Faculty of Mathematics University of Santiago de Compostela Spain eduardo.garcia.rio@usc.es

Homogeneity of gradient Ricci soliton metrics

Eduardo García-Río

Trabajo conjunto con

Miguel Brozos-Vázquez y Sandra Gavino-Fernández

Workshop on Lorentzian homogeneous spaces

Madrid March 7-8, 2013

Notation

Ricci solitons: (M, g) Lorentzian manifold and $X \in \mathfrak{X}(M)$ vector field satisfying

 $\mathcal{L}_X g + Ric = \lambda g$

where \mathcal{L} denotes the Lie derivative, Ric is the Ricci tensor and $\lambda \in \mathbb{R}$.

Gradient Ricci solitons:

(M,g) Lorentzian manifold and $f: M \to \mathbb{R}$ potential function

$$Hess_f + Ric = \lambda g$$

where $Hess_f$ denotes the Hessian.

- A (gradient) Ricci soliton is *expanding*, *steady* or *shrinking* depending on $\lambda < 0$, $\lambda = 0$, $\lambda > 0$.
- Lorentzian Ricci solitons may have different causal character (timelike, null, spacelike).
- \rightarrow Nontrivial gradient Ricci solitons may exist with $\|\nabla f\| = 0$.

(Batat, Brozos-Vazquez, GR, Gavino-Fernandez 2011)

 $\rightarrow\,$ Cahen-Wallach symmetric spaces are isotropic steady gradient Ricci solitons

Ricci solitons: motivation

Motivation comes from the study of the Ricci flow

$$t \to g(t), \qquad \frac{d}{dt}g(t) = -2Ric(t)$$

(Hamilton 1982)

For any prescribed metric g(0) on a compact manifold M, there exists a unique solution on a maximal interval [0, T), where $0 < T \le \infty$.

 \rightarrow If the initial metric g_0 is Einstein with $Ric_0 = \lambda g_0$, then

$$g(t) = (1 - 2\lambda t)g_0$$

 \rightarrow For any Ricci soliton (M, g, X, λ) the solution is given by

$$g(t) = (1 - 2\lambda t)\varphi_t^* g,$$

where φ_t is the one-parameter group of diffeomorphisms generated by X.

 \rightarrow Lorentzian Ricci solitons are self-similar solutions of the Ricci flow

$$\mathcal{L}_X g + Ric = \lambda g$$

Plan of the talk

AIM:

To investigate homogeneous gradient Ricci solitons, both for Riemannian and Lorentzian metrics.

- 1. Riemannian gradient Ricci solitons with constant scalar curvature: curvature homogeneity
- 2. Homogeneous Lorentzian gradient Ricci solitons
- 3. Three-dimensional homogeneous Walker metrics
- 4. Three-dimensional homogeneous Lorentz gradient Ricci solitons

Constant scalar curvature – Riemannian case

Theorem (Petersen, Wylie; 2009) If (M,g) has constant scalar curvature, then (1) If $\lambda = 0$, then Sc = 0 and (M,g) is Ricci flat. (2) If $\lambda > 0$, then $Sc \in [0, n \lambda]$. (3) If $\lambda < 0$, then $Sc \in [n \lambda, 0]$.

Moreover, the extreme values are achieved only in the Einstein case.

Theorem (Fernandez-Lopez, G-R; 2013)

Let (M, g) be a non-steady complete gradient Ricci soliton with constant scalar curvature. Then the scalar curvature $Sc = k\lambda$, where $k = 1, \ldots, n - 1$. Moreover, the extreme values k = 1 and k = n - 1 are achieved only in the Einstein and the rigid cases, respectively.

 \rightarrow Scalar curvature depends on the dimension of the level set submanifolds of the potential function.

Constant scalar curvature – Riemannian case

A gradient Ricci soliton is said to be *rigid* if it is isometric to a quotient of $N \times \mathbb{R}^k$ where N is Einstein and $f = \frac{\lambda}{2} |x|^2$ on the Euclidean factor.

Theorem (Petersen, Wylie; 2009)

Let (M, g) be a complete shrinking or expanding gradient Ricci soliton. If any of the following conditions holds, then the Ricci soliton is rigid

- (1) Sc is constant and the radial curvature $K(\cdot, \nabla f)$ is nonnegative or nonpositive.
- (2) Sc is constant and $0 \le Ric \le \lambda g$ or $\lambda g \le Ric \le 0$.
- (3) $Ric \ge 0$ or $Ric \le 0$ and the radial curvature $K(\cdot, \nabla f)$ vanishes.

