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O esforgo é grande e o homem ¢ pequeno.
Eu, Diogo Cao, navegador, deixei

Este padrao ao pé do areal moreno

E para adiante naveguei.

A alma é divina e a obra é imperfeita.

Este padrao assinala ao vento e aos céus
Que, da obra ousada, é minha a parte feita:
O por-fazer é s6 com Deus.

E ao imenso e possivel oceano

Ensinam estas Quinas, que aqui vés,

Que o mar com fim sera grego ou romano:
O mar sem fim é portugués.

E a Cruz ao alto diz que o que me ha na alma
E faz a febre em mim de navegar

S6 encontrara de Deus na eterna calma

O porto sempre por achar.

Fernando Pessoa — Padrao
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Resumen

Esta tesis doctoral se centra principalmente en tres problemas multilineales y su objetivo es
describir las técnicas analiticas y topologicas tutiles para “atacar” estos problemas. El primer
problema tiene su origen en la Teoria de Informacién Cuéntica, es el llamado problema de la
separabilidad de los estados cuanticos, y los otros dos fueron propuestos por Vladimir I. Gu-
rariy. A grandes rasgos, en nuestro primer problema se emplea la teoria de Perron-Frobenius,
que esta relacionada con las aplicaciones positivas que actian sobre C*— algebras, con el fin
de obtener una reduccién del problema de la separabilidad a un caso particular y algunas
otras aplicaciones a la teoria de informacién cuéntica. Para el segundo problema, se utilizo
el teorema de Borsuk-Ulam para demostrar que la dimension de cierto espacio vectorial debe
estar comprendida en cierto intervalo. Para el tercer problema, hemos construido sucesiones
bésicas con propiedades especiales a fin de obtener una solucién completa del mismo.

Denotemos por M, al conjunto de las matrices complejas de orden k y Py sera el conjunto
de matrices Hermiticas semidefinidas positivas de Mj. El problema de la separabilidad de
los estados cuénticos es un problema famoso y bien establecido en el campo de la teoria de
informacion cuantica debido a su importancia y, sobre todo, a su gran dificultad.

El objetivo de este problema es encontrar un criterio deterministico para distinguir los
estados separables de los estados entrelazados. Aqui s6lo trabajamos con el caso bipartito
de dimensioén finita, luego los estados son los elementos del producto tensorial My ® M,,, que
pueden ser interpretados como matrices en My, a través del producto de Kronecker.

Decimos que B € My ® M, es separable si B=Y",C;®D;, donde C; € P, y D; € P,,, para
cada i. Si B no es separable entonces B esta entrelazada.

Este problema fue resuelto por completo por Horodecki en el espacio M, ® M,, donde
km < 6, por el llamado criterio PPT (ver [29]). Este criterio establece que una matriz
A= Zf;l A; ® B; € M, ® M,, ~ My,,, km < 6, es separable si y solo si A permanece positiva
bajo transposicion parcial (PPT), es decir, Ay A2 = Y% A, ® B! son matrices Hermiticas
semidefinidas positivas (definicion [3.1)).
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El caso general, incluso para el caso de dimension finita, sigue siendo un gran desafio. Se
han desarrollado algoritmos con el fin de resolver el problema de la separabilidad, pero se sabe
que este problema es NP-hard (véase [28]). Por lo tanto, cualquier restriccion del problema
a un conjunto mas pequeno de matrices es, sin duda, muy importante. Por ejemplo, Peres
en [39] fue el primero en darse cuenta de la importancia de la propiedad PPT que maés tarde
se demostro ser necesaria y suficiente para la separabilidad en My, ® M,, de km <6, en [29] .

Otra reduccion ha sido obtenida para el caso positivo definido en M, ® M,,. Con el fin de
encontrar las matrices Hermiticas positivas definidas y separables solo tenemos que distinguir
las matrices separables entre las matrices positivas definidas del tipo siguiente:

l
Ide1d+Y ¢E ®F,
i=1

1=

donde tr(E;) = tr(F;) =0, {Ey, ..., B}, {F,..., F;} son conjuntos de matrices ortonormales
hermiticas con respecto al producto interno de la traza y a; € R. Este resultado se obtiene
por medio de una forma normal (véase la subseccion y [23,34},46]).

Los autores de [34] también obteneran una notable reduccion del problema de separabili-
dad en M, ® M, para el caso general, no solo para el caso positivo definido. Ellos mostraron
que, para resolver el problema en M, ® M, es suficiente descubrir qué matrices de la siguiente
familia son separables:

Id® Id+dyyo ® 2 + d3y3 ® V3 + dyys ® Vs,

donde ds, d3,dy € Ry ¥2,73,74 son las matrices de Pauli diferentes de Id. Ellos demostraron
que una matriz de esta familia es separable si y solo si es PPT, y siy solo si |dy|+|ds|+|d4| < 1.
Esta es una segunda demonstracion del criterio PPT en M ® M.

El lector interesado puede encontrar més informacién en relaciéon con el problema de
separabilidad en [25].

A continuacién, vamos a describir como utilizamos la teoria Perron-Frobenius con el fin
de reducir el problema de separabilidad a un cierto subconjunto de matrices PPT y para
obtener algunas otras aplicaciones.

Denotemos por VMW el conjunto {VXW, X € M}, donde V,W € M, son proyecciones
ortogonales. Si V' = W entonces el conjunto VMV es una C*— subdlgebra hereditaria
de Mj. Se dice que una transformacion lineal 7' : VM,V - WM, W es una aplicacion
positiva, si T(P, n VM,V) c P, n WM,,W. Se dice que una aplicaciéon no nula positiva
T : VM,V - VMV es irreducible si VM, V' ¢ VM,V es tal que T(V'M V") c V' MV’
entonces V' =V o V' =0.

Por la teoria de Perron-Frobenius, sabemos que si T': VM,V — V M,V es una aplicacion
positiva, entonces su radio espectral, A, es un valor propio y hay 0 # v € P, n VM,V de tal
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manera que T'(y) = Ay. Por otra parte, si T': VM,V — VM,V es irreducible, la multiplicidad
del radio espectral es 1 y las iméagenes de v y V' son iguales (ver proposiciones 2.3 y 2.5 en
[21]).

Para ciertos tipos de aplicaciones positivas vale el reciproco del tltimo teorema. Por
ejemplo, si T : VMV — VM,V es una aplicaciéon positiva autoadjunta con respecto al
producto interno de la traza ((X,Y’) = tr(XY™)), si su radio espectral tiene multiplicidad 1
y J(7) =3(V) entonces T : VM,V - VM,V es irreducible (ver lema [2.11). Otro ejemplo es
una aplicacion completamente positiva (véase la definicion en [44]).

Una extension natural del concepto de aplicacion irreducible positiva es una suma directa
de aplicaciones irreducibles positivas. Digamos que T : VM,V — VM,V es una aplicacion
completamente reducible, si es positiva y si hay proyecciones ortogonales Vi,..., V, € My
tales que V;V; =0 (it # 5), iV =V, (1 <i <), VMV = ViMVi @ ... & V.M,V ® R,
R 1 ViMVi & ...0 VM, Vs y que satisfacen: T(V;M, Vi) c ViM, Vi (1 <i<s), Tlya,v; €s
irreducible (1 <i < s), T|g = 0. Observe que cualquier aplicacion irreducible es completamente
reducible. Este concepto estéa relacionado con el de la matriz completamente reducible (ver
42]).

La tnica restriccion fuerte en la definicion de aplicacion completamente reducible es
T|r = 0. Por ejemplo, la existencia de las subalgebras V; M, V; que cumplen las condiciones
requeridas estd garantizada para cualquier aplicacién positiva autoadjunta, sin embargo la
condicion T'|g = 0 es (en general) falsa. La aplicacion positiva autoadjunta mas simple que no
es completamente reducible es la identidad Id : M - M, k > 1. Nuevamente, como ocurre
con las aplicaciones irreducibles, para aplicaciones autoadjuntas hay una propiedad simple
equivalente a la propiedad de ser completamente reducible (proposicion . Llamamos a
esta propiedad de propiedad de descomposicion (definicion .

Ahora vamos a centrarnos en determinados tipos de aplicaciones autoadjuntas positivas.
Sea A =Y"1A; ®B; € M ® M, e identifique My ® M,, ~ My,,, a través del producto de
Kronecker. Defina G : My - M,,, Ga(X) = X0, tr(AX)B; v Fa: My, > My, Fa(X) =
Yo tr(B;X)A;. Si Ae M, ® M, ~ My, es Hermitica entonces Fx y G4 son adjuntas con
respecto al producto interno de la traza. Por otra parte, si A € Py, entonces F4 y G4 son
positivas y Fla 0 G4 : My - M}, es una aplicacion positiva autoadjunta.

Sea Sy el grupo de permutaciones de {1,2,3,4} y considere la notacion de ciclos. Sea
o €Sy y defina L, : M ® M;, - My ® M;, como la transformacion lineal que satisface
L,(v10} @ vgvl) = va(l)vff@) ® 00(3)03(4), para todos wvy,vq,v3,v4 € CF. Defina P, = {A €
M, ® My, A€ Py and L,(A) € P2} vy I, ={A€ My ® My, A€ P2 and L,(A) = A}. Entre
estes tipos de matrices estamos interesados especialmente en 3:

(1) P4y, que es el conjunto de las matrices PPT (definicién
(2) Piass), que es el conjunto de las matrices SPC (definiton
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(3) I(23), que es el conjunto de las matrices invariantes por realineamiento (definicion (3.8)).

Finalmente, podemos describir nuestros principales resultados. Si A € M ® M, es positiva
bajo transposicion parcial (PPT) o simétrica con coeficientes positivos (SPC) o invariante
bajo realineamiento luego FaoG 4 : My — M), es completamente reducible (teoremas ,
y . Vamos a aplicar nuestros principales resultados a la teoria de informacién cuéntica.

La aplicacion Fy o G4 : My — My, es responsable por la descomposicion de Schmidt de la
matriz Hermitica A € M, ® M,,. Nuestros principales teoremas dicen que bajo una de estas
tres hipoétesis la aplicacion Fy oGy @ My, — M), se descompone como una suma de aplicaciones

irreducibles. Por lo tanto, A también se descompone como una suma de matrices débilmente
irreducibles (definicion m y la proposicion |3.18]).

Una condiciéon necesaria para la separabilidad de A € M, ® M,, es ser PPT. Podemos
utilizar la descomposiciéon de una matriz PPT como una suma de matrices débilmente irre-
ducibles para reducir el problema de separabilidad para el caso PPT débilmente irreducible
(corolario . También proporcionamos una descripcion completa de las matrices PPT
débilmente irreducibles (proposicion .

Una herramienta importante para estudiar la separabilidad de las matrices Hermiticas
definidas positivas en M, ® M,, es una forma normal denominada forma nomal de filtro
(véase la seccion IV.D de [23] y la subseccion [3.3.2)). La tnica prueba conocida de esta forma
normal depende de A ser positiva definida. En realidad, la descomposicién de una matriz
PPT como una suma de matrices débilmente irreducibles proporciona otro caso en el que
la forma normal de filtro puede ser utilizada (véase la subseccion . Esto plantea una
pregunta importante: Podemos demostrar la forma normal de filtro para las matrices PPT
débilmente irreducibles? Si la respuesta fuera si, serfamos capazes de usar la forma normal
de filtro para cualquier matriz PPT.

Todavia podemos obtener algunas desigualdades que impliquen separabilidad para matri-
ces PPT débilmente irreducibles, incluso sin la forma normal de filtro. Estas desigualdades
se basan en el hecho de que toda matriz Hermitica positiva semidefinida con rango tensorial
2 es separable (ver teorema . Queremos enfatizar que la forma normal de filtro también
seria 1til para mejorar estas desigualdades (ver ejemplo .

Otra de las aplicaciones de nuestros resultados principales es la siguiente: Si Flq 0G4 :
M, — M, es completamente reducible con los tinicos valores propios 1 o 0 entonces A es sep-
arable. El uso de este teorema para una matriz invariante bajo realineamiento, proporciona
una prueba diferente del siguiente resultado publicado recientemente en [47]: Si hay k bases
mutuamente imparciales en CF entonces existe otra base ortonormal que es mutuamente
imparcial con estas k bases. Por lo tanto, si C¥ contiene k bases mutuamente imparciales
entonces CF contiene k + 1. El caso real sigue de manera analoga: Si R2?* contiene k bases
mutuamente imparciales entonces R?* contiene % + 1.



Resumen

Este resultado es bastante sorprendente, ya que algunos conjuntos de bases mutuamente
imparciales se demostraron inextensibles (véase, por ejemplo, [36]). En la teoria de infor-
macion cuéntica, el concepto de bases mutuamente imparciales (definicion se ha de-
mostrado util. Tiene aplicaciones en tomografia y criptografia (vea |17,[31,/48,49]) . Se sabe
que k + 1 es un limite superior para el numero de bases mutuamente imparciales de CF y
la existencia de este ntimero de bases es un problema abierto, cuando k no es una potencia
de nameros primos. Cuando k es una potencia de cierto ntimero primo, se han utilizados
métodos constructivos para obtener estos k + 1 bases (ver |4,31,49]).

