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Game Theory
Common features of all games:

1 there is a set of at least two players;
2 players follow some set of rules;
3 interests of different players are different.

Game theory (GT) is a theory of rational behavior of people with nonidentical
interests.
Game theory can be defined as the theory of mathematical models of conflict and
cooperation between intelligent rational decision-makers.

Its area of applications extends considerably beyond games in the usual sense.
Game theory is applicable whenever at least two individuals – people, companies,
political parties, or nations – confront situations where the outcome for each depends
on the behavior of all.

The models of game theory are highly abstract representations of classes of real-life
situations.

By the term game we mean any such situation, defined by some set of rules.

The term play refers to a particular occurrence of a game.

Modern game theory may be said to begin with the work of Zermelo (1913), Borel
(1921), von Neumann (1928), and the great seminal book "Theory of Games and
Economic Behavior" of von Neumann and Morgenstern (1944).
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Noncooperative and Cooperative Games
In all GT models the basic entity is a player.

Once we defined the set of players we may distinguish between two types of models:

- primitives are the sets of possible actions of individual players;
- primitives are the sets of possible joint actions of groups of players.
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Strategic-Form Games or Games in Normal Form

A strategic-form game is Γ = 〈N, {Si}i∈N , {ui}i∈N〉, where

N = {1, . . . , n}, n ≥ 2, is a set of players,

Si is a nonempty set of possible strategies (or pure strategies) of player i . When game
Γ is played, each player i must choose si ∈ Si .

Strategy profile s = (s1, . . . , sn) is an outcome of the game Γ.

Let S = {s = (s1, . . . , sn)|si ∈ Si}, the set of all possible outcomes.

ui : S → IR,

The number ui (s) represents the expected utility payoff of player i if the outcome of the
game is s.

Equilibrium:

All players in n are happy to find such s∗ ∈ S that

ui (s) ≤ ui (s∗), for all i ∈ N, s ∈ S.
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Nash Equilibrium

Notation:

Let s ∈ S, s = (s1, . . . , sn), si ∈ Si .
s‖ti = (s1, . . . , si−1, ti , si+1, . . . , sn), i.e. player i replaces his strategy si by ti .

Nash Equilibrium (1950)

An outcome s∗ ∈ S is Nash equilibrium if for all i ∈ N,

ui (s∗) ≥ ui (s∗‖si ), for all si ∈ Si .
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Two-person games

There is a convenient representation of a two-person (N = {1, 2}) strategic game in
which each player has a finite set of strategies.

Let S1 = X = {x1, . . . , xn}, S2 = Y = {y1, . . . , ym},
aij = u1(xi , yj ), bij = u2(xi , yj ).

 y1 … ym 

x1 (a11,b11) … (a1m,b1m) 

 …  … 

xn (an1,bn1) … (anm,bnm) 
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Battle of the Sexes

This game models a situation in which two players wish to coordinate their behavior but
have conflict interests - the wife wants to go to the concert but the husband prefers
soccer. But in any case they prefer to spend evening together.

The game has two Nash equilibria: (c,c) and (s,s).

 concert soccer 

concert 2,1 0,0 

soccer 0,0 1,2 

 

Anna Khmelnitskaya Introduction to Game Theory



Battle of the Sexes

This game models a situation in which two players wish to coordinate their behavior but
have conflict interests - the wife wants to go to the concert but the husband prefers
soccer. But in any case they prefer to spend evening together.

The game has two Nash equilibria: (c,c) and (s,s).

 concert soccer 

concert 2,1 0,0 

soccer 0,0 1,2 

 

Anna Khmelnitskaya Introduction to Game Theory



The Prisoner’s Dilemma

Two suspects in a crime are put into separate cells. If they both confess, each will be
sentenced to five years in prison. If only one of them confesses, he will be freed and
used as a witness against the other, who will receive a sentence of eight years. If
neither confesses, they will both be convicted of a minor offence and spend one year in
prison.