Theorem (Fernandez-Lopez, G-R; 2011; Munteanu-Sesum; 2011) A complete gradient shrinking Ricci soliton is rigid if and only if its Weyl tensor is harmonic.

 \rightarrow Complete locally conformally flat gradient shrinking Ricci solitons are rigid.

Constant scalar curvature – Riemannian case

Theorem (Petersen, Wylie; 2009) Any homogeneous gradient Ricci soliton is rigid.

(M,g) is said to be *k*-curvature homogeneous if for each pair of points $p,q \in M$ there is a linear isometry $\Phi_{pq}: T_pM \to T_qM$ such that

$$\Phi_{pq}^*R(q) = R(p), \quad \Phi_{pq}^*\nabla R(q) = \nabla R(p), \quad \dots \quad \Phi_{pq}^*\nabla^k R(q) = \nabla^k R(p).$$

Any locally homogeneous manifold is k-curvature homogeneous for all k and the converse holds true if k is sufficiently large.

Theorem (Fernandez-Lopez, G-R; 2013) Let (M, g) be a 0-curvature homogeneous complete gradient Ricci soliton. Then it is rigid.

→ Complete gradient Ricci solitons with constant scalar curvatur are rigid in dimension ≤ 4 .

Theorem (Fernandez-Lopez, G-R; 2013)

Let (M, g) be a non-steady complete gradient Ricci soliton with constant scalar curvature. Then (M, g) is rigid, provided that the Ricci operator has at most four distinct eigenvalues.

• Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature. If X is a Killing vector field, then $\operatorname{grad} X(f)$ is a parallel vector field. Moreover, if $\lambda \neq 0$, then $\operatorname{grad} X(f) = 0$ if and only if X(f) = 0.

$$\begin{aligned} 0 &= \nabla f(\cdot \) = \nabla f(X(f)) &= \nabla_{\nabla f} g(\nabla f, X) = g(\nabla_{\nabla f} \nabla f, X) + g(\nabla f, \nabla_{\nabla f} X) \\ &= \operatorname{Hes}_{f}(\nabla f, X) + \frac{1}{2} (\mathcal{L}_{X} g)(\nabla f, \nabla f) \\ &= -\operatorname{Ric}(\nabla f, X) + \lambda g(\nabla f, X) = \lambda \cdot , \end{aligned}$$

- \rightarrow If grad X(f) is timelike/spacelike, then (M,g) splits a 1-dimensional factor.
- \rightarrow If grad X(f) is null, then (M,g) is a Walker manifold.

Theorem

Let (M, g) be a homogeneous Lorentzian manifold. If (M, g, f) is a non-steady gradient Ricci soliton, then it splits as a product $M = N \times \mathbb{R}^k$ for some $k \ge 0$, where either

- (1) (N, g_N) is a Lorentzian Einstein manifold and the soliton is rigid, or
- (2) (N, g_N) is a Lorentzian Walker manifold admitting a parallel null vector field.

• Some consequences of the gradient Ricci soliton equation

$$\operatorname{Hes}_f + \operatorname{Ric} = \lambda g$$

 $\rightarrow \nabla \text{Sc} = 2\hat{\text{Ric}}(\nabla f)$, and hence $\text{Ric}(\nabla f, \cdot) = 0$ if Sc is constant.

In the steady case $(\lambda = 0)$ hes_f $(\nabla f) = 0$, and hence ∇f is a geodesic vector field if Sc is constant.

 $\rightarrow \text{ Bochner identity } \frac{1}{2} \Delta g(\nabla f, \nabla f) = \| \operatorname{hes}_f \|^2 + \operatorname{Ric}(\nabla f, \nabla f) + g(\nabla \Delta f, \nabla f) \\ \text{ shows that } \lambda((n+2)\lambda - \tau) = \| \operatorname{hes}_f \|^2 \text{ if Sc is constant.}$

In the steady case $(\lambda = 0)$ hes_f, and hence \hat{Ric} , is isotropic if Sc is constant.