Ademas de la informacién que nuestros principales teoremas proporcionan, también nos
proporcionan una intuiciéon: Los tres tipos de matrices que aparecen en nuestros teoremas
estan conectados. Por lo tanto, podemos preguntarnos si cada matriz SPC es PPT o si
cada matriz invariante bajo realineamiento es PPT. Se demuestra que las matrices SPC y
las matrices invariantes bajo realineamiento son PPT en M ® Ms, sin embargo, en M, ® My,
k > 2, hay contraejemplos.

Observemos que la propiedad de ser completamente reducible es muy fuerte. Es una
sorpresa que Fs o G4 : My — M sea completamente reducible, cuando A es PPT o SPC o
invariante bajo realineamiento. Una matriz PPT es un tipo muy comin de estado en teoria de
informacion cuantica. Por otra parte, se sabe que un estado invariante bajo la multiplicacion
por el operador "Flip" es PPT si y solo si es SPC (ver [45] y la proposici(’)n, por lo tanto,
las matrices SPC son relativamente conocidas. Matrices invariante bajo realineamiento no son
muy comunes, pero el realineamiento es bien conocido debido a su uso con el fin de detectar
entrelazamiento. Muy a menudo la teoria de informaciéon cuéntica se beneficia de las ideas y
de los teoremas de la teoria de las aplicaciones positivas. Por ejemplo, la soluciéon completa
del problema de la separabilidad en M, ® M,,, km < 6, se obtuvo mediante la clasificacion
completa de las aplicaciones positivas, T : Mj, - M,,, km < 6. Como la teoria de informacion
cuantica estd proporcionando sus tipos especiales de estados como la hipétesis de nuestros
principales resultados, podemos interpretar estos resultados como la retroalimentacion de
esta teoria a la teoria de aplicaciones positivas.

Nuestro segundo problema fue propuesto originalmente por Vladimir I. Gurariy y, mas
tarde, estudiado por Gurariy y Quarta en [27]. Sea K un espacio topolégico. Consideremos
C(K) el espacio vectorial de las funciones reales continuas con dominio K. Denotemos por
C(K) el subconjunto de C'(K) formado por aquellas funciones que alcanzan su maximo en
un solo punto de K. El conjunto C (K) no es un espacio vectorial por muchas razones, por
ejemplo, la funcién de cero no es un elemento de este conjunto.

Gurariy y Quarta se hicieron la siguiente pregunta: ;Podemos encontrar un subespacio
V de C(K) dentro de C(K)u{0}? En caso positivo, jcomo de grande puede llegar a ser la
dimension de V' 7

Los principales resultados obtenidos por Gurariy y Quarta en este sentido son los sigu-
ientes:
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(A) Existe un subespacio de dimension 2 de C[a,b) contenido en C[a,b) u {0}.
(B) Hay un subespacio de dimension 2 de C'(R) contenido en C(R) u {0} .

(C) No existe ningin subespacio de dimension 2 de C'[a, b] contenido en C [a,b] U {0}.

Nuestro principal resultado es una generalizacion de (C). Hemos demostrado que si K
es un subconjunto compacto de R® y si V' es un subespacio de C'(K) dentro C(K) u {0}
entonces dim(V') < n. Mientras que Gurariy y Quarta [27] emplearon técnicas analiticas

clasicas, nuestra generalizacion requiere de un teorema topologico: el famoso teorema de
Borsuk-Ulam.

La razén por la cual el teorema de Borsuk-Ulam es 1til en este contexto es la siguiente:
Supongamos que fi,..., fi es una base de un subespacio V' de C(K) dentro G(K) u{0}. Sea
Sk-1 la esfera Euclidea dentro de R¥ y definamos la funcion g : S¥=1 - K como g(aq,...,a;) =
el tnico punto de maximo en K de Zle a; f;. Demostramos que esta funcién es continua si
K es un subconjunto compacto de R™. Por el teorema de Borsuk-Ulam, si la dimensiéon &
del subespacio V' es mayor que n, entonces hay un par de puntos antipodales en S¥-! con la
misma imagen. Por lo tanto, tenemos que hay f,-f dentro de este subespacio con el mismo
punto de maximo. Entonces, f es constante y no alcanza su maximo en un solo punto, lo

cual es absurdo.

En general, la funcion g no es continua. Por ejemplo, si K = [0, 27) entonces el subespacio
de C([0,27)) generado {cos(t),sin(t)} es un subconjunto de C([0,27)) u {0}. La funcion
g:S' = [0,27), g(a1,as) = el tnico punto de méaximo en [0,27) de ay cos(t) + azsin(t), no
es continua en (1,0). La continuidad de g bajo la hipétesis de compacidad de K es una
sorpresa.

Nuestro tercer y tultimo problema fue propuesto por Richard M. Aron Y Vladimir I.
Gurariy.

.Es posible obtener un subespacio cerrado de dimension infinita de /., tal que
cada sucesion de este espacio tiene solamente un ntmero finito de coordenadas
nulas?

Esta cuestion ha aparecido en varios trabajos recientes (véase, por ejemplo, [9,[20422,38]) vy,
durante la dltima década, ha habido varios intentos de responder parcialmente, aunque no
hay nada concluyente en relaciéon con el original problema que se ha obtenido hasta ahora.

Si X denota un espacio de sucesiones, designaremos por Z(X) el subconjunto de X
formado por sucesiones que tienen s6lo un nimero finito de coordenadas cero. A continuacion,
mostraremos (entre otros resultados) la respuesta definitiva a esta pregunta. Es decir, si X
representa ¢y o ¢, con p € [1,00], se prueba lo siguiente:
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(i) No hay subespacio cerrado de dimension infinita de X dentro Z(X) u {0} (corolarios

51y p10)

(i1) Hay un subespacio cerrado de dimension infinita de X dentro V \ Z(V'), para cualquier
subespacio cerrado V' (con dimension infinita) de X (teorema [5.18)).

Para obtener estos resultados, se construyen sucesiones basicas dentro de cualquier sube-
spacio cerrado de dimension infinita de X = ¢y 0 £, p € [1,+00], y verificando propiedades
“especiales”. Una de estas propiedades es que cada elemento de esta sucesion bésica tiene un
nimero infinito de coordenadas nulas.

Observemos que hay un ejemplo muy simple de un subespacio de dimensién infinita de
X dentro Z(X) u {0}, que por supuesto, no es cerrado. Sea V el subespacio generado por
{(A)pen | 0 < A < 1}. Tenga en cuenta que V c X, si X =¢g 0 £, p € [1,+00], y cualquier
combinacion lineal no trivial de distintos (A?)pen, - - -, (A7 )nen esta dominado por (A'),en con
el mayor \;. Por lo tanto, las coordenadas de esta combinaciéon lineal no son cero después de
una cierta coordenada, que depende de la combinacion. Por lo tanto, V ¢ Z(X)u{0}.

Usando terminologia moderna (acufiada originalmente por V.I. Gurariy), un subconjunto
M de un espacio vectorial topologico X se llama lineable (resp. espaciable) en X si existe un
subespacio lineal de dimensién infinita (resp. subespacio lineal cerrado de dimensién infinita)
S c Mu{0} (véase [1}2,5,9,10,20,27]). Por lo tanto, hemos demostrado que Z(X) es lineable
y no espaciable.

No hay muchos ejemplos de conjuntos (no triviales) que son lineables y no espaciables.
Uno de los primeros en este sentido, se debe a Levine y Milman (1940, [35]) que mostraran
que el subconjunto de C[0,1] de todas las funciones de variacion acotada no es espaciable
(obviamente lineable, ya que es un espacio lineal de dimension infinita). Una maés reciente se
debe a Gurariy (1966, [26]), que probd que el conjunto de funciones diferenciables en todas
partes [0,1] (que es también un espacio lineal de dimension infinita) no es espaciable en
C([0,1]). Sin embargo, Bernal-Gonzélez (|8|, 2010) mostré que C*=(]0,1[) es, en realidad,
espaciable en C(]0,1[).
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Chapter

Introduction

This Ph.D. dissertation mainly focuses on three multilinear problems and its aim is to describe
analytical and topological techniques that we found useful to tackle these problems. The
first problem comes from Quantum Information theory, it is the so-called the Separability
Problem, and the other two were proposed by Gurariy. In our first problem we used Perron-
Frobenius Theory, which is related to positive maps acting on C*—algebras, in order to obtain
a reduction of the Separability Problem to a particular case and some other applications to
Quantum Information theory. For the second problem, we used Borsuk-Ulam theorem to
show that the dimension of a particular vector space must be within a certain range in order
to exist. For the third problem, we constructed basic sequences with special properties in
order to obtain a complete solution.

Let M, denote the set of complex matrices of order k£ and let P, be the set of positive
semidefinite Hermitian matrices of M. The Separability Problem is a well established prob-
lem in the field of Quantum Information Theory due to its importance and difficulty. The
aim of this problem is to find a deterministic criterion to distinguish the separable states from
the entangled states. In this work we shall only deal with the bipartite finite dimensional
case, therefore the states are elements in the tensor product space My ® M,,, which can be
interpreted as matrices in My, via the Kronecker product. We say that B € M, ® M,, is
separable if B =Y, C; ® D;, where C; € P, and D; € P, for every i. If B is not separable
then B is entangled.

This problem was completely solved by Horodecki in the space My ® M,, for km < 6, by
the so-called PPT criterion (see [29]). This criterion states that a matrix A=Y", A, ® B; €
My ® M,, ~ My,,, km <6, is separable if and only if A is positive under partial transposition
(PPT), i.e., Aand A2 = ¥} A; ® B! are positive semidefinite Hermitian matrices (definition

51).
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The general case, even for the finite dimensional case, is still a great challenge. Algorithms
have been developed in order to solve the separability problem, but it is known that this
problem is NP-hard (see |28]). Therefore, any restriction of the problem to a smaller set
of matrices is, certainly, important. For example, Peres in [39] was the first to notice the
importance of the PPT property which was later proved to be necessary and sufficient for
separability in M ® M, for km <6, in [29].

Another remarkable reduction was obtained for the positive definite case in My ® M,,. In
order to find the separable positive definite Hermitian matrices we only need to distinguish
the separable matrices among the positive definite matrices of the following type:

l
Id®Id+Y a,E;® F

i=1

where tr(E;) =tr(F;) =0, {E, ..., B}, {F1,..., F} are orthonomal sets of Hermitian matrices
with respect to the trace inner product and a; € R. This result is obtained via the filter

normal form (see subsection and [23.|34,46]).

The authors of [34] also obtained a remarkable reduction of the separability problem in
M, ® M, for the general case, not only for the positive definite case. They showed that, in
order to solved it, it suffices to discover which matrices from the following family of matrices
are separable:

Id® Id+ dyyo ® y2 + d3y3 ® 73 + dyys ® 4,

where ds, d3,ds € R and 79, 73,74 are the matrices of the Pauli’s basis of M, different from
the Id. They proved that a matrix within this family is separable if and only if it is PPT,
and if and only if |do| + |d3| + |d4| < 1. This is a second proof of the PPT criterion in M, ® Ms.

The interested reader can find more information concerning the Separability Problem in
the survey [25].

Next, let us describe how we used the Perron-Frobenius theory in order to reduce the sep-
arability problem to a certain subset of PPT matrices and to obtain some other applications.

Denote by VMW the set {VXW, X € My}, where V,W € M, are orthogonal projections.
If V =W then the set VM,V is an hereditary C*—subalgebra of M;. We say that a linear
transformation 7' : VM,V - W M,,W is a positive map, if T(P, nVM,V) c P,, nW M,,W.
We say that a non null positive map 17" : VM,V — VM,V is irreducible if VM, V' c VM,V
is such that T'(V'M V") c V' MV’ then V' =V or V' = 0.

By Perron-Frobenius theory, we know that if 7": VM,V — V M,V is a positive map then
its spectral radius, A, is an eigenvalue and there is 0 # v € P, n VM,V such that T(vy) = M.
Moreover, if T': VM,V — V M,V is irreducible then the multiplicity of the spectral radius is
1 and the images of v and V' are equal (see propositions 2.3 and 2.5 in |21]).
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There are certain types of positive maps such that the converse of the last theorem is
valid. For example, if T': VM,V - VM,V is a self-adjoint positive map with respect to
the trace inner product ((X,Y) = tr(XY™)), if its spectral radius has multiplicity 1 and
J(v) =3(V) then T: VM,V - VM,V is irreducible (see lemma [2.11]). Another example is
a completely positive map (see definition 1 in [44]) .

A natural extension of the concept of irreducible positive map is a direct sum of irreducible
positive maps. Let us say that T : VM,V - VM,V is a completely reducible map, if it is a
positive map and if there are orthogonal projections Vi,. .., V; € M} such that V;V; =0 (i # j),
ViV=V,(1<i<s), VMV =ViMVie®... eV M, Ve R, R 1L ViMVi&...®@V,MV, satisfying:
T(ViMyV;) ¢ ViM,V; (1 <i < s), T|y,m,v; is irreducible (1 < < s), T|gr = 0. Notice that
any irreducible map is completely reducible. This concept is related to that of completely
reducible matrix (see [42]).