The best outcome for the players is that neither confesses, but each player has an
incentive to be a "free rider"...
Whatever one player does, the other prefers confess to don’t confess, so the game has
unique Nash equilibrium (c,c).

 don't confess confess 

don’t confess -1,-1 -8,0 

confess 0,-8 -5,-5 
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Hawk-Dove

Two animals are fighting over some prey. Each can behave like a dove or like a hawk.
the best outcome for each animal is that in which it acts like a hawk while the other acts
like a dove; the worst outcome is that in which both animals act like hawks. Each
animal prefers to be hawkish if its opponent is dovish and dovish if its opponent is
hawkish.

The game has two Nash equilibria, (d,h) and (h,d), corresponding to two different
conventions about the player who yields.

  dove hawk 

dove 3,3 1,4 

hawk 4,1 0,0 
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Matching Pennies

Each of two people chooses either Head or Tail. If the choices differ, person 1 pays
person 2 one euro; if they are the same, person 2 pays person 1 one euro. Each
person cares only about the amount of money that he receives.

The game has no Nash equilibria.

 

 head tail 

head 1,-1 -1,1 

tail -1,1 1,-1 
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Strictly Competitive Games

Definition

A strategic game Γ = 〈{1, 2}; S1,S2; u1, u2〉 is strictly competitive if for any outcome
s ∈ S, s = (s1, s2), s1 ∈ S1, s2 ∈ S2, we have u2(s) = −u1(s).

Another name is a zero-sum game.

In what follows we denote X = S1, Y = S2, and u(s) = u1(s).

If an outcome (x∗, y∗), x∗ ∈ X , y∗ ∈ Y , is a Nash equilibrium, then

u(x , y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), for all x ∈ X , y ∈ Y ,

i.e., Nash equilibrium is a saddle point.
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Strictly Competitive Games

If player 2 chooses strategy y ∈ Y , then player 1 can get at most

max
x∈X

u(x , y).

Similarly, if player 1 fixes strategy x ∈ X , then player 2 looses at least

min
y∈Y

u(x , y).

Definition

A strategy x∗ ∈ X is a best guaranteed outcome for player 1 if

min
y∈Y

u(x∗, y) ≥ min
y∈Y

u(x , y), for all x ∈ X ;

similarly, y∗ ∈ Y is a best guaranteed outcome for player 2 if

max
x∈X

u(x , y∗) ≤ max
x∈X

u(x , y), for all y ∈ Y .
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Strictly Competitive Games

In general always
max
x∈X

min
y∈Y

u(x , y) ≤ min
y∈Y

max
x∈X

u(x , y).

MinMax Theorem

An outcome (x∗, y∗) is a Nash equilibrium in a strictly competitive game
Γ = 〈{1, 2}; X ,Y ; u〉 if and only if

max
x∈X

min
y∈Y

u(x , y) = min
y∈Y

max
x∈X

u(x , y) = u(x∗, y∗),

where x∗ is the best outcome for player 1 while y∗ is the best outcome for player 2.

Corollary:

All Nash equilibria of any game yield the same payoffs.
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Strictly Competitive Games

Any finite strictly competitive strategic game admits simple and convenient
representation in the matrix form.

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym},

aij = u1(xi , yj ), u2(xi , yj ) = −u1(xi , yj ) = −aij .

a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm
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
max
=⇒ m

↓ ↓ . . . ↓

max max . . . max︸ ︷︷ ︸
⇓ min

M
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Mixed Strategy Nash Equilibrium

Let Γ = 〈N, {Si}i∈N , {ui}i∈N〉 be a strategic game.

A mixed strategy of player i is a probability distribution σi over the set Si of its pure
strategies.

σi (si ) is the probability that player i chooses strategy si ∈ Si .

We assume that mixed strategies of different players are independent, i.e., the set of
probability distributions over S is given by Σ = ×i∈N Σi .

Definition

The mixed extension of the strategic game Γ = 〈N, {Si}i∈N , {ui}i∈N〉 is the strategic
game Γ∗ = 〈N, {Σi}i∈N , {Ui}i∈N〉 in which Σi is the set of probability distributions over
Si , and Ui is the expected value of ui under the lottery over S that is induced by
σ = (σ1, . . . , σn), σi ∈ Σi , i.e.,

Ui (σ) =
∑
s∈S

ui (s)σ(i).
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Mixed Strategy Nash Equilibrium

Definition

A mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its
mixed extension.