 \rightarrow Sc + $\|\nabla f\|^2 - 2\lambda f = \text{cont.}$, and thus in the steady case $(\lambda = 0) f$ is a solution of the Eikonal equation $\|\nabla f\|^2 = \mu$, if Sc is constant.

We will consider separately the cases $\mu < 0$, $\mu = 0$ and $\mu > 0$.

Theorem

Let (M, g, f) be a homogeneous steady gradient Ricci soliton such that $\|\nabla f\|^2 = \mu < 0$. Then (M, g) splits isometrically as a product $(\mathbb{R} \times N, -dt^2 + g_N)$, where (N, g_N) is a flat Riemannian manifold and f is the projection on \mathbb{R} .

 \rightarrow Bochner identity

$$\frac{1}{2}\Delta g(\nabla f, \nabla f) = \|\operatorname{hes}_f\|^2 + \operatorname{Ric}(\nabla f, \nabla f) + g(\nabla \Delta f, \nabla f).$$

Theorem

Let (M, g, f) be a homogeneous steady gradient Ricci soliton such that $\|\nabla f\|^2 = \mu < 0$. Then (M, g) splits isometrically as a product $(\mathbb{R} \times N, -dt^2 + g_N)$, where (N, g_N) is a flat Riemannian manifold and f is the projection on \mathbb{R} .

 \rightarrow Bochner identity (and diagonalizability of $hes_f)$

$$-g(\nabla \Delta f, \nabla f) = \|\operatorname{hes}_{f}\|^{2} \geq \frac{1}{n}(\operatorname{trace} \operatorname{hes}_{\mathbf{f}})^{2} = \frac{1}{n}(\Delta f)^{2}.$$

 \rightarrow Completeness of ∇f shows that $\Delta f = 0$ and hence hes_f = 0

 $\rightarrow \nabla f$ is a parallel timelike vector field. Hence $M = N \times \mathbb{R}$, with (N, g_N) Riemannian

 $\rightarrow (N, g_N)$ is Ricci flat homogeneous, and hence flat.

Let (M, g, f) be a homogeneous steady gradient Ricci soliton with ||∇f||² = 0. Then the Ricci operator is two-step or three-step nilpotent. Moreover, if the Ricci operator is two-step nilpotent then there is a null parallel vector field on (M, g).

(Calvaruso, 2007)

A three-dimensional (complete and simply connected) homogeneous space is either symmetric or a Lie group.

• Let (M, g, f) be a three-dimensional homogeneous steady gradient Ricci soliton with $\|\nabla f\|^2 = 0$. Then (M, g) admits a null parallel vector field.

 $\rightarrow\,$ Classification of three-dimensional homogeneous Walker manifolds.

• Let (M, g, f) be a three-dimensional homogeneous steady gradient Ricci soliton with $\|\nabla f\|^2 > 0$. Then (M, g) admits a null parallel vector field.

(Calviño-Louzao, G-R, Vazquez-Abal, Vazquez-Lorenzo 2012) A three-dimensional Lorentzian homogeneous manifold is Walker if and only if $\hat{Ric}^2 = 0$.

- → If dim(ker(Ric)) = 2, then Ric is 2-step nilpotent or diagonalizable. If Ric is diagonalizable Ric = diag[0,0,Sc] and isotropic, then Sc = 0 and Ric = 0
- \rightarrow If dim(ker(Ric)) = 1, then $X = \nabla f$ is left-invariant and $\hat{\text{Ric}}^2 = 0$.

(Brozos-Vazquez, Calvaruso, G-R, Gavino-Fernandez 2012) A three-dimensional Lorentzian Lie group admits a left-invariant Ricci soliton if and only if the Ricci operator has a single eigenvalue.

 \rightarrow Classification of three-dimensional homogeneous Walker manifolds.

Three-dimensional gradient Ricci soliton Walker metrics

Walker manifold: a Lorentzian manifold admitting a parallel null vector field. There exist local coordinates (x, y, \tilde{x}) where the metric is given by

$$g(\partial_x, \partial_x) = -2\phi(x, y), \qquad g(\partial_x, \partial_{\tilde{x}}) = g(\partial_y, \partial_y) = 1.$$

 \rightarrow Three-dimensional Walker manifolds are pp-waves.

