Small positive loops of contactomorphisms

Lucía Martín Merchán

Contact geometry focuses on the study of odd dimensional manifolds $^{M2n+1}$ which admit a hyperplane distribution $\xi = \ker \alpha$ such that the dierential form $\alpha \in \Omega^1(M)$ satisfies $\alpha \wedge d\alpha^n \neq 0$. Those manifolds are locally identical due to Darboux theorem, which provides a local model for α . By contrast, a global criteria related to homotopic properties of distributions classifies compact contact manifolds in two different types: overtwisted and tight.

Appart from doing a review of the previous concepts, in this talk we are going to tackle a problem related to loops of contactomorphism $\Phi\colon M\times S^1\to M$ on overtwisted manifolds. In particular, we are going to prove that if the Hamiltonian of a loop $H=\alpha(\frac{d}{dt}\Phi_t)$ is positive, then it is bounded below by a universal constant which only depends on α .