dt2 + gN ), where
(N, gN ) is a flat Riemannian manifold and f is the projection on R.

→ Bochner identity (and diagonalizability of hesf)

−g(∇∆f,∇f) = k hesf k
2 ≥

1

n
(trace hesf)

2 =
1

n
(∆f)2.

→ Completeness of ∇f shows that ∆f = 0 and hence hesf = 0

→ ∇f is a parallel timelike vector field. Hence M = N × R, with (N, gN )
Riemannian

→ (N, gN ) is Ricci flat homogeneous, and hence flat.



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

• Let (M, g, f) be a homogeneous steady gradient Ricci soliton with
k∇fk2 = 0.
Then the Ricci operator is two-step or three-step nilpotent. More-
over, if the Ricci operator is two-step nilpotent then there is a null
parallel vector field on (M,g).

(Calvaruso, 2007)
A three-dimensional (complete and simply connected) homogeneous space
is either symmetric or a Lie group.

• Let (M, g, f) be a three-dimensional homogeneous steady gradient
Ricci soliton with k∇fk2 = 0.
Then (M,g) admits a null parallel vector field.

→ Classification of three-dimensional homogeneous Walker manifolds.



HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

→ Classification of three-dimensional homogeneous Walker manifolds.

→ If dim(ker(Ric)) = 2, then R̂ic is 2-step nilpotent or diagonalizable.

(Calviño-Louzao, G-R, Vazquez-Abal, Vazquez-Lorenzo 2012)
A three-dimensional Lorentzian homogeneous manifold is Walker if and

only if R̂ic
2
= 0.

→ If dim(ker(Ric)) = 1, then X = ∇f is left-invariant and R̂ic
2
= 0.

(Brozos-Vazquez, Calvaruso,G-R, Gavino-Fernandez 2012)
A three-dimensional Lorentzian Lie group admits a left-invariant
Ricci soliton if and only if the Ricci operator has a single eigenvalue.

If R̂ic is diagonalizable R̂ic = diag[0, 0, Sc] and isotropic, then
Sc = 0 and Ric = 0

• Let (M, g, f) be a three-dimensional homogeneous steady gradient
Ricci soliton with k∇fk2 > 0.
Then (M, g) admits a null parallel vector field.



ThreeThree--dimensional dimensional gradientgradient Ricci Ricci solitonsoliton Walker Walker metricsmetrics

Walker manifold: a Lorentzian manifold admitting a parallel null vector field.
There exist local coordinates (x, y, x̃) where the metric is given by

g(∂x, ∂x) = −2φ(x, y), g(∂x, ∂x̃) = g(∂y, ∂y) = 1 .

→ Three-dimensional Walker manifolds are pp-waves.

LetMφ be a three-dimensional non-trivial Walker gradient Ricci soliton. Then

(R.1) φ(x, y) = 1
b2 e

byα(x) + yβ(x) + γ(x),

and the potential function of the soliton is given by f(x, y, x̃) = b
2y+ f̂(x)

where f̂xx =
b
2β(x).

(R.2) φ(x, y) = y2α(x) + yβ(x) + γ(x),

and the potential function of the soliton is given by f(x, y, x̃) = f̂(x)

where f̂xx = −α(y).

Moreover, in both cases the Ricci soliton is steady.

(R.1) The soliton vector field grad f = b
2∂y + f̂x(x)∂x̃ is spacelike.

(R.2) The soliton vector field grad f = f̂x(x)∂x̃ is lightlike.



ThreeThree--dimensional dimensional locallylocally homogeneoushomogeneous Walker Walker metricsmetrics

→ Nb and CWε are geodesically complete.
Pc are geodesically incomplete.

Theorem (GR, Gilkey, Nik·cević; 2012)
(1) The manifolds CWε are locally symmetric.
(2) The manifolds Nb and Pc are locally homogeneous.
(3) The manifolds {CWε,Nb,Pc} have non-isomorphic 1-curvature model.

Moreover, any locally homogeneous three-dimensional Walker metric is
locally isometric to one of the above.

→ CWε and Pc are plane waves.
Nb are not plane waves.

LetMφ be a three-dimensional Walker manifold.

Let Nb be defined by φ(x, y) = b−2eby for b 6= 0.
Let Pc be defined by φ(x, y) =

1
2y
2α(x) where αx = cα

3/2, α > 0.
Let CWε be defined by φ(x, y) = εy2.



3D 3D HomogeneousHomogeneous LorentzianLorentzian gradientgradient Ricci Ricci solitonssolitons

→ GRS are geodesic vector field and thus complete in CWε and Nb.

→ GRS in CWε and Pc are isotropic, while those in Nb are spacelike.

→ CWε and Pc admit expanding, steady and shrinking RS, while Nb
admits only steady RS.

Theorem
Let (M, g) be a three-dimensional homogeneous Lorentz gradient Ricci soli-
ton. Then one of the following holds

(1) The soliton is trivial, i.e., f = const. and (M, g) is a space of constant
sectional curvature, where λ = Sc

3 , or
(2) the soliton is rigid, i.e., M = N(c) × R, where (N, gN ) is a surface of

constant curvature and f( · ) = λ
2πR( · )

2, where λ 6= 0, or
(3) the gradient Ricci soliton is steady and (M, g) is a Walker manifold

as in the following:
(3.i) (M,g) is locally isometric to CWε, and the potential function of the

soliton is given by f(x, y, x̃) = − ε
2
x2 + μx+ ν.

(3.ii) (M,g) is locally isometric to Pc, and the potential function of the
soliton is given by f(x, y, x̃) = f̂(x) where f̂xx = − 1

2
α(y).

(3.iii) (M,g) is locally isometric to Nb, and the potential function of the
soliton is given by f(x, y, x̃) = b

2
y + μx+ ν.
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