Theorem (Nash, 1950)

Every finite strategic game has a mixed strategy Nash equilibrium.

Remark:

For matrix games this result was obtained by von Neumann in 1928.
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Cooperative Games

N = {1, . . . , n} is a finite set of n ≥ 2 players.

A subset S ⊆ N (or S ∈ 2N ) of s players is a coalition.

v(S) presents the worth of the coalition S.

v : 2N → IR, v(∅) = 0, is a characteristic function.

A cooperative TU game is a pair 〈N, v〉.

GN is the class of TU games with a fixed N.

A game v is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S,T ⊆ N such that
S ∩ T = ∅.
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Core

Every x ∈ IRn can be considered as a payoff vector to N.

x ∈ IRn is efficient in the game v if x(N) = v(N).

For any x ∈ IRn and any S ⊆ N we denote x(S) =
∑
i∈S

xi .

The imputation set of a game v ∈ GN is
I(v) = {x ∈ IRn | x(N) = v(N), xi ≥ v(i), ∀i ∈ N}.

Definition

The core (Gillies, 1959) of a game v ∈ GN is

C(v) = {x ∈ IRn | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N, S 6= ∅}.

Bondareva (1963), Shapley (1967)
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Shapley value
For any G ⊆ GN , a value on G is a mapping ξ : G → IRn

The most reasonable approach to the choice of a solution concept is the axiomatic
approach that allows choosing a solution satisfying a number of a priori chosen pro-
perties stated as axioms reflecting reasonable under the circumstances criteria, such
as social efficiency, fairness, marginality, simplification of computational aspects etc,.

A value ξ is efficient if, for all v ∈ G,
∑

i∈N ξi (v) = v(N).

A value ξ possesses the null-player property if, for all v ∈ G, for every null-player i in
game v , ξi (v) = 0.
A player i is a null-player in the game v ∈ G if
for every S ⊆ N\i , v(S ∪ i) = v(S).

A value ξ is symmetric if, for all v ∈ G, for any π : N → N, and for all i ∈ N,

ξπ(i)(vπ) = ξi (v),

where vπ(S) = v(π(S)) for all S ⊆ N, S 6= ∅.

A value ξ is additive if, for any two v ,w ∈ G, for every i ∈ N,

ξi (v + w) = ξi (v) + ξi (w),

where (v + w)(S) = v(S) + w(S), for all S ⊆ N.
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Shapley value

Theorem (Shapley, 1953)

There is a unique value defined on the class GN that satisfies efficiency, symmetry,
null-player property, and additivity, and for all v ∈ GN , for every i ∈ N, it is given by

Shi (v) =

n−1∑
s=0

s!(n − s − 1)!

n!

∑
S⊆N\{i}
|S|=s

(
v(S ∪ {i})− v(S)

)
.

A value ξ is marginalist if, for all v ∈ G, for every i ∈ N,

ξi (v) = φi ({v(S ∪ i)− v(S)}S⊆N\i ),

where φi : IR2n−1 → IR1.

Theorem (Young, 1985)

The only efficient, symmetric, and marginalist value defined on the class GN is the
Shapley value.
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Shapley value

Let Π be a set of all n! permutations π : N → N of N.
Denote by πi = {j ∈ N |π(j) ≤ π(i)} the set of players with rank number not greater
than the rank number of i , including i itself.

The marginal contribution vector mπ(v) ∈ IRn of a game v and a permutation π is
given by

mπ
i (v) = v(πi )− v(πi\i), for all i ∈ N.

Shi (v) =
1
n!

∑
π∈Π

mπ
i (v).

In general, Sh(v) is not a core selector.
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Convex Games

Definition

A game v is convex (Shapley, 1971) if for all i ∈ N and S ⊆ T ⊆ N \ i ,

v(S ∪ i)− v(S) ≤ v(T ∪ i)− v(T ).

