Classes of operators defined by operator inequalities

Glenier L. Bello Burguet

Let $\alpha(t) = \sum_{n=0}^{\infty} \alpha_n t^n$ be a function with real coefficients. Let T be a bounded linear operator on a Hilbert space H of class C_{α} , by which we mean that

$$\alpha \left[T^*, T \right] := \sum_{n=0}^{\infty} \alpha_n T^{n-1} T^n \ge 0$$

We consider two cases:

- (i) The spectrum (T) is contained in the closed unit disc and the series for α converges in a disc |t| < R for some R > 1;
- (ii) T is power bounded and belongs to the analytic Wiener algebra A_W (that is, the series $\sum |\alpha_n|$ converges).

In both cases, α [T^* , T] is well defined. In this talk some results of these operators will be stated.