The only strong restriction in the definition of completely reducible map is T|r = 0.
For example, the existence of the subalgebras V;M,V; satisfying the required conditions is
granted for any self-adjoint positive map, however the condition T|z =0 is (in general) false.
The simplest self-adjoint positive map that is not completely reducible is the identity map
Id: My - My, k> 1. As for irreducible maps, if T : VM,V — VM,V is a self-adjoint map
then there is a very neat property equivalent to the complete reducibility of 7' (proposition
2.13). We call this property the decomposition property (definition [2.10)).

Now, let us focus on specific types of self-adjoint positive maps. Let A=Y", A; ® B; €
My, ® M, and identify M ® M,, ~ My,,, via Kronecker product. Define G 4 : M - M,,, as
Ga(X) =X, tr(A;X)B; and Fy: M, > My, as Fa(X) =Y tr(B;X)A;. If Ae M, ®@ M,, ~
M., is Hermitian then F4 and G4 are adjoint with respect to the trace inner product.
Moreover, if A € P, then F4 and G4 are positive maps and Fqo Gy : M, — M, is a
self-adjoint positive map.

Next, let Sy be the group of permutations of {1,2,3,4} and consider the cycle notation.
Let 0 € Sy and define L, : M, ® M, - M, ® M, as the linear transformation that satisfies
L, (v1v5 ® vgv}) = va(l)vg@) ® 00(3)1};(4), for every vy,v9,v3,v4 € C*. Define P, = {A € M} ®
My, A€ P2 and L,(A) € P2} and I, = {A € M, ® My, A€ P2 and L,(A) = A}. Among

these types of matrices we are specially interested in 3 types:

(1) P(ss), which is the set of PPT matrices (definition
(2) Piaa3), which is the set of SPC matrices (definiton [3.6))

(3) I(23), which is the set of matrices invariant under realignment (definiton .

We can finally describe our main results. If A € M, ® M, is positive under partial trans-
position (PPT) or symmetric with positive coefficients (SPC) or invariant under realignment
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then Fiy 0 G4 : My - My is completely reducible (theorems 13.12] and |3.13]). We shall

apply our main results to Quantum Information Theory.

The map F0G 4 : My, - Mj, is responsible for the Schmidt decomposition of the Hermitian
matrix A. Our main theorems say that under one of these three hypothesis the map FaoG 4 :
M, — M, decomposes as a sum of irreducible maps. Hence, A shall also decomposes as a
sum of weakly irreducible matrices (definition and proposition .

A necessary condition for the separability of A € M, ® M,, is to be PPT. We can use
the decomposition of a PPT matrix as a sum of weakly irreducible matrices to reduce the
Separability Problem to the weakly irreducible PPT case (corollary . We also provide a
complete description of weakly irreducible PPT matrices (proposition .

An important tool to study separability of positive definite Hermitian matrices in M, ® M,,
is the so-called filter normal form (see section IV.D of [23] and subsection [3.3.2). The only
known proof of this normal form depends heavily on the positive definiteness of A. Actually,
the decomposition of a PPT matrix as a sum of weakly irreducible matrices provides another
case where the filter normal form can be used (see subsection. This raises an important
question: Can we prove the filter normal form for weakly irreducible PPT matrices? If so,
we would be able to use the filter normal form for every PPT matrix.

We can still obtain some inequalities for weakly irreducible PPT matrices that imply
separability, even without the filter normal form. These inequalities are based on the fact
that every positive semidefinite Hermitian matrix with tensor rank 2 is separable (see theorem
3.44). We want to emphasize that the filter normal form would also be useful to sharpen
these inequalities (see example .

Another application of our main results is the following one: If Fqyo0 G4 @ M, — M, is
completely reducible with the only eigenvalues 1 or 0 then A is separable. Using this theorem
for a matrix invariant under realignment, we can provide a different proof of the following
result published recently in [47|: If there are k mutually unbiased bases in C*¥ then there
exists another orthonormal basis which is mutually unbiased with these k bases. Hence,
if C¥ contains k& mutually unbiased bases then CF contains k + 1. The real case follows
analogously: If R?* contains & mutually unbiased bases then R?* contains k + 1.

This result is quite surprising, since some sets of mutually unbiased bases were proved to
be unextendible (see, e.g., [36]). In Quantum Information Theory, the concept of mutually
unbiased bases (definition has been shown to be useful. It has applications in state
determination, quantum state tomography, cryptography (see [17,131,/48,/49]). It is known
that k + 1 is an upper bound for the number of mutually unbiased bases in C* and the
existence of this number of bases is an open problem, when £ is not the power of prime
number. When £ is a power of certain prime number, some constructive methods were used
to obtain these k + 1 bases (see [4,[31,149]).
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Besides the information that our main theorems provide, they also provide an intuition:
The three types of matrices that our main theorems concern are connected. Thus, we can
wonder if every SPC matrix is PPT or if every matrix invariant under realignment is PPT.
We show that SPC matrices and matrices invariant under realignment are PPT in M; ® M,
however in My ® My, k > 2, there are counterexamples.

Notice that the complete reducibility of Fy o G4 : My — M is a very stong property. It
is quite a surprise that F4 o G4 : My — M, is completely reducible, if A is PPT or SPC or
invariant under realignment. A PPT matrix is a very common type of state in Quantum
Information Theory. Moreover, it is known that a state invariant under multiplication by the
flip operator is PPT if and only if is SPC (see [45] and proposition [3.33)), thus SPC matrices
are relatively known. Matrices invariant under realignment are not very common, but the
realignment map is well known due to its use in order to detect entanglement. Very often
Quantum Information Theory benefits from the ideas and theorems of the theory of positive
maps. For example the complete solution of the Separability Problem in M ® M,,, km <6,
was obtained by the complete classification of the positive maps, T : M, - M,,, km < 6.
Since Quantum Information Theory is providing its special types of states as the hypothesis
of our main results, we can interpret these results as the feedback of this theory to the theory
of positive maps.

Next, our second problem was originally proposed by Gurariy and, later, studied by
Gurariy and Quarta in [27]. Let K be a topological space. Consider C'(K') the vector space
of real-valued continuous functions with domain K. Denote by C(K) the subset of C'(K)
formed by those functions that attain their maximum at only one point of K. The set C(K)
fails to be a vector space for many reasons, for example the zero function is not an element
of this set.

Gur’z}riy and Quarta asked the following question: Can we find a subspace V' of C'(K)
inside C'(K) u {0}. If so, how big can be the dimension of V7

The main results obtained by Gurariy and Quarta in this direction are the following:

(A) There is a 2-dimensional linear subspace of C[a,b) contained in C[a,b) u {0}.
(B) There is a 2-dimensional linear subspace of C'(R) contained in C'(R) u {0}.

(C) There is no 2-dimensional linear subspace of C'[a,b] contained in C [a,b]u {0}.

Our main result is a generalization of (C). We proved that if K is a compact subset
of R* and if V is a subspace of C'(K) inside C(K)u {0} then dim(V) < n. While Gurariy
and Quarta |27 used typical analytical techniques, our generalization requires a topological
theorem: Borsuk-Ulam theorem.
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The reason why the Borsuk-Ulam theorem is useful within this context is the following:
Assume that fi,..., fi is a basis of a subspace V of C'(K) inside C(K)u {0}. Let S*! be
the Euclidean sphere inside R* and define the function g : S*' - K as g(aq,...,a;) = the
unique point of maximum in K of Y% | a;f;. We proved that this function is continuous if K
is a compact subset of R"”. By Borsuk-Ulam theorem, if the dimension k of the subspace V'
is bigger than n then there is a pair of antipodal points in S*~! with the same image. Thus,
there are f,—f inside this subspace with the same point of maximum. Hence, f is constant
and does not attain its maximum at only one point, which is absurd.

In general, the function ¢ is not continuous. For example, if K = [0, 27) then the subspace
span{cos(t),sin(t)} of C([0,27)) is a subset of C([0,27))u{0}. The function g : St - [0, 27),
g(ay,as) = the unique point of maximum in [0, 27) of a; cos(t) + azsin(t), is not continuous
at (1,0). It was quite a surprise to obtain the continuity of g under the hypothesis of
compactness of K.

Our third and final problem was proposed by Gurariy and Aron.

Is it possible to obtain an infinite dimensional closed subspace of ¢, such that
every sequence of this space has finitely many zero coordinates?

This question has appeared in several recent works (see, e.g., [9,120,122,138]) and, for the last
decade, there have been several attempts to partially answer it, although nothing conclusive
in relation to the original problem has been obtained so far.

If X denotes a sequence space, we shall denote by Z(X) the subset of X formed by
sequences having only a finite number of zero coordinates. Here, we shall provide (among
other results) the definitive answer to this question. Namely, if X stands for ¢, or £,, with
p€[1,00], we prove the following:

(i) There is no infinite dimensional closed subspace of X inside Z(X) u {0} (Corollaries

5.7 and [5.16)).

(ii) There exists an infinite dimensional closed subspace of X inside V' \ Z(V') u {0}, for
any infinite dimensional closed subspace V of X (Theorem [5.18]).

In order to obtain these results, we construct basic sequences within any infinite dimen-
sional closed subspace of X = ¢ or £, p € [1,+00], satisfying special properties. One of this
properties is each element of this basic sequence has infinitely many zero coordinates.

Observe that there is a very simple example of an infinite dimensional subspace of X inside
Z(X) u {0}, of course this subspace is not closed. Consider V' = span{(A"),y | 0 < A < 1}.
Notice that V' c X, for X = ¢y or ¢, p € [1,+00], and any non-trivial linear combination



Introduction 15

of distinct (A7 )nen, .., (A})nen is dominated by (A)nen with the largest A;. Hence, the
coordinates of this linear combination are not zero after a certain coordinate, which depends
on the combination. Hence, V c Z(X)u {0}.

Using modern terminology (originally coined by Gurariy himself), a subset M of a topo-
logical vector space X is called lineable (resp. spaceable) in X if there exists an infinite
dimensional linear space (resp. an infinite dimensional closed linear space) Y ¢ M u {0} (see
[1,[2,549}/10,20,27]). Thus, we have proved that Z(X) is lineable and not spaceable.

There are not many examples of (nontrivial) sets that are lineable and not spaceable.
One of the first ones in this direction, is due to Levine and Milman (1940, [35]) who showed
that the subset of C[0, 1] of all functions of bounded variation is not spaceable (it is obviously
lineable, since it is an infinite dimensional linear space itself). A more recent one is due to
Gurariy (1966, [26]), who showed that the set of everywhere differentiable functions on [0,1]
(which is also an infinite dimensional linear space) is not spaceable in C([0,1]). However,
Bernal-Gonzélez (|8, 2010) showed that C>=(]0,1]) is, actually, spaceable in C(]0, 1[).
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|Chapter 2

Some Results from the
Perron-Frobenius Theory

All definitions and results in this chapter can, also, be found in [14].

Let M; denote the set of complex matrices of order k. Let us denote by VMW the
set {VXW| X € My}, where V,W € M, are orthogonal projections. If V' = W then VM,V
is a hereditary finite dimensional C*-algebra (see [21]). Let Py denote the set of positive
semidefinite Hermitian matrices in M. A linear transformation L : VM,V — WM, W is
said to be a positive map if L(P,nVM,V) c P, nWM,W. A non-null positive map L :
VM,V - VM,V is called irreducible, if V/M V' c VM,V is such that L(V' M V") c V' MV’
then V' =V or V' =0.

Within the context of positive maps, sometimes the term self-adjoint means L(A*) =
L(A)~* (see, e.g., |21]). Here, we shall use this terminology with its usual meaning. We shall
say that L: VM,V - VM,V is self-adjoint if L is equal to its adjoint L* (i.e., (L(A),B) =
(A, L(B))). We shall consider the usual inner product in My, (A, B) = tr(AB*).

In this chapter, we use well known theorems from the Perron-Frobenius Theory to describe
some properties of completely reducible maps (see definition . These are theorems 2.3
and 2.5 in [21): If L : VM,V — VM,V is a positive map then there exists v € P, n VM,V
such that L(v) = Ay, where A is the spectral radius of L. Moreover, if L is irreducible then
this eigenvalue has multiplicity 1. We present elementary proofs of these theorems in Section

(see theorems [2.7 and [2.8).

In Section [2.2] we prove that if L: VM,V - VM,V is a self-adjoint positive map then L
is completely reducible if and only if L has the decomposition property (proposition [2.13).
In the next chapter, we provide an equivalent way to prove that L has the decomposition
property (lemma and we shall give two applications of completely reducible maps to
Quantum Information Theory.
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2.1 Two theorems from the Perron-Frobenius Theory

For the convenience of the reader and for the completeness of this dissertation, we present
here elementary proofs of theorems and [2.8] These theorems are well known results from
the Perron-Frobenius theory (see propositions 2.3 and 2.5 in |21]). Notice that there are
general versions of them in the literature (check, for example, the appendix of [43]). Here,
the proofs of theorems [2.7] and [2.8] follow the ideas of [6] and [21].