In a convex game v

• every mπ(v) = {mπ
i (v)}i∈N ∈ C(v), π ∈ Π,

{mπ
i (v)}i∈N creates a set of extreme points for C(v),

C(v) = co({mπ
i (v)}i∈N ;

• Sh(v) ∈ C(v) and Sh(v) coincides with the barycenter of the core vertices.
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Bankruptcy Problem and Bankruptcy Game

A bankruptcy problem (E ; d) is defined by a set of claimants N, an estate E ∈ IR+ and
a vector of claims d ∈ IRn

+ assuming that the total claim of the creditors exceeds the
estate,

d(N) =
∑
i∈N

di > E .
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One Mishnah in the Babylonian Talmud discusses three bankruptcy problems of the
division of the estate E of the died person, E = 100, 200, and 300 respectively, among
his three widows that according to his testament should get d1 = 100, d2 = 200, and
d3 = 300 correspondingly. The Mishnah prescribes the following division

 

 

 

 

 

 

 

   Estate  

  100 200 300 

 d1=100 33.33 50 50 

Claim d2=200 33.33 75 100 

 d3=300 33.33 75 150 
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                     x1 ≤ x2 ≤… ≤ xn 

   (d1 – x1) ≤ (d2 - x2) ≤… ≤ (dn – xn) 
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  100 200 300 
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Bankruptcy Problem and Bankruptcy Game

The bankruptcy game vE ;d ∈ GN corresponding to bankruptcy problem (E ; d) is
defined by Aumann and Mashler (1985) as

vE ;d (S) =

{
max{0, E − d(N\S)}, S ⊆ N,S 6= ∅,

0, S = ∅.

 

   Estate  

  100 200 300 

 1 0 0 0 

 2 0 0 0 

 3 0 0 0 

S 12 0 0 0 

 13 0 0 100 

 23 0 100 200 

 123 100 200 300 
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Nucleolus

For a game v , the excess of a coalition S ⊆ N with respect to a payoff vector x ∈ IRn is

ev (S, x) = v(S)− x(S).

The nucleolus of a game v (Schmeidler, 1969) is a minimizer of the lexicographic
ordering of components of the excess vector of a given game v arranged in decreasing
order of their magnitude over the imputation set I(v):

ν(v) = x ∈ I(v) : θ(x) �lex θ(y), ∀y ∈ I(v),

where θ(x) = (e(S1, x), e(S2, x), ..., e(S2n−1, x)),
while e(S1, x) ≥ e(S2, x) ≥ ... ≥ e(S2n−1, x).

If C(v) 6= ∅ then ν(v) ∈ C(v).
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1-Convex Games

For a game v we consider a marginal worth vector mv ∈ IRn equal to the vector of
marginal contributions to the grand coalition,

mv
i = v(N)− v(N\{i}), for all i ∈ N,

and the gap vector gv ∈ IR2N
,

gv (S) =

{ ∑
i∈S mv

i − v(S), S ⊆ N,S 6= ∅,
0, S = ∅,

that for every coalition S ⊆ N measures the total coalitional surplus of marginal
contributions to the grand coalition over its worth.

For any game v , the vector mv provides upper bounds of the core:
for any x ∈ C(v),

xi ≤ mv
i , for all i ∈ N.

In particular, for an arbitrary game v , the condition

v(N) ≤
∑
i∈N

mv
i

is a necessary (but not sufficient) condition for non-emptiness of the core,

i.e., a strictly negative gap of the grand coalition gv (N) < 0 implies C(v) = ∅.
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1-Convex Games

Definition

A game v is 1-convex (Driessen, Tijs (1983), Driessen (1985)) if

0 ≤ gv (N) ≤ gv (S), for all S ⊆ N, S 6= ∅.
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1-Convex Games

In a 1-convex game v ,

• every 1-convex game has a nonempty core C(v);

• for every efficient vector x ∈ IRn,

xi ≤ mv
i , for all i ∈ N =⇒ x ∈ C(v);

in particular, the characterizing property of a 1-convex game is:

m̄v (i) = {m̄v
j (i)}j∈N ∈ C(V ),

m̄v
j (i) =

{
v(N)−mv (N\i) = mv

i − gv (N), j = i,

mv
j , j 6= i,

for all j ∈ N;

moreover, {m̄v (i)}i∈N is a set of extreme points of C(v), and

C(v) = co({m̄v (i)}i∈N );

