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Notation

Ricci solitons:
(M, g) Lorentzian manifold and X € X(M) vector field satisfying

Lxg+ Ric = A\g

where £ denotes the Lie derivative, Ric is the Ricci tensor and A € R.

Gradient Ricci solitons:
(M, g) Lorentzian manifold and f: M — R potential function

Hessy + Ric = Ag

where Hessy denotes the Hessian.

e A (gradient) Ricci soliton is expanding, steady or shrinking depending on
A<0, A=0, A>0.

e Lorentzian Ricci solitons may have different causal character (timelike, null,
spacelike).

— Nontrivial gradient Ricci solitons may exist with ||V f|| = 0.

(Batat, Brozos-Vazquez, GR, Gavino-Fernandez 2011)
— Cahen-Wallach symmetric spaces are isotropic steady gradient Ricci solitons



Ricci solitons: motivation

e Motivation comes from the study of the Ricci flow

t—g(), o) = —2Ric(1)

(Hamilton 1982)

For any prescribed metric g(0) on a compact manifold M, there exists a unique
solution on a maximal interval [0,T), where 0 < T < 0.

— If the initial metric go is Einstein with Ricop = Ago, then

g(t) = (1 —2Xt)go

— For any Ricci soliton (M, g, X, \) the solution is given by

g(t) = (1 —2Xt)y;g,
where ¢; is the one-parameter group of diffeomorphisms generated by X.

— Lorentzian Ricci solitons are self-similar solutions of the Ricci flow
Lxg+ Ric = Ag




Plan of the talk

AIM:
To investigate homogeneous gradient Ricci solitons, both for Riemannian
and Lorentzian metrics.

1. Riemannian gradient Ricci solitons with constant scalar
curvature: curvature homogeneity

2. Homogeneous Lorentzian gradient Ricci solitons

3. Three-dimensional homogeneous Walker metrics

4. Three-dimensional homogeneous Lorentz gradient Ricci
solitons



Constant scalar curvature — Riemannian case

Theorem (Petersen, Wylie; 2009)

If (M, g) has constant scalar curvature, then
(1) If A =0, then Sc¢ =0 and (M, g) is Ricci flat.
(2) If A > 0, then Sc € [0,n A
(3) If A <0, then Sc € [nA,0].

Moreover, the extreme values are achieved only in the Einstein case.

Theorem (Fernandez-Lopez, G-R; 2013)

Let (M, g) be a non-steady complete gradient Ricci soliton with constant scalar
curvature. Then the scalar curvature Sc = kX, where K =1,...,n — 1. More-
over, the extreme values kK = 1 and £ = n — 1 are achieved only in the Einstein
and the rigid cases, respectively.

— Scalar curvature depends on the dimension of the level set sub-
manifolds of the potential function.



Constant scalar curvature — Riemannian case

A gradient Ricci soliton is said to be 7rigid if it is isometric to a quotient of
N x RF where N is Einstein and f = 2|z|? on the Euclidean factor.

Theorem (Petersen, Wylie; 2009)
Let (M, g) be a complete shrinking or expanding gradient Ricci soliton.
If any of the following conditions holds, then the Ricci soliton is rigid

(1) Sc is constant and the radial curvature K(-,V f) is nonnegative
or nonpositive.

(2) Scis constant and 0 < Ric < Ag or A\g < Ric <0.

(3) Ric >0 or Ric <0 and the radial curvature K( -,V f) vanishes.

Theorem (Fernandez-Lopez, G-R; 2011; Munteanu-Sesum; 2011)
A complete gradient shrinking Ricci soliton is rigid if and only if its Weyl
tensor is harmonic.

— Complete locally conformally flat gradient shrinking Ricci solitons are rigid.



Constant scalar curvature — Riemannian case

Theorem (Petersen, Wylie; 2009)
Any homogeneous gradient Ricci soliton is rigid.

(M, g) is said to be k-curvature homogeneous if for each pair of points p,q € M
there is a linear isometry ®,, : T, M — T,M such that

®r R(q) = R(p), ®;,VR(q)=VR(p), ... @ V"R(q)=V"R(p)

Any locally homogeneous manifold is k-curvature homogeneous for all £ and
the converse holds true if k is sufficiently large.