The first two lemmas are well known and their proofs are omitted. Recall that a positive
map L : VMV - WM, W preserves hermiticity, since every Hermitian matrix is a difference
of two positive semidefinite Hermitian matrices.

Lemma 2.1. If A€ P, and B € My, is Hermitian then 3(B) c 3(A) if and only if there exists
€>0 such that A+eB € P,.

Lemma 2.2. Let 1,7, be Hermitian matrices in My, v1 € P, and v, # 0. Suppose that
J(v2) € I(71) and 7y, is not a multiple of v1. There exists 0 # X\ € R such that ~; — Ayg € Py
and 0 # v e ker(y; — AMy2) nT(71).

Lemma 2.3. Let L: VM,V - WM, W be a positive map. If ve P, n VM,V and L(y) =96
then L(ViM,Vy) c Wi M,,,W1, where V; is the orthogonal projection onto J(v) and W1y is the
orthogonal projection onto J(0).

Proof. Let 1 € Vi M Vy be a Hermitian matrix. Thus, J(v1) ¢ 3(V1) = J(y). So there is € >0
such that v + ey, € Py, by lemma [2.1

Now, since L(7;) is Hermitian and L(7) + eL(y1) = L(y £ ey1) € Py then J(L(71)) c
J(L(v)) =3(8) =I(W1), by lemma[2.1] Therefore, L(y1) € W1 M, Wj.

Finally, since every matrix in V; M, Vi is a linear combination of Hermitian matrices within

ViM Vi then L(Vi M Vi) c Wy M, Wy. [l

Corollary 2.4. Let L:V M,V - VM.V be a positive map and v € P, n VM,V be such that
L(v) = Ay, A>0. Then, L(ViM,\V1) c Vi M Vi, where Vi is the orthogonal projection onto

I()-

Recall that the largest absolute value of all eigenvalues of L : VM,V — VM,V is called
the spectral radius of L.

Lemma 2.5. Let L : VM,V - VM,V be a positive map. If L(V) =V then the spectral
radius of L is 1.
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Proof. Let U € VM,V be a normal matrix such that UU* =U*U =V. Thus, U = ¥} ; \ivil;,
where s is the rank of V| {\{,..., A} are complex numbers of norm 1 and {vy,...,v,} is an
orthonormal basis of J(V'). Recall that L(U*) = L(U)*, since L preserves hermiticity, and
LUV = L(U*), VL(U) = L(U).

: . (1N _ L(V) L(U))
Now, consider the matrix B = — ® L(v;v;") = ( . =
;@11) ( L(U*) L(V)

(Vv L)\ ([ 1d 0o\(V 0 1d L(U)
_(L(U)* 1% )_(L(U)* Id)(o V—L(U)*L(U))(O Id )

Since B € Py, then V — L(U)*L(U) € P. So |L(U)|2 < 1, where |L(U)|2 is the spectral
norm of L(U).

Thus, for every normal matrix U such that UU* = U*U =V, we have||L(U)|2 < 1

Next, let A € VM,V be an eigenvector of L associated to some eigenvalue ov and | A4 = 1.

16 ; —10;

Let ¥7_; ajm;n} be a SVD decomposition of A, where 0 < a; < 1. Since a; = cos(0;) = 5=+~
then A = %(Z;zl eiejmjng.)Jr%(Z;:l e‘iejmjné) = %Ul-f-%UQ. Notice that U U} = U;Uy = UsUy =

UsUy =V

Finally, |af = |a||All2 = | L(A) |2 = [L(3U1 + 5U2) |2 < 3| L(U1)]2 + 5[ L(U2) ]2 = 1 and since
1 is an eigenvalue of L: VMV - VMV, L(V)=V, then 1 is the spectral radius of L. [

Lemma 2.6. Let L: VM,V - VM,V be an irreducible positive map. If 0+ X € PonV M,V
then 3((Id+ L)1 (X)) =3(V), where s = rank(V').

Proof. 0+ X € P,n VM,V then L(X) € P, n VM,V and J(x) c J(xz+ L(x)) cI(V) .

Now, if J(X + L(X)) = 3(X) then J(L(X)) c IJ(X) and, by lemma [2.3) L(V'M, V') c
V' M, V', where V' is the orthogonal projection onto J(X'). Since L is irreducible then V' = V"’
and J(X) =73(V). Thus, 3(X) # (V) implies rank((Id+ L)(X)) > rank(X). Repeating the
argument at most s — 1 times, we obtain J((/d+ L)*1(X)) =3(V). O

Theorem 2.7. Let L : VM,V - VM,V be an irreducible positive map. The spectral radius
r of L is an eigenvalue of L associated to some eigenvector Z € Pon'V M,V such that 3(Z) =
J(V). Moreover, the geometric multiplicity of r is 1.

Proof. Let Z = {X € P,n VM, V,3(X) =3(V)}. Define f:Z - [0,00[ as f(X) = sup{\ €
R, L(X)-A\X ¢ P}

Denote by B* the pseudo-inverse of B and by |B|2 the spectral norm of B. Notice that
if Be Z then BFB=BB*=V and B*V =V B* = B*.
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Now, for every X € Z, there is Y € Z such that Y2 = X. Notice that f(X) is the minimal
positive eigenvalue of Y*L(X)Y*, which is the minimal positive eigenvalue of L(X)Y+Y™* =
L(X)X*.

Next, if (A,)nen € Z converges to A € Z, then the smallest positive eigenvalue of A,
| A5, converges to the smallest positive eigenvalue of A, |A*|;!(see pg 154 in [7]). Thus,
there is N € N such that if n > N then | A} |5! > (2||A*]|2)~". Hence, for n> N, [ A} ]2 < 2| A*|2
and | A5 - A*[, = | A3(A— A,) A% < [AZ]a| A [ A, - Al < 2] A% ]3] A, - Al,. Therefore A
converges to A* and A* depends continuously on A, for A varying on Z.

Since the eingevalues of a matrix vary continuously with a matrix (see pg 154 in |7]) then
f:Z —[0,00[ is a continuous function.

Consider the compact set Z’ = {X € P,n VMV, | X| =1}, where | X, is the spectral
norm of X. By lemma , (Id+L)*"1(Z') is a compact subset of Z. Therefore, f|(14+r)s1(2
attains its maximum r at some point W e (Id+ L)*"1(Z") c Z. By definiton of r = f(WW), we
have L(W) —rW € P.

Next, if 0 # L(W) —rW then the range of (Id+ L)*"'(L(W)-rW) is the range of V', by
lemma. Thus, f(([d+L)5‘1(%)) >r = f(W), which is a contradiction. So L(W') =rW,
W e Pk n VMkV and j(W) = j(V)

In order to complete this proof, we must show that r is the spectral radius of L with
geometric multiplicity 1.

Define Ly : VMV - VM,V as Li(x) = %M*L(MxM)M*, where M € Z is such that
M? =W. Notice that L; is a positive map such that L,(V) =V.

Next, if A is an eigenvector of L associated to some eigenvalue o then M+*AM™* is an
eigenvector of L, associated to a/r. By lemma 2.5) ¢ < 1. Hence, |a| < and the spectral
radius of L is r.

Finally, assume W5 € VM,V is a Hermitian eigenvector of L associated to r. If W5 and
W are linear independent then there is 0 # u € R such that W — uWs € P, and rank(W -
pWs) < rank(W), by lemma [2.20 Thus, L(V'MV') c V'MV’, where V' is the orthogonal
projection onto J(W — uWs), by corollary . This contradicts the irreducibility of L, since
IJW = uWy) +# J(W) and V' # V. Therefore, W5 and W are linear dependent. Since
L preserves Hermiticity and r > 0 then every eingevector of L associated to r is a linear
combination of Hermitian eigenvectors of L associated to r, thus the geometric multiplicity
of ris 1. O

Theorem 2.8. Let L:V M,V — VM,V be a positive map. The spectral radius v of L is an
eigenvalue of L associated to some Z € P,V M,V .
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Proof. Consider the sequence of irreducible positive maps L, : VMV — VM,V defined by
L,(z) = L(z) + 1tr(zV)V converging to L: VMV — VM,V

Let Z, € P.nV M,V be the unique eigenvector of L, associated to the spectral radius 7,
of L, satisfying | Z, |2 = 1, where |- |, is the spectral norm, by theorem [2.7]

Notice that {X € P,nV MV, | X|2 =1} is a compact set, therefore there is a subsequence
(Zn, )ken converging to some Z € {X € P, n VMV, | X|s=1}.

Finally, since the spectral radius changes continuosly with a matrix then I}im Tny = T,
where 7 is the spectral radius of L. Thus, L(Z) = lim L, (Z,,) = lim r,, Z,, =rZ. O
k—o0 k—o0

2.2 Two related properties: completely reducibility and
the decomposition property

The main result of this section is the equivalence of the next two properties for a self-adjoint
positive map L : VM,V — VM,V (proposition [2.13)).

Definition 2.9. (Completely Reducible Maps): A positive map L:V MV - VM,V is called

completely reducible, if there are orthogonal projections Vi, ..., Vs € My, such that V;V; =0 (i #
5, ViV=V, VM,V =ViMV & ...0 V.M,V;e R, RLVIM V1 ®...0 VM.V, and

(1) L(Vz‘MkV;) c ViM, Vi,

(2) L

VM, v, 18 irreducible,
(3) L|R =0.

Definition 2.10. Let L : VM,V - VM,V be a self-adjoint positive map. We say that L has
the decomposition property if for every v € PunV MV such that L(vy) = Ay, A >0 and V; € M,
is the orthogonal projection onto J(7y) then L|g =0, where R = (V -V) MV & Vi M. (V -V7).
Notice that R is the orthogonal complement of Vi MV & (V = Vi) M (V = Vi) in VM,V

Lemma 2.11. Let L: VM,V - VM,V be a self-adjoint positive map. L is irreducible if and
only if the largest eigenvalue has multiplicity 1 with respect to an eigenvector v € P,V MV
such that I(y) =3(V).
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Proof. Since L is self-adjoint, the eigenvalues of L are real numbers. Since L : VM,V —
VM,V is a positive map, by theorem [2.8 the spectral radius A is an eigenvalue and there
exists v € P, n VM,V such that L(v) = Ay. Therefore the spectral radius is the largest
eigenvalue of L. Since L is irreducible, the multiplicity of A is 1, by theorem Let V} € M,
be the orthogonal projection onto J(y). Notice that J(V;) c J(V'). By the previous corollary
L(Vi M Vi) ¢ Vi M, Vi, Since L is irreducible then V3 =V and J(v) = 3(V).

For the converse, if L(ViMVy) ¢ ViMVy, 3(Vi) c 3(V) then the positive map L :
ViM, Vi — Vi M,V has an eigenvector v € P, n Vi M,V;, by theorem If 3(V1) = 3(V)
then J(+') # J() and 4/ is not a multiple of . Since the multiplicity of the largest eigenvalue
is 1 then ~' is associated to a different eigenvalue. Thus, 4’ is orthogonal to ~, since L is
self-adjoint. However, 7’ and ~ are positive semidefinite Hermitian matrices and J(v') c
J(V1) ¢ 3(V') =3(7), thus they can not be orthogonal. Thus, 3(V;) =3(V) and V; =V, and
L is irreducible. O]

Lemma 2.12. Let L : VMV - VMV be a self-adjoint positive map. Let us assume
that L has the decomposition property (definition . Let VM V' c VM,V be such that
L(V'MV") c VIM V' then L|yiy, v also has the decomposition property.

Proof. Let v € P,nV'M; V' be such that L(y) = Ay, A >0. Since L: VM,V - VM,V has the
decomposition property (definition[2.10]) then L|p = 0, where R = (V -V ) My Vi@ Vi M, (V-V;)
and Vj € M, is the orthogonal projection such that J(V;) = J(). Notice that J(V;) =T3(7) c
IV cI(V).

Consider now R’ = (V' = V}) MV} @ Vi M (V' = V). Since (V' = Vi) M Vi = (V - Vi) (V' -
V)MV € (V = V)MV and VIM (V! = Vi) = ViM (V' = Vi)(V = Vi) c ViM(V = V) then
R'c R and L|g =0. Thus, L: V'M, V' - V'M, V' has the decomposition property. O

Proposition 2.13. If L : VM,V — VM,V is a self-adjoint positive map then L has the
decomposition property if and only if L is completely reducible. Moreover, the orthogonal
projections Vi, ..., Vs in definition[2.9 are unique and s > the multiplicity of the largest eigen-
value of L.

Proof. First, suppose that L has the decomposition property and let us prove that L is
completely reducible by induction on the rank of V. Notice that if rank(V’) = 1 then
dim(VM,V) =1 and L is irreducible on VM, V. Thus, L is completely reducible by def-
inition Let us assume that rank(V) > 1.

Since L is a positive map then S'={v| 0#ve P.nV M.V, L(y) = Ay, A >0} # @, theorem
2.8] Let v € S be such that rank(v) = min{rank(y")| v’ € S}.