• the nucleolus coincides with the barycenter of the core vertices, and is given by

νi (v) = mv
i −

gv (N)

n
, for all i ∈ N,

i.e., the nucleolus defined as a solution to some optimization problem that, in
general, is difficult to compute, appears to be linear and thus simple to determine.
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Cost Games

To a cost game 〈N, c〉 the associated (surplus) game 〈N, v〉 is

v(S) =
∑
i∈S

c(i)− c(S), for all S ⊆ N.

The core of a cost game c ∈ GN is

C(c) = {x ∈ IRn | x(N) = c(N), x(S) ≤ c(S), ∀S ⊆ N, S 6= ∅}.

A cost game c is concave if for all i ∈ N and S ⊆ T ⊆ N \ i ,

c(S ∪ i)− c(S) ≥ c(T ∪ i)− c(T ).

A cost game c is 1-concave if

0 ≥ gv (N) ≥ gv (S), for all S ⊆ N, S 6= ∅.
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Library Game

N is a set of n players (universities)

G is a set of m goods (electronic journals)

D = (dij ) i∈N
j∈G

is a demand (n ×m)-matrix

dij ≥ 0 is the number of units of j th journal in the historical demand of i th university

cj ≥ 0 is the cost per unit of j th journal based on the price of the paper version in the
historical demand

α ∈ [0, 1] is the common discount percentage for goods that were never requested in
the past;
in applications usually α = 10%.
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Library Game

The library cost game 〈N, c l 〉 is given by

c l (S) =


∑
j∈G

[∑
i∈S

dij

]
cj +

∑
j∈G∑

i∈S dij =0

α cj , S 6= ∅,

0, S = ∅,

for all S ⊆ N.

Theorem

The library game c l is 1-concave.

The library game is a sum of games, one for each journal.
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Games with Limited Cooperation
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Games with Limited Cooperation

Aumann and Drèze (1974), Owen (1977)
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Games with Limited Cooperation

Myerson (1977)
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Games with Limited Cooperation

Vázquez-Brage, García-Jurado, and Carreras (1996)

Anna Khmelnitskaya Introduction to Game Theory



Games with Limited Cooperation

Khmelnitskaya (2007)
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Games with Limited Cooperation

N1 N2 Nk NmR

e1 e2 ek emR

sharing an international river among multiple users without international firms
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Games with Limited Cooperation

1 2

10

3 4

5

6

7

8 9

Khmelnitskaya, Talman (2010)
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Games with Limited Cooperation

1

2

3

4

5

6

7
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9

10

11 12

13
i i +1

i +2

i +3

i +4

i +5

e0,1

e0,2

e0,3

e0,4

e1,5

e0,7

e5,10

e7,8

e10,11

e10,13

e11,12

ei−1,i ei,i+1

ei+1,i+2
ei+2,i+5

A river with multiple sources, a delta, and several islands along the river bed
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The Sveriges Riksbank Prize in Economic  
Sciences in Memory of Alfred Nobel 1994 
 
"for their pioneering analysis of equilibria in the theory  
of non-cooperative games" 
 

       

 
  John C. Harsanyi         John F. Nash Jr.        Reinhard Selten 
       (1920-2000)                     b. 1928                        b. 1930 
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The Sveriges Riksbank Prize in Economic  
Sciences in Memory of Alfred Nobel 2005 
 
"for having enhanced our understanding of conflict and  
cooperation through game-theory analysis" 
 

                           

              Robert J. Aumann             Thomas C. Schelling 

                        b. 1930                                  b. 1921 
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The Sveriges Riksbank Prize in Economic  
Sciences in Memory of Alfred Nobel 2007 
 
"for having laid the foundations of mechanism design  
theory" 
 

           

 

   Leonid Hurwicz            Eric S. Maskin         Roger B. Myerson  
          b. 1917                          b. 1950                       b. 1951   
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Thank You!
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