Theorem (Fernandez-Lopez, G-R; 2013)
Let (M, g) be a 0-curvature homogeneous complete gradient Ricci soli-

ton. Then it is rigid.

— Complete gradient Ricci solitons with constant scalar curvatur are rigid
in dimension < 4.

Theorem (Fernandez-Lopez, G-R; 2013)
Let (M, g) be a non-steady complete gradient Ricci soliton with constant

scalar curvature. Then (M, g) is rigid, provided that the Ricci operator
has at most four distinct eigenvalues.



Homogeneous Lorentzian gradient Ricci solitons

e Let (M,g, f) be a gradient Ricci soliton with constant scalar curvature.
If X is a Killing vector field, then grad X (f) is a parallel vector field.
Moreover, if A # 0, then grad X (f) = 0 if and only if X (f) = 0.

0=Vf()=VHX() = Vvsa(VLX)=9(VvsV,X)+9(Vf,VysX)
= Hes;(Vf,X)+ 5(Lx9)(VS, V)
= —Ric(Vf,X)+Ag(Vf, X)=X-,

— If grad X (f) is timelike/spacelike, then (M, g) splits a 1-dimensional factor.
— If grad X (f) is null, then (M, g) is a Walker manifold.

Theorem

Let (M, g) be a homogeneous Lorentzian manifold. If (M, g, f) is a non-steady
gradient Ricci soliton, then it splits as a product M = N x R* for some k& > 0,
where either

(1) (N,gn) is a Lorentzian Einstein manifold and the soliton is rigid, or

(2) (N,gn) is a Lorentzian Walker manifold admitting a parallel null vector
field.



Homogeneous Lorentzian gradient Ricci solitons
e Some consequences of the gradient Ricci soliton equation
Hesfs 4+ Ric = A\g
— V Sc = 2Ric(Vf), and hence Ric(Vf, -) = 0 if Sc is constant.

In the steady case (A = 0) hes¢(Vf) =0, and hence V f is a geodesic vector
field if Sc is constant.

— Bochner identity 2 Ag(Vf,Vf) = | hesy |*+Ric(Vf,V)+9(VAF, V)
shows that A((n +2)A — 1) = || hesy ||? if Sc is constant.

In the steady case (A = 0) hess, and hence Ric, is isotropic if Sc is constant.

— Sc+||Vf||? — 2Af = cont., and thus in the steady case (A = 0) f is a
solution of the Eikonal equation |V f]|? = u, if Sc is constant.

We will consider separately the cases 1 < 0, x =0 and p > 0.



Homogeneous Lorentzian gradient Ricci solitons

Theorem

Let (M,g, f) be a homogeneous steady gradient Ricci soliton such that
IVf]I? =<0

Then (M, g) splits isometrically as a product (R x N, —dt? + gn), where
(N,gn) is a flat Riemannian manifold and f is the projection on R.

— Bochner identity

> Ag(VF, V) = |[hes; [[* + Rie(V£, V) + o(VAS, V).



Homogeneous Lorentzian gradient Ricci solitons

Theorem

Let (M,g, f) be a homogeneous steady gradient Ricci soliton such that
IVfI? =pu<0.

Then (M, g) splits isometrically as a product (R x N, —dt? + gn), where
(N, gn) is a flat Riemannian manifold and f is the projection on R.

— Bochner identity (and diagonalizability of hess)

—g(VAFf,Vf) = hesy ||2 > l(tra(:ehesf)2 = %(Af)Q.

n

— Completeness of V f shows that Af = 0 and hence hes; = 0

— Vf is a parallel timelike vector field. Hence M = N x R, with (V, gn)
Riemannian

— (N, gn) is Ricci flat homogeneous, and hence flat.



Homogeneous Lorentzian gradient Ricci solitons

e Let (M, g, f) be a homogeneous steady gradient Ricci soliton with
IV£II* =0.
Then the Ricci operator is two-step or three-step nilpotent. More-
over, if the Ricci operator is two-step nilpotent then there is a null
parallel vector field on (M, g).

(Calvaruso, 2007)
A three-dimensional (complete and simply connected) homogeneous space
is either symmetric or a Lie group.

e Let (M,g, f) be a three-dimensional homogeneous steady gradient
Ricci soliton with ||V f[|* = 0.
Then (M, g) admits a null parallel vector field.