By corollary , L(Vi M Vi) € Vi MV, where V; is the orthogonal projection onto J(7y).
Now, if L|y; a1, is not irreducible then there exists VY M, V] c V1M,V with rank(V)) <
rank(Vy) and L(V]M,V)) c V/ M, V.
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By theorem there exists 0 # § € P, n V)MV such that L(6) = ud, u > 0. However,
rank(d) < rank(V}) < rank(V}) = rank(~y). This contradicts the choice of . Thus, L|y, v, 18
irreducible.

Now, if rank(V;) = rank(V) then Vi = V and Ly, y is irreducible. Therefore, L :
VM,V — VM,V is completely reducible by definition

Next, suppose rank(V}) < rank(V'). Since L(Vy M V1) c V1M, Vi and L is self-adjoint then
L((ViMEV1)Y) ¢ (ViM Vi)t Therefore, tr(L(V - V;)Vy) = 0. Since L(V - V;) and V; are
positive semidefinite then J(L(V -V;)) c 3(V -V;). By lemmal2.3] L((V -Vi)M,(V-V;)) c
(V =Vi)M(V - W).

Notice that L|(v_v;,)ar,(v-11) is a self-adjoint positive map with the decomposition property
by lemma [2.12| Since rank(V - V;) <rank(V'), by induction on the rank, L|(y_v, ), (v-v;) 18
completely reducible.

Thus, there are orthogonal projections Va, ..., Vs € My satisfying V;V; =0 (i # j), Vi(V -
V)=V (i22), (V-V)M(V V) = VaMyVa & ...® V,M,V, ® R with B L ViM Vo @ ... @
VM Vs, Llvia,v; is irreducible for 2 <4 < s and L|j = 0.

Since L has the decomposition property then VM,V = Vi M Vi & (V -Vi) M (V -Vi) @ R,
where L|r =0 and R L VIM,Vi @ (V = V1) M (V - 11).

Thus, we obtained VM,V =ViM Vi e VoM Vo ® ... V.MV, ® R @ R such that Llv;m,v;
is irreducible for 1 <i < s and L|ggx = 0. Notice that V;V; =0, for 2<i# j <sand ViV, =0,
for 2 <i < s, because J(V;) c J(V - V1).

Notice that R LVaMVae... @V, M,V, and R 1 VM V4, because R c (V-Vi)M,(V-V1).
Therefore Re R L ViM.Vi @ VoM Voo ... ® V.M.V, and L|E@R = (0. Thus, L is completely
reducible.

For the converse, let us assume that L is completely reducible and let us prove that L
has the decomposition property. Thus, VM,V =ViMVi®...e V.M, Vi® R, R L Vi M,V, &
... 0 V;Mk‘/;, L(V;Mk‘/;) c V;Mk‘/;, L Vi M V; is irreducible and L|R =0.

Assume L(y") = My, A > 0 and ' € P.n VM,V and let V' € My be the orthogonal
projection onto J(v"). By corollary 2.4} we have L(V'M V") c V'M,V".

Notice that, v" =~ + ...+ 7., where v/ € V;M,V;. Now, since J(7/) c I(V;) and I(V;) L
J(V;), for i # j, then each 7/ € P,. Since each V; M,V is an invariant subspace of L then we
also conclude that L(v/) = Ay/. Note that, not for every ¢, one has v/ = 0. Assume, without
loss of generality, that v/ =~ +...+7/, and 7/ #0, for 1 <7 <m <s.

Now, if for some 1 < <m, J(v}) # I(V;) then Ll v, is not irreducible, by corollary [2.4]
which is a contradiction. Therefore, J(7)) =J3(V;) for 1<i<mand Vi +---+V,, =V".
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Next, VMV = VMV @ (V= V) Mp(V - V') @ R', where R = (V = V)MV’ @ V' My(V ~
V"). Notice that R’ L VM V' & (V - V") M (V -V").

Now, ViMVi@. ..@ VMV, € VMV and Vit MVt ®. . @ VoMV, € (V =V My(V -
V"), therefore R' 1 ViMVi @ ... @ V,MV; and R’ ¢ R. Therefore, L|g = 0 and L has the
decomposition property by definition [2.10]

Finally, if L : VM,V - VM,V is a self-adjoint completely reducible map then the non-
null eigenvalues of L are the non-null eigenvalues of Ly azv;. Since Llyagy; is irreducible
then the multiplicity of the largest eigenvalue is 1 by lemma Therefore each Ly v,
has at most one largest eigenvalue of L. Thus, s > the multiplicity of the largest eigenvalue
of L: VM,V - VMV. Now, if L(V"MV") c VM, V" and Ll|y»p,v» is irreducible then
by lemma [2.11] there is 4" € P, n V"M V" such that L(y") =M, A>0 and J(v") = I(V").
As we noticed in the second part of this proof, there is V;MV; c VM, V" (V" is a sum of
some V;’s). Since L(V; M, V;) c V;M,V; then L|ynyg v is irreducible if and only if V" =V}, for
some 1 <7< s. O




|Chapter 3

Completely Reducible Maps in
Quantum Information Theory

The results of this chapter were published in [14].

Let us identify the tensor product space My ® M,, with My,,, via Kronecker product (i.e.,
if C' = (¢;5) € My, and B € M,, then C ® B = (¢;;B) € Mj,).

Let A € My ® M,, ~ My, be a Hermitian matrix. We can write A = /"1 A; ® B;, where
A;, B; are Hermitian matrices for every i. Let Fu : M,, - My be Fa(X) = ¥, tr(B;X)A;
and G4 : My — M, be G4(X) = ¥, tr(A;X)B;. These maps are adjoint with respect to
the trace inner product (Since A;, B; are Hermitian matrices then Fa(Y™*) = Fa(Y)*, for
every Y € M,,. Notice that if X € M}, and Y € M,, then tr(A(X ® Y*)) = tr(G4(X)Y~) =
tr(XFa(Y*)) = tr(XFa(Y)*)). Notice that if {71,...,72} is an orthonormal basis of M},

formed by Hermitian matrices then A = fol 7 ® Ga(7:)-

Moreover, if A is positive semidefinite then Fy : M,, — My and G4 : M, — M,, are also
positive maps, since 0 < tr(A(X ®Y)) = tr(Ga(X)Y) = tr(XF4(Y)), when X € P, and
Y e P,. Thus, Fy o G4 : M, — M, is a self-adjoint positive map.

In Section [3.1, we prove that if A € M, ® M,, is positive under partial transposition or
symmetric with positive coefficients or invariant under realignment then F4o G4 : My — My
is completely reducible (theorems [3.2] 3.12] and 3.13). These are our main results and we
shall apply them to Quantum Information Theory.

In Section[3.2] we apply our main results to two problems in Quantum Information Theory.
We reduce the separability problem to the weakly irreducible case. We provide a complete
description of weakly irreducible PPT matrices. We also show that if Fy o G4 : My — M, is

25
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completely reducible with eigenvalues equal to 1 or 0 then A is separable. We use this result
in order to obtain a new proof of the following one: If C* contains k£ mutually unbiased bases
then CF contains k + 1. This is our last application to Quantum Information Theory.

We complete this chapter with some remarks on our main theorems and on the ap-
plications to Quantum Information Theory. We present a couple of examples of positive
semidefinite Hermitian matrices A in M, ® M), ~ M2 such that Fy o G4 : M} — M, is not
completely reducible. We also show that if A € M>® M, is symmetric with positive coefficients
or invariant under realignment then A is positive under partial transposition, reinforcing the
connection between these three types. Finally, we show that low tensor rank implies sepa-
rability and we connect the aforementioned applications to Quantum Information Theory to
this last result (see subsection [3.3.2)).

Throughout this chapter we shall adopt the following notation: CF is the set of column
vectors with k& complex entries. We shall also identify the tensor product space C* @ C™ with
Ckm | via Kronecker product (i.e. if v = (v;) € C¥,w € C™ then v ® w = (v;w) € Ck™).

The identification of the tensor product space CF ® C™ with C*™ and the tensor product
space My ® M,, with My,,, via Kronecker product, allow us to write (v®@w)(r®s)! = vrt@wst,
where v@w € CF®C™ is a column, (v@w)?! its transpose and v, r € C* and w, s € C™. Therefore
if 2,y € CF® Cm ~ CF we have xy' € M}, ® M,, ~ My,,. Here, tr(A) denotes the trace of a
matrix A, A stands for the matrix whose entries are a;;, where @;; is the complex conjugate
of the entry a;; of A and A’ stands for the transpose of A. We shall consider the usual
inner product in My, (A, B) = tr(AB*), and the usual inner product in C*¥, (x,y) = z'y. If
A=Y¥",A; ®B;, we shall denote by A’ the matrix }.I'; A; ® B!, which is called the partial
transposition of A. The image (or the range) of the matrix A € M} in C* shall be denoted
by J(A).

3.1 Main Theorems: The Complete Reducibility of
FA (0] GA : Mk —> Mk

3.1.1 Main Theorem for PPT matrices

Definition 3.1. (PPT matrices) Let A =Y, A; ® B; € My ® M,,, ~ My,, be a positive
semidefinite Hermitian matriz. We say that A is positive under partial transposition or
simply PPT, if A2 =Id® (-)}(A) = X.i"1 A; ® B! is positive semidefinite.

Theorem 3.2. Let Ae M ® M,, ~ My,,,, A€ Py,,. If A is PPT then FqpoG4: My - My is
completely reducible.
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Proof. Let vy € PunV M,V be such that Fi4(Ga(7)) = Ay, A > 0. Let V; € M}, be the orthogonal
projection onto J(). Let Wj € M, be the orthogonal projection onto J(GA(7)).

By lemma , we have G4 (Vi M Vi) c Wi M,,,W; and Fa(W1M,,W;) c Vi M, V.

If Vo=Id -V, and Wy = Id— W, then A=Y¥7 (Vie WHA(V, ® W,).

2,,m,8=1

Notice that tr(A(Vy ® Wy)) = tr(G4(Vi)Ws) = 0. Thus, A(V; @ Wy) = (V1 @ W3)A =0,
since A € Py, and V; ® Wy € Py,,,. Notice that tr(A(Vo, @ Wy)) = tr(VoFa(W7)) = 0. Thus,
A(Va@Wy) = (Vo @ W) A =0, since A € Py, and Vo ® Wy € Py

Therefore, A = Zij:l(‘/; e W) A(V; @ W;).

Next, 0 = (A(V1 @ Wh))t2 = (Id @ WE)AR2(Vy ® Id) and 0 = tr((Id @ W})A2 (V) ® Id)) =
tr(A2(V; @ W!)). Since A is PPT then A? is positive semidefinite and A2(V; @ Wi) =
(Vi @ W})A?* = 0. Analogously, we obtain A%2(V, @ W) = (Vo @ W) Atz = 0.

Thus, A2 = ¥7,_,(V;@ WHA2(V; @ W) and A* = ¥7,(V; @ W})A=(V; @ W!). Hence,
A=Y2, (Ve W) A(V; ® Wy).

Notice also that if X € R = Vi MV, & VoM, V7, which is the orthogonal complement of
ViM Vi @ VoMV in My, then G4(X) =0 and Fq 0 Ga|g =0. Thus, Fyo0Ga: My — My is a
self-adjoint positive map with the decomposition property (definition [2.10). By proposition
FyoG4: My - My is completely reducible. O

3.1.2 Main Theorems for SPC matrices and Matrices Invariant
under Realignment

In order to obtain our main theorems for SPC matrices and matrices invariant under realign-
ment, we need some definitions and some preliminary results.

Definition 3.3. Let {e1,...,e,} be the canonical basis of CF.

(1) Let T = Zﬁjzleieé ® ejel € My ® My ~ My2. This matriz satisfies Ta ® b = b ® a,
(a ®b)!'T = (b® a)t, for every a,b € C*, where a ® b is a column vector in C¥ and
(a®b)t is its transpose. This matrix is usually called the flip operator (see [45]).

(2) Letu=Y"% e ®e; e CkeCk.

(3) Let F': Mk - Ck ® Ck, F(Z?:l albf) = Z?:l a; ® bz
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Remark 3.4. Recall that F' is an isometry, i.e., F(A)'F(B) =tr(AB*), for every A, B € My,
where F(A),F(B) € C* ® Ck and F(B) is the conjugation of the column vector F(B). We
also have tr(F-1(v)F-Y(w)*) = v'w, for every v,w e C¥* (see [41]).

Definition 3.5. Let S : My ® My - M ® My be defined by
SO A;® By) =) F(A)F(B),
i=1 i=1

where F(A;) € Ck @ C* is a column vector and F(B;) is a row vector (definition[3.5). This
map is usually called the “realignment map" (see |184/40,41]).

Definition 3.6. (SPC matrices) Let A € My, ® M, ~ My be a positive semidefinite Hermi-
tian matriz. We say that A is symmetric with positive coefficients or simply SPC, if S(A!?)
18 a positive semidefinite Hermitian matriz.

Remark 3.7. The name symmetric with positive coefficients (SPC) is justified by proposition
[3.35: If A € P2 then A is SPC if and only if A has the following symmetric Hermitian Schmidt
decomposition (deﬁm'tion with positive coefficients: Yy N\ivi ® Vi, with A\; > 0, for every
i.