Let M_φ be a three-dimensional non-trivial Walker gradient Ricci soliton. Then
(R.1) φ(x, y) = ¹/_{b²} e^{by} α(x) + yβ(x) + γ(x), and the potential function of the soliton is given by f(x, y, x̃) = ^b/₂y + f(x) where f̂_{xx} = ^b/₂β(x).
(R.2) φ(x, y) = y²α(x) + yβ(x) + γ(x), and the potential function of the soliton is given by f(x, y, x̃) = f̂(x) where f̂_{xx} = -α(y).
Moreover, in both cases the Ricci soliton is steady.

> (R.1) The soliton vector field grad $f = \frac{b}{2}\partial_y + \hat{f}_x(x)\partial_{\tilde{x}}$ is spacelike. (R.2) The soliton vector field grad $f = \hat{f}_x(x)\partial_{\tilde{x}}$ is lightlike.

Three-dimensional locally homogeneous Walker metrics

Let \mathcal{M}_{ϕ} be a three-dimensional Walker manifold.

Let \mathcal{N}_b be defined by $\phi(x, y) = b^{-2} e^{by}$ for $b \neq 0$. Let \mathcal{P}_c be defined by $\phi(x, y) = \frac{1}{2}y^2 \alpha(x)$ where $\alpha_x = c\alpha^{3/2}, \alpha > 0$. Let $\mathcal{CW}_{\varepsilon}$ be defined by $\phi(x, y) = \varepsilon y^2$.

 $\rightarrow \mathcal{N}_b$ and $\mathcal{CW}_{\varepsilon}$ are geodesically complete. \mathcal{P}_c are geodesically incomplete.

Theorem (GR, Gilkey, Nikcević; 2012)

(1) The manifolds $\mathcal{CW}_{\varepsilon}$ are locally symmetric.

- (2) The manifolds \mathcal{N}_b and \mathcal{P}_c are locally homogeneous.
- (3) The manifolds $\{\mathcal{CW}_{\varepsilon}, \mathcal{N}_{b}, \mathcal{P}_{c}\}$ have non-isomorphic 1-curvature model.

Moreover, any locally homogeneous three-dimensional Walker metric is locally isometric to one of the above.

 $\rightarrow \mathcal{CW}_c$ and \mathcal{P}_c are plane waves. $\bigwedge \mathcal{N}_b$ are not plane waves.

Theorem

Let (M, g) be a three-dimensional homogeneous Lorentz gradient Ricci soliton. Then one of the following holds

- (1) The soliton is trivial, i.e., f = const. and (M, g) is a space of constant sectional curvature, where $\lambda = \frac{\text{Sc}}{3}$, or
- (2) the soliton is rigid, i.e., $M = N(c) \times \mathbb{R}$, where (N, g_N) is a surface of constant curvature and $f(\cdot) = \frac{\lambda}{2} \pi_{\mathbb{R}}(\cdot)^2$, where $\lambda \neq 0$, or
- (3) the gradient Ricci soliton is steady and (M, g) is a Walker manifold as in the following:
 - (3.i) (M,g) is locally isometric to $\mathcal{CW}_{\varepsilon}$, and the potential function of the soliton is given by $f(x, y, \tilde{x}) = -\frac{\varepsilon}{2}x^2 + \mu x + \nu$.
 - (3.ii) (M,g) is locally isometric to \mathcal{P}_c , and the potential function of the soliton is given by $f(x,y,\tilde{x}) = \hat{f}(x)$ where $\hat{f}_{xx} = -\frac{1}{2}\alpha(y)$.
 - (3.iii) (M,g) is locally isometric to \mathcal{N}_b , and the potential function of the soliton is given by $f(x, y, \tilde{x}) = \frac{b}{2}y + \mu x + \nu$.
 - \rightarrow GRS are geodesic vector field and thus complete in $\mathcal{CW}_{\varepsilon}$ and \mathcal{N}_{b} .
 - \rightarrow GRS in $\mathcal{CW}_{\varepsilon}$ and \mathcal{P}_{c} are isotropic, while those in \mathcal{N}_{b} are spacelike.
 - $\rightarrow \mathcal{CW}_{\varepsilon}$ and \mathcal{P}_{c} admit expanding, steady and shrinking RS, while \mathcal{N}_{b} admits only steady RS.