— Classification of three-dimensional homogeneous Walker manifolds.



Homogeneous Lorentzian gradient Ricci solitons

o Let (M, g, f) be a three-dimensional homogeneous steady gradient
Ricci soliton with ||V f[|* > 0.
Then (M, g) admits a null parallel vector field.

(Calvino-Louzao, G-R, Vazquez-Abal, Vazquez-Lorenzo 2012)
A three-dimensional Lorentzian homogeneous manifold is Walker if and

only if }{102 = 0.
— If dim(ker(Ric)) = 2, then Ric is 2-step nilpotent or diagonalizable.
If Ric is diagonalizable Ric = diag|0, 0, Sc|] and isotropic, then
Sc = 0 and Ric =0
— If dim(ker(Ric)) = 1, then X = Vf is left-invariant and Ric' = 0.

(Brozos-Vazquez, Calvaruso,G-R, Gavino-Fernandez 2012)
A three-dimensional Lorentzian Lie group admits a left-invariant
Ricci soliton if and only if the Ricci operator has a single eigenvalue.

— Classification of three-dimensional homogeneous Walker manifolds.



Three-dimensional gradient Ricci soliton Walker metrics

Walker manifold: a Lorentzian manifold admitting a parallel null vector field.
There exist local coordinates (z,y,Z) where the metric is given by

g(axaaa:) — _2¢(377y)7 g(axaazﬁ> — g(ﬁyaay) =1.

— Three-dimensional Walker manifolds are pp-waves.

Let My be a three-dimensional non-trivial Walker gradient Ricci soliton. Then

(R1) ¢(x,y) = e a(z) +yB(z) + v(z), A
and the potential function of the soliton is given by f(z,y, %) = gy—|— f(x)

where fpo = bB(z).

(R.2) ¢(z,y) = y*a(z) + yB(z) +v(2), )
and the potential function of the soliton is given by f(z,y,Z) = f(x)
where f. = —a(y).

Moreover, in both cases the Ricci soliton is steady.

(R.1) The soliton vector field grad f = 28, + f ()05 is spacelike.
(R.2) The soliton vector field grad f = f, ()85 is lightlike.



Three-dimensional locally homogeneous Walker metrics

Let My be a three-dimensional Walker manifold.
Let V;, be defined by ¢(z,y) = b~2e? for b # 0.
Let P. be defined by ¢(z,y) = 2y*a(x) where o, = ca®/?, a > 0.
Let C)V. be defined by ¢(z,y) = cy?.

— Ny, and CW. are geodesically complete.
P. are geodesically incomplete.

Theorem (GR, Gilkey, Nikeevi¢; 2012)

(1) The manifolds C)V. are locally symmetric.
(2) The manifolds N}, and P. are locally homogeneous.
(3) The manifolds {CW., Ny, P.} have non-isomorphic 1-curvature model.

Moreover, any locally homogeneous three-dimensional Walker metric is
locally isometric to one of the above.

— C - e waves.
N}, are not plane waves.




3D Homogeneous Lorentzian gradient Riccl solitons

Theorem
Let (M, g) be a three-dimensional homogeneous Lorentz gradient Ricci soli-
ton. Then one of the following holds

(1) The soliton is trivial, i.e., f = const and (M, g) is a space of constant
sectional curvature, Where A= ? or

(2) the soliton is rigid, i.e., M = N(c) x R, where (N, gy) is a surface of

constant curvature and f(-) = %WR( )2, where \ # 0, or

(3) the gradient Ricci soliton is steady and (M, g) is a Walker manifold
as in the following:

(3.1) (M,g) is locally isometric to CWW., and the potential function of the

soliton is given by f(x,y,Z) = ——:13 + px + v.
(3.i) (M,g) is locally isometric to PC, and the potential function of the
soliton is given by f(z,y, %) = f(z) where fas = —La(y).

(3.iii) (M, g) is locally isometric to N}, and the potential function of the
soliton is given by f(z,y,Z) = gy + px + v.

— GRS are geodesic vector field and thus complete in CW, and N,.
— GRS in CW, and P. are isotropic, while those in N} are spacelike.

— CW, and P, admit expanding, steady and shrinking RS, while N,
admits only steady RS.
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