Definition 3.8. (Matrices Invariant under Realignment) Let A € M, ® My, be a positive
semidefinite Hermitian matriz. We say that A is invariant under realignment if A= S(A).

Examples 3.9. a) Since Id ® Id is invariant under partial transposition, (Id ® Id)" =
Id® Id, then Id® Id is PPT. Since S(Id® Id) = uu!, by definitions and[3.5, then
Id® Id is also SPC.

b) Since uul = Zﬁjzl eiez. ® eieﬁ. then S(uu') = Zfij:l el ® eje§. = Id® Id. Observe that

S(Id® Id +uut) = vul + Id ® Id and Id ® Id + uu' is positive semidefinite. Thus,
Id® Id+uut is invariant under realignment.

c) Since T = Z?,j:l eie ® eje; then S(T) = T. Since the eigenvalues of T are 1 and -1
then Id ® Id —T is positive semidefinite. Hence, Id ® Id + uut —T is invariant under
realignment.

Lemma 3.10. (Properties of the Realignment map) Let S : My ® My, — My ® My, be the
realignment map defined in[3.5. Let v,v;,w; € Ck@ CF, VW, M, N € M. Then

(1) S(AR2)o = Fo FyoF*(v)

(2) S(Xi viwy) = Xty FH (i) © F=H (wy)

(3) 82 =1d: M, ® My - M, ® M,

(4) S((VeW)A(M®N)) = (Ve M)S(A) (Wt e N)
(5) S(AT)T = At:
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(6) S(A™) = S(A)T
(7) S(AT) = S(A)>

Proof. Let A=Y, A;®B,. Notice that A% = 7' | A,® B! and S(A®?)v =Y, F(A;)F(B!)t.
By remark 3.4] since v = F(F-1(0)) then F(B!)w = tr(BLF-1(v)") = tr(B,F-1(v)). There-
fore, S(A2)v = F(YXr, Aitr(B;F-*(v))) = F o Fy o F-'(v). Since F is an isometry then
F-1=F~* also by the same remark, and item 1 is proved.

Next, since S(ab! ® cd') = act ® bdt for every a,b,c,d € CF then S?(abt ® cd?) = abt ® cd?.
Since {ab! ® cd’, a,b,c,d € CF} is a set of generators of My ® M), then item 3 is proved. By
definiton [3.5] item 2 is also proved.

In order to prove the other properties, since both sides of the equations are linear on A,
we just need to prove for A = ab' ® cd?, where a,b,c,d € Ck.

Now, S(VeW)(abt @ cd’) (M@ N)) =S((Va® We)(Mb® Ntd)!). By item (2), this is
equal to F-1(Va@We)® F-1 (M@ Ntd) = (VacdW)@(MWd!N) = (Ve M) (act®bd') (Wi
N)=(VeM)S(A)(Wte® N). Thus, item 4 is proved.

The other properties are also straightforward. Just recall that S(ab' ® cd?) = act ® bd",
(abt ® cd)T = ad' @ cbt, T'(ab! ® cd') = (cb' ® ad’) and (ab! ® cd)?2 = ab® ® dct, for every
a,b,c,deCF. ]

Lemma 3.11. Let A€ M, ® M, be a Hermitian matriz.

a) If S(A2) € P and Fao Ga(7y) = My then G4(7) = V).
b) If S(A) € P2 and FyoG4(7) = Ay then Ga(7y) = VM.

Proof. Since S(A®2) € P2 then Fy : My — My, is a self-adjoint linear transformation with non
negative eigenvalues, by item 1 of lemma and by remark [3.4] Since A is Hermitian, G4
is the adjoint of F4 and F4 = G4. Therefore, F4 0 G4(7y) = Ay if and only if G4(y) = Ay if
and only if G4(y) = \/X”y, because G4 has only non negative eigenvalues. Thus, item a) is
proved.

Now, since A® is Hermitian and (A®)% = A then, by item a), Fae, o G 45 (y) = Ay if and
only if Gues () = VAy. But Faiy 0 G e (X) = Fu 0 Ga(X) and G ue (X) = GA(X)1. O

Theorem 3.12. Let Ae My ® My, ~ M2, A€ P2. If A is SPC then Fpo Gy : My, — My, is
completely reducible.
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Proof. By definition [3.6] S(A?) € Py2. Let v € P, n VM,V be such that F4(Ga(7)) = A\,
A>0. By item a) of lemma [3.11} G4(7y) = Ay. Thus, Fa(7) = \y.

Let V; € M, be the orthogonal projection onto J(y). By lemma we have G 4 (V1 M V1)
ViM Vi and Fa(ViMVy) c VM VL. IE Vo = Id -V then A = Z?,jmszl(vi @ V))A(V, ® Vj).

Notice that tr(A(Vy ® V4)) = tr(Ga(V1)Ve) = 0. Thus, A(V1 ® V) = (V1 ® V5)A = 0,
since A € P2 and V; ® V5 € P2, Notice that tr(A(Va @ V1)) = tr(VaF4(V1)) = 0. Thus,
AV V1) = (Va® V1)A =0, since A€ P2 and Vo ® V] € Ppe.

Therefore, A = Zij:l(vi e Vi)A(V;eVj).

Next, 0 = (A(V; ® V3))t2 = (Id ® V) At2(V; ® Id) and 0 = S((Id ® V})AR(V; ® Id)) =
(Ide V})S(Ak)(Vy® Id), by item 4 of lemma

Now, 0 = tr((Id® V{)S(A%2) (Vo ® Id)) = tr(S(A®2) (Vo ® V})). Since S(A) € P2 then
S(A2) (Voo V) = (Vo ® V) S(A2) = 0. Analogously, we obtain S(A2)(Vi @ V)) = (V1 ®
Vi)S(A#2) =0.

Thus, A2 = Z?,j:l(‘/; ® Vjt)AtQ(Vj ® V) and S(A”) = Z?,j:l(vi ® VI)S(AR)(V;e V) =
Y2 (V;®@ V) S(AR)(V; @ Vi), by item 4 of lemma m

So, A2 = §2(A) = (Vi 8 VA)S2(AR)(Vi® V) = £2,(Vi® VA (Vi ® V), by items
3 and 4 of lemma . Therefore, A= Y2 ,(V;® V;})A(V; ® V;).

Finally, notice that if X € R = Vi M V5 @ VoMV, which is the orthogonal complement of
Vlek‘/l @%Mk% in Mk, then GA(X) =0 and FAOGA|R =0. ThUS, FAOGA : Mk g Mk is a
self-adjoint positive map with the decomposition property (definition . By proposition
2.13] Fyo0G4: My — My is completely reducible. O

Theorem 3.13. Let Ae M @ My ~ M2, A€ Py. If A is invariant under realignment then
FyoGy: My — My is completely reducible.

Proof. Let v € P, n VMV be such that F4(Ga(7)) =A%y, A>0. By item b) of lemma [3.11],
Ga(7y) = Mt Thus, Fa(7') = A\y. Let V} € My be the orthogonal projection onto J(7y). By
lemma, we have G4 (Vi M Vi) c VIM VY and Fa(VIMVE) c ViMVy. Now, if Vo = 1d-V;
then A =Y7 (VieVHA(V, e V).

i,,r,8=1

Notice that tr(A(Vi @ V¥)) = tr(Ga(V1)VY) = 0. Thus, A(Vie V)) = (Vie Vi)A =0,
since A € P2 and V; ® Vi € Pi2. Notice that tr(A(Va ® VY)) = tr(VaFa(V})) = 0. Thus,
AVo@ V) = (Vo @ V) A =0, since A€ P2 and Vo ® V} € Pe.

Therefore, A= Y7, (V;® V) A(V; ® Vi).

Next, S(A) = Z?J:l S((VieVHA(V; e V))) = Z?,j:l(‘/; ® V/)S(A)(V;®V}), by item 4 of
lemma 3.10l Since A = S(A), we have A= Y7,_,(V;eVHA(V;eV}) = ©L, (Vi@ V) A(V;eV}).

Finally, notice that if X € R =V, MV, & VoM, V;, which is the orthogonal complement of
ViM Vi @ VoM.V in My, then GA(X) =0 and FaoGalr=0. Thus, FyoGa: My — My is a
self-adjoint positive map with the decomposition property (definition [2.10). By proposition
2.13, F'y 0 Gy : My — M, is completely reducible. O
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3.2 Applications to Quantum Information Theory

Throughout the following subsection we shall assume that Fy o G4 : M} — M, is completely
reducible. This is a strong restriction. However, we know that if A is PPT or SPC or invariant
under realignment then Fy 0 G4 : My — My is indeed completely reducible (theorems ,
3.13). Recall that a necessary condition for the separability of a matrix is to be PPT.

3.2.1 The Separability Problem

We assume that Fq o0 Gy : My — My is completely reducible and we give applications to
Quantum Information Theory. The first application is the reduction of the Separability
Problem to the weakly irreducible case (corollary and the second is proposition M
which grants the separability of A, if Fy o G4 : My — M} has only eigenvalues 1 or 0.

Throughout the next section we present our last application concerning mutually unbiased
bases using this proposition for a matrix invariant under realignment (see proposition

and theorem [3.28]).

We begin this section with a simple lemma that provides an equivalent way to prove that
FyoG4: My — M is completely reducible.

Lemma 3.14. Let A e M, ® M,,, ~ My,,, A€ Py,,. Thus, Fyo Gy : M, — My is completely
reducible if and only if for every v € P, such that Fq o Ga(y) = Ay, A > 0, we have A =
(VieW)AWVLeWy)+(Id-Vi @ Id-W1)A(Id-V, ® Id—Wy), where Vi € My, Wy € My, are
orthogonal projections onto J(v),I(G 4(7)), respectively.

Proof. Suppose F4 oG4 : M, — My is completely reducible then Fy o G4 : M, — M) has the
decomposition property (definition [2.10)) by proposition m

If ~ € P, is such that FaoGa(y) = Ay, A > 0, then My = Vi MyVi & (Id—Vi) My (Id-V;) @ R,
where R 1 ViM Vi@ (Id—Vy)My(Id-Vy) and F40G 4|g =0, where V; € M, is the orthogonal
projection onto J(7).

Next, let Wi € M,, be the orthogonal projection onto the J(G4(7)). By lemma [2.3] we
have G4(Vi M V1) ¢ Wi M, W1, because G 4 is a positive map, since A € Py,,.

Now, (G4(Id-V1),Ga(7)) = (Id = V1, Fs 0 Ga(v)) = MId-Vy,7v) = 0. Since Ga(Id -
V1) and Ga(7) are positive semidefinite then J(G4(Id - V1)) L I(Ga(v)) = I(W1). Thus,
J(Ga(Id-V1)) c I(Id-W;). Again by lemma [2.3] we have G4((Id - Vi)My(Id-V1)) c
(Id - W) My, (Id - Wy).
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Next, since Fq 0 G|gr =0 and F4,G 4 are adjoint maps then G 4lg = 0.

Let {71, ...,7 } be an orthonormal basis of V; M} V; formed by Hermitian matrices, {1, ..., ds}

be an orthonormal basis of (Id—V;) My (Id-V7) formed by Hermitian matrices and {aq, ..., a;}
be an orthonormal basis of R formed by Hermitian matrices. Then A = Y\, v ® Ga(v;) +
Y1 0:0G4(0:)+ X7 ai®Ga(a;). Since Ga(a;) =0then A =37, %®GA(7:)+X7 6;®G A(d:).

Since {7v1,...,%} © ViMVy then Ga(vy;) € WiM,,W; and since {01,...,0s} c (Id -
V)M (Id - V3) then Ga(8) € (Id — Wi)My(Id — Wy). Therefore, (Vi ® W1)A(Vi ® Wy) =
Yie1 % ® Ga(yi), (Id=Vie Id-Wi)A(ld-Vie Id-Wy) = X706 ® Ga(d;) and A =
(Vi @ W) Ay @ W) + (Id - Vi ® Td — Wi)A(Id - Vi ® Id - W),

For the converse, assume that if v € Py is such that F4 o Ga(y) = Ay, A > 0 then A =
(VieW)D)AVie@Wy)+(Id-Vi® ld-Wi)A(Id- V) ® Id-W7), where Vi, W are orthogonal
projections onto J(v),I(G (7)), respectively.

Let Mk = ‘/1Mk‘/1 ® (Id— %)Mk(ld—‘/l) @R, R1 ‘/1Mk‘/1 ® (Id— %)Mk(ld—‘/l)

Notice that G4|g =0 and Fqo0Ga|g =0. Therefore, Fy oG 4 : My - My, has the decompo-
sition property (definition [2.10)) and by proposition Fao0G4: My, - M, is completely
reducible. ]

Definition 3.15. Let A € M,®M,, ~ My,,, A € Py,,. We say that A is weakly irreducible if for
every orthogonal projections Vi,V € My, and Wy, Wy € M, such that Vo = Id-Vy, Wy = Id-W;
and A= (VieW)AVie W)+ (Voo W) A(Va @ W), we obtain (Vi@ W) A(Vie@W;) =0 or
(Vo @ Wa)A(Vy ® Wy) = 0.

Definition 3.16. A decomposition of a matric A € My ® M,,, iy \iyi ® 0;, is a Schmidt
decomposition if {vi| 1 <i<n} c My, {§] 1 <i<n}c M, are orthonormal sets with respect
to the trace inner product, \; € R and \; > 0. Also, if v; and 0; are Hermitian matrices for
every i, then Y1y N\ivi ® 6; 1s a Hermitian Schmidt decomposition of A.

Proposition 3.17. Let A € My ® M,, ~ My, A € Pep,. Let Yoy A7y ® 0; be a Hermitian

Schmidt decomposition of A such that \y > Ao > ... 2 X\, >0. If FaoGy : My - M, is
completely reducible then the following conditions are equivalent:

(1) A is weakly irreducible,
(2) s=1 in definition with L =Fy0G 4 My, — M,

(3) M > Xy and I(7;) € I(m), 3(6;) € T(d1), for 1 <i<n.
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Proof. Notice that F4 0 Ga(v;) = Av; for 1 <i <n. Thus, the largest eigenvalue of F)y o G4
is A2. By definition , My = ViMVi & ... @ VoM Vs @ R, Fy o Galv,m,v; is irreducible
and Fy o Gyulgr =0, where R 1L ViMVy & ... ® VoM, V,. Since the non-null eigenvalues of
FroGy4: My — My are eigenvalues of Fa o Galvia,v;, for 1 < i <'s, then A} is the largest
eigenvalue of some FaoGalvar v, Without loss of generality we may assume that there exists
0 # v e P.nViMV; such that Fiy 0 Ga(v) = A}y and J(v) = 3(V1), by lemma . Thus,
by lemma [3.14] A = (Vi @ W1)A(Vi @ W1) + (Id - Vi ® Id - Wh)A(Id -V ® Id - W), where
V1, W1 are orthogonal projections onto J(7),IJ(Ga(7)), respectively.

Firstly, let us assume that A is weakly irreducible, then or (V3 ® Wi)A(V; @ Wp) =0 or
(Id-Vi® Id-W;)A(Id- Vi ® Id-W;) = 0. Notice that if (V; @ Wi)A(V; ® W;) =0 then
A=Id-Vi@Id-W))A(ld-Vi®Id-W7) and G4(7) =0, since v € Vi M V;. Therefore, 0 =
F40G (7) = A2, which is a contradiction. Therefore (I1d-Vi® [d-W;)A(Id-V,®Id-W7) =0
and A = (V3@ W)A(Vi @ Wy). In this case, Ga|(vimvy)e = 0 and Fa 0 G alovyag,vy)e = 0. Thus,
s =1 in definition 2.9

Secondly, suppose that s = 1 in definition then M, = ViM,Vi® R, Fyo GA|V1]\/[W1
is irreducible and F4 o G4|g = 0, where R = (Vi M Vi)*+. Thus, ~; € ViMV; for 1 <i < n,
since Fq 0 Ga(;) = M7y and Fa 0 Ga(My,) = Fa o Ga(ViMV1) € ViM,Vi. By lemma ,
Ga(Vi M Vi) ¢ Wi M, Wy, since J(G (7)) = I(W1). Thus, X\6; = Ga(v;) € Wi M, W, and

Next, since F'q 0G4 : Vi M Vi - Vi MV is irreducible then the multiplicity of the largest
eigenvalue is 1 by lemma [2.11} thus A\? > A2 and A\; > X\y. Moreover, v must be a multiple of
71, because Fao G 4(71) = M.

Thus, G4(7v) is also a multiple of ¢;. Therefore, J(v;) ¢ J(V1) = J(v) = T(71) and
3(0:) € I(W1) = 3(Ga(7)) = I(01).

Finally, let us assume that A\; > Ao and J(7;) c (1), J(6;) € T(61), for 1 <i < n. Let
V!e My and W] € My, j = 1,2, be orthogonal projections such that Vy = Id-V{, W3 = Id-W]
and A = (‘/1’ ® W{)A(‘/{ ® Wll) + (‘/2I ® WZI)A(V; ® WQI) ThUS, GA|V1’MkV2’+V2’MkV1’ =0 and

FyoGalvimvyrvvy = 0.

Next, notice that G4 (V) MyV}) ¢ WiM, W} and Fa(W;M,W}) c VIMV} , j=1,2, since
ViVy =0 and WiW;=0. Thus, FaoGa(V/MV]) c V/MV/, for j =1,2.

Hence, the non-null eigenvalues of Fy o G4 : M} — M) are the non-null eigenvalues of
FyoG A|ij MV J =1,2. Without loss of generality, let us assume that \? is an eigenvalue
of Fyo GA|V{MkV1’- Since the multiplicity of A\? is 1 (A\; > \g) then 7y, € V/M,V/. Since
J(v;) € I(m) € I(Vi) L 3(Va), j = 1,2, then (Vy ® Wi)A(V) ® Wj) = 0. Therefore, A is
weakly irreducible. O

Proposition 3.18. Let Ae M ® M,, ~ My,,,, A€ Pyy,. If FaoGy: My — My is completely
reducible then A= Y7 ,(V;® W;)A(V; ® W) such that
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(1) Vi,...,Vs e My are orthogonal projections such that V;V; =0
(2) Wh,...,W, e M, are orthogonal projections such that W;W; =0
(3) (V; @ W) A(V; @ W;) is weakly irreducible and non-null for every i.
(4) s> multiplicity of the largest eigenvalue of Fao G4 : My — M.
Proof. Since FpoG 4 : My, — M, is completely reducible then M, = Vi M, Vi®... eV, M, V,®R,

Fy o Ga(ViMV;) € ViM Vi, Fyo Galy,,y, is irreducible, Fy o Ga|gr =0 and s > multiplicity
of the largest eigenvalue of F)y o G4 : My — My, by proposition [2.13]

By lemma , there is 7{ € B,nV;M,V;, 1 <j < s, such that 7{ is an eigenvector of
FpoGa: V;M,V; - V;M,V; associated to the unique largest eigenvalue and J(v7) = J(V}).
Since G4 is a positive map then G4(v]) € Pp,.

By lemma 2.3, Ga(V;M,V;) ¢ W;MW;, where W; is the orthogonal projection onto
J(Ga(7])). Notice that V; MV L ViM,V;, for i # j, since V;V; = 0. Therefore, (Ga(v{),Ga(7})) =
(v, FaoGa(71)) =0, for i #j. Thus, W;W; =0 for i # j.

Let {7{, . ,75].} be an orthonormal basis of V;M;V; formed by Hermitian matrices. Let
{61,...,0,} be an orthonormal basis of R formed by Hermitian matrices. Thus, U5_;{~{,...,77, Ju

{01,...,0,} is an orthonormal basis of M} formed by Hermitian matrices. Let A; = 7] ®
Ga(]) + .+ ® Ga(vr;). Thus, A=Y5 1 Aj+01®Ga(01) +---+ 0, ® Ga(0,).

Now, since Fiy 0o Galg =0 and Fl4,G 4 are adjoint then G4|g =0 and A = 251 Ay

Next, (V; ® W;)A(V; ® W;) = Aj, since v/ € V;MV;, Ga(r)) € W;M,,W;, ViV; = 0 and
W;W; =0 for i # j. Therefore, A; € Pyy,.

Notice that, 4, o Ga,|v,a,v; = Fa © Galv,a,v; which is irreducible. Therefore A; # 0 for
1 <j<s. Next, My = V;MpV; @ (V; M V)t and Fa, o G, ((V;MV;)t) = 0. Therefore, by
definition Fa; 0Ga; 2 My, - My, is completely reducible with s =1 . Finally, by item 2 of
proposition A; is weakly irreducible. O

Definition 3.19. (Separable Matrices) Let A € My ® M,,. We say that A is separable if
A=Y",C;®D; such that C; € My, and D; € M, are positive semidefinite Hermitian matrices
for every i.

Corollary 3.20. Let A be the matriz of proposition[3.18. Then A is separable if and only if
each (V; @ W;)A(V; ® W;) is separable. Thus, for this type of A the Separability Problem is
reduced to the weakly 1rreducible case.

Proposition 3.21. Let Ae M ® M,,, ~ My,,, A€ Pyy,. If Fao Gy : My — My is completely
reducible with all eigenvalues equal to 1 or 0 then there exists a unique Hermitian Schmidt
decomposition of A, iy v ® 0;, such that v; € Py, d; € Py,. Therefore, A is separable.
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Proof. Suppose the multiplicity of the eigenvalue 1 is m. Since Fjpo G4 : M — M, is
completely reducible then there are orthogonal projections V3, ..., V; such that 3(V;) 1L 3(V;),
My =ViMVi®...0 VMV @ R, FaoGa(V;MV;) c VM Vi, Fa o Galy,m,v, is irreducible,
FaoGalg=0and s >n, by deﬁnition and proposition . Recall that each FiyoG alv,m, v,
has a unique largest eigenvalue, since 4 o G 4lv;ar,v; is irreducible by lemma . Moreover,
the eigenvalues of Fy o Galy,ar,v; are 1 or 0. Thus, s = n and for each Fy4 o G 4|y, v; there
exists a unique normalized eigenvector v; € Py, such that Fy 0 G4(v;) = and J(v;) = 3(V;),
by lemma [2.11]

Note that J(v;) = 3(V;) L I3(V;) = 3(vy;), therefore 74,. ..., are orthonormal. Complete
this set to obtain an orthonormal basis {71,..., %, Ynt1,- - -,z of My formed by Hermitian
matrices. Notice that Fy o G4(7;) = 0, for j > n. Since F4 and G4 are adjoint maps,
Ga(y;)=0for j>n.

Thus, A= ®@GAa(11)+.. .+ 72 ®Ga(12) =119 Ga(M) + ...+ 7 ® Ga(7,). Notice that
(GA(’)@),GA(*}@)) = <7i7FA ° GA(’YJ)) = (ryiarYj)J 1< 7’7] <n, therefore GA(’YI)J (R GA(VTL) are
orthonormal too. Recall that G4 is a positive map then G4(7;) € Py,. Define ¢; = Ga(7;).

Finally, if }.;"; v/ ® ¢! is a Hermitian Schmidt decomposition with ~/ € Py, 0! € P, then
FyoGa(v!) =~ Thus, FaoGa(V/M,V)c V/MV/ 1<1i<n, where V/ is the orthogonal
projection onto J(7!), by corollary Notice that each F4 o Galy vy has one eigenvalue
equal to 1 and the others equal to 0. Thus, Fy o G A|‘/i, mvy 1s irreducible by lemma .
Now, each V;/ must be equal to some V}, by proposition [2.13]

Since each F40 GA|Vijvj =Fyo0 GA|‘//Mk‘/{ has only one eigenvalue equal to 1 then 7/ is a
multiple of ;, but both matrices are positive semidefinite Hermitian matrices and normalized
then «/ = v;. Thus, each 7/ is equal to some v; and this Hermitian Schmidt decomposition is
unique. 0

3.2.2 Extension of Mutually Unbiased Bases

In this subsection we obtain a new proof of the following theorem proved in [47]: If there is a
set of k& mutually unbiased bases of C* then there exists another orthonormal basis which is
mutually unbiased with these k bases. Our proof relies on proposition [3.22] We also proved
that this additional basis is unique up to multiplication by complex numbers of norm 1.

Proposition 3.22. Let Ae M, ® My ~ M2, A € P2. If A is invariant under realignment
and Fa oG : My - M, has n eigenvalues equal to 1 and the others O then

a) there exists an orthonormal set {vy,...,v,} ¢ C¥ such that A =¥, v;v;' ® vt

b) The orthonormal set of item a) is unique up to multiplication by complex numbers of
norm one.
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Proof. By theorem [B.13] Fy 0 G : My — M, is completely reducible. By proposition
there exists a unique Hermitian Schmidt decomposition of A | ¥, v; ® d;, such that ~; €
Py, ; € P, for 1 <i<n. Notice that Fa(Ga(7;)) = i, for every i. So, by item b) of lemma
B.11] Ga(vi) =1f. Thus, 7! = Ga(7;) = &. Therefore, A= Y7, v;®~! is the unique Hermitian
Schmidt decomposition of A such that +; € P, for 1 < < n.

Let V; be the orthogonal projection onto J(+y;). Since {71,...,7,} is an orthonormal set
and each v; € P, then J(V;) L 3(V;). Thus, (V;@ VHA(V; @ V) =, ® L.

Now, let F(v;) = r;i(see definition . By definition , riri = S(v; ® ;). Since ; is
Hermitian then v; ® 3; = ; ® 7! and 7,75 = S(v; ®71) = S((V; ® VI A(V; ® V).

Next, by item 4 of lemma S(VieVHAV:e V) =(V; @ VH)S(A)(V:® V). Since
S(A) = A then r7' = (V; @ VHA(V, @ V) = v, © 9L

Therefore, v; ® 4! has rank 1 and 7; has rank 1. Thus, ~; = vy and A= Y7, 007 ® vk

Since tr(;y;) = d;; then {vy,...,v,} is an orthonormal set.

Finally, suppose A = 7, ww;' ® wjw!, for another orthonormal set {wy, ..., w,}. Since
Y1 ® v is unique (such that v; € Py for 1 <4 < n) then for each p there is ¢ such that
w,W," = v,0,". Therefore wy, = cv, with |c| = 1. O

Definition 3.23. (Mutually Unbiased Bases) Let {vi,...,ux} and {wy,...,wg} be or-
thonormal bases of CF. We say that they are mutually unbiased if |(v;, w;)|* = ¢ for every
7,7.

Definition 3.24. Let o = {vy,...,v;} be an orthonormal basis of CF. Let us define A, €
M, ® M, as A, = Zle V05 ® vul. Notice that A, is invariant under realignment.

Lemma 3.25. If o, 3 are orthonormal bases of CF then they are mutually unbiased if and
only if AgApg=AgA, = %uut (Recall the definition of u in.

kot — k —t o
Proof. Let a={vy,..., v}, B={ws,...,wr} and A, = ¥;y v U0, Ag = =1 Wy W; ®ij§..

Notice that AqAg = X1, 005" @ Tiwt (T5 w; ) (v1a07).

If o, 8 are mutually unbiased then for every i,j, we have (0;'w;)(viwy) = |(vi, w;)? = 1.

Therefore, A, Ap = Zf,j:l %viw_jt ® vﬁ-w? = %uut, since u = Zle V; ®U; = Z;?:l w5 ® ;.

Now suppose that A,Ap = %uut. Therefore Zf,jﬂ )\ijviw_jt ®'U_iw§. = %uut, where \;; =
[(vs, wj)?. Next, 11d®Id = S(zuut) = Z?,j:l Aijvily ® wyw'. Notice that {v; @W;| 1 <4, <k}
is an orthonormal basis of C*¥ ® Ck. Therefore \;; are the eigenvalues of %[ d ® Id, thus

)\ij = % D
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Lemma 3.26. Let ..., a1 be orthonormal bases of CF. If they are pairwise mutually
unbiased then Y A, = Id ® Id + uut € M, ® M.

Proof. Since A,,,..., A commute, by lemma [3.25 there is a common basis of C* @ C*

Qft1
formed by orthonormal eigenvectors. Since A,,,...,A,,,, are orthogonal projections and
their pairwise multiplications are equal to ﬁ&—%, by lemma |3.25[ the intersection of their

images is generated only by u. Notice that each A, has rank k.

i(k-1)

Thus, every A,, can be written as “ “ =+ P (1) (h-1)+1

rirt, where r1,. .., T52_1, % is a
common orthonormal basis of eigenvectors

. 2
Yt = k\/—f \/—\/— Zkllrmt =wut+Ildeld. [

Remark 3.27. Adapting the proof of the previous lemma, we can show the following: If
aq, ..., 0 are pairwise mutually unbiased orthonormal bases of R?* then Zf:ll A, = %(Id@
Id+T +uut), where T is the flip operator (see definition[3.5).

; + u_ ul 2-
Finally, £ Ao, = (k+1) %2+ T8

Theorem 3.28. If C* contains k mutually unbiased bases then there exists another orthonor-
mal basis which is mutually unbiased with these k bases. This additional one is unique up to
multiplication by complex numbers of norm one.

Proof. Let aq,...,a; be orthonormal bases of C*, which are pairwise mutually unbiased.
Consider B = Id ® Id + uut - (Zf;l As,) € My ® M. Recall A,, € My ® My ~ M2 from
definition [3.24]

Since A,,, ..., A,, are commuting orthogonal projections and their pairwise multiplica-

tions are equal to Sl by lemma [3.25] then every A,,, 1 < ¢ < k, can be written as

vk \/E ’
i(k—1 . . .
%“T Zzi(z‘fl))(kq)u rt, where v, ... T2 q, ﬁ is a common orthonormal basis of eigenvec-
tors.

Therefore B=Idold+uu'— (X, Ay) = (k+ 1)%:}—% + Zf’f{l T - —“—t - f:(f_l) Tt =
\/_ \/_ + Zl k(k D41 rr'. Thus, B is an orthogonal projection with & elgenvalues equal to 1

and the others zero and BA,, = A,, B = \/_\/_, 1<i<k.

ay,, for some orthonormal basis

<4 < k, then ayg,; is mutually

In order to complete the proof, we must show that B = A
agyq of CF (definition [3.24). Since BA,. = Ay, B = %“7 1
unbiased with each «a;, 1 <4 <k, by lemma [3.25

Next, S(B) = S(Id® Id+uu' - YF, A,,) = S(Id® Id+uu z;zl S(Ay,) =Td® Id+uut -
Y#, A, = B, by item a) in example and by definition Thus B is invariant under
realignment.
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By item b) of proposition , we know that B has a Hermitian Schmidt decomposition
YA ®4f with A; > 0. Therefore, B = S(B) = ¥y \iv;v;', where v; = F((7;). Since F is an
isometry, by remark , S Aty is a spectral decomposition of B and ); are the non-null
eigenvalues of B. Then n=k and \; =1, for 1 <7< k.

Thus, Zle v ® v is a Hermitian Schmidt decomposition of B and Fgo Gp : My — M,
is FpoGp(X) = YF, tr(v; X))y, where 71,...,7; are orthonormal eigenvectors of Fg o Gp
associated to the eigenvalue 1. By proposition [3.22] there exists an orthonormal basis .
of C* such that B = A,,,, and this basis is unique up to multiplication by complex numbers
of norm one. O]

Remark 3.29. Assume o, ..., q; are pairwise mutually unbiased orthonormal bases of Rk
and define B = $(Id®Id+T+uu')— (X5, Aa,). We can repeat the proof of the previous theorem
in order to obtain B = A,, ,, for some orthonormal basis a1 of C* | since Id®@ Id+T +uut is
invariant under realignment. The basis ay.1 is actually a basis of R%¢ (up to multiplication by
complex numbers of norm 1), because B is also invariant under partial transposition. Thus,
if R?* has k pairwise mutually unbiased bases then there exists another orthonormal basis
which is mutually unbiased with these k bases.

3.3 Remarks

3.3.1 Some Remarks on our Main Theorems

All the results within this subsetion were published in |13}14].

Below we present a couple of easy examples showing that Fy o G4 : My — My is not
completely reducible in general (lemmas |3.30} [3.31]). The assumption that A is PPT or SPC
or invariant under realignment is essential in order to obtain the complete reducibility of

Fyo0G4: My — My, (theorems [3.2] [3.12] [3.13).

Thus, these three types of matrices are connected and we can ask the following question:
Is it possible that every SPC matrix or every matrix invariant under realignment is PPT?
The answer is YES in M, ® M (see lemma [3.34)) and NO in My ® My, k > 2 (see examples
3.30)).

Lemma 3.30. Let u e Ck @ C¥, k > 2, be the vector defined in and A = uu' € My ® M.
The linear transformation Fyo G4 : My — My, is not completely reducible.

Proof. By definition , u=Y" e;®e;, where {e1,...,ex} is the canonical basis of C*. Thus,
A=uut =YF eie ® e;el and Ga(X) = Fa(X) = Zf,jﬂ eieftr(e;e X) = X".

i.j=1

Now, the identity map Id = Fy o G4 : M — M) has null kernel and every matrix is an
eigenvector. Thus, Id: M) — M, does not have the decomposition property (definition [2.10))
and F4 o G4 is not completely reducible by proposition [2.13 O
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Lemma 3.31. Let k > 3. Let vi,e3 € C* be such that vl = (%,%,O, .,0) and €} =
(0,0,1,0,...,0). Consider v=1v,®7; +e3®e3 € CF®CF. Let A be the positive semidefinite
Hermitian matriz A = v0" + S(vvt) € My ® My,. The map FyoG 4 : My, — M, is not completely
reducible.

e3ﬁt+vleg i(egﬁt—vleg)

Proof. Let v, = v101", 7, = — A BT T ese. Notice that vo' = Yhiv® L.

Now, S(vvt) =_V® V, where V = F-1(v) = v,01" + e3e}, by item 2 of lemma m Thus,
A=Y L 707 +VeV.

Since 0 = tr(y172) = tr(y73) = tr(1) = tr(11V) then G4(71) = 7% and Fa(71) = m-
Therefore Fy o Gao(y1) = 71 Next, 0 = tr(72y1) = tr(v273) = tr(y274) = tr(1V). Thus,

Ga(72) =74 and Fa(y4) = 72, thus Fa 0 Ga(72) =72

Finally, notice that vo € (Id - V1) MVy ® Vi M (Id-V;) = R, where V; is the orthogonal
projection onto J(71). Therefore Fy o Galg # 0. Thus, F4 o G4 does not have the decom-
position property(definition and F4 o G4 is not completely reducible by proposition
O

Lemma 3.32. Let A€ My ® My ~ My. Suppose A has a Hermitian Schmidt decomposition
YA ® v with Ay > 0, for every i. If Y7 Aidet(7;) > 0 then A is separable.

Proof. Tf det(;) = 0, for every i, then 7; has rank 1 and v; ® 7; € P;. Therefore each v; ® ;
is separable and Y1) A\;y; ® ; is separable too, since A; > 0 for every i .

If there is ¢ such that det(~;) # 0 then we must have at least one i such that det(y;) > 0,
because Y.7'; \;det(7;) > 0 and A\; > 0 for every ¢ . Let us assume det(;) > 0. It means
that the eigenvalues of v, are both positive or negative. Therefore v, ® y; is positive definite.

Thus, we can assume that v; is positive definite. Let 7; = N? for some invertible N € P,.
Consider B=(N1@ N"DAN1@ N ) =\Ide®ld+ Y, \\N 1y, N1 @ N-1y, N1

Now, since tr(v;y1) = 0, for every i > 1, then 7; has a positive and a negative eigenvalue.
Thus, det(y;) <0, for every i > 1.

Next, since A\; + 1% \; gez((%)) >0 and det(v;) <0, for every ¢ > 1, then A\; > 1" 2&';2;83'

and B = (A - £ Mg Id @ 1d + ¥, M (LG8 Id @ Td+ N1y, N1 @ N-1y;N1).

Now, the smallest eigenvalue of N~y N-' ® N-19;N-1 is the product of the two distinct
eigenvalues of N=1v; N-! (since they have opposite signs), which is equal to det(N-ty, N-1) =

) Therefore, {50 [d@ Id+ N1 N-' ® N-';N-' ¢ P; and has tensor rank 2. Thus,

by theorem [3.44], |§§;((%)‘[d® Id+ N-1y;N-1 @ N-14;N-1 is separable, for every i, and B is

separable. Therefore A is separable. m
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Proposition 3.33. Let A€ M, ® M, be a Hermitian matriz.

a) S(A®) e Py if and only if there is a Hermitian Schmidt decomposition of A, ¥ iy ®
i, such that \; >0 for every 1.

b) S(A) € P2 if and only if there is a Hermitian Schmidt decomposition of A, Yiti A\ivi®7%,
such that \; >0 for every i.

Proof. Since A is Hermitian then F4 and G4 are adjoint linear transformations. Therefore,
FyoGy : My — My is a self-adjoint linear transformation with non negative eigenvalues.
Moreover, the set of Hermitian matrices is left invariant by Fy o G4 : M} — M. Thus,

there exists an orthonormal basis of Hermitian matrices of My, {7v1,...,V2}, formed by
eigenvectors of Fiq oGy : My, — M. Let {)\%, ce Azg} be the corresponding eigenvalues such
that \; > 0, for ¢ < n, and X\; = 0, for ¢ > n. Since {71,...,72} is an orthonormal basis of

Hermitian matrices of My then A = ijl 7 ® Ga(7:). Now, use lemma to obtain the
required Hermitian Schmidt decompositions for each item. The converse part of each item
follows from definition 3.5 O

Lemma 3.34. Let A € My ® My ~ My and A € Py. If A is SPC then A is separable. If
A=S(A) or At = S(A) then A is separable and therefore PPT.

Proof. Let B € My® M, ~ M. Suppose B has a Hermitian Schmidt decomposition }./% A;; ®
v; with A\; > 0, for every ¢. Thus, the subspaces of symmetric and anti-symmetric tensors in
C? @ C? are left invariant by B.

Since the subspace of anti-symmetric tensors in C2@C? is generated by w = e; ®€es—e3®eq,
where {ey, €2} is the canonical basis of C2, then Bw = Aw. Notice that (y; ® v;)w = det(7y;)w.
ThUS, A= z;zl )\7, det(%)

If Ais SPC then A has a Hermitian Schmidt decomposition ;% \;y; ® v; with \; > 0, for
every i, by item a) of proposition [3.33, Moreover, A is positive semidefinite. Thus, Aw = Aw
and A > 0. By lemma A is separable.

Now, if S(A) = A or A? then S(A) is a positive semidefinite Hermitian matrix. Therefore,
A has a Hermitian Schmidt decomposition Y.i; a;y; ® 7f with «; > 0, for every ¢, by item b)
of proposition [3.33|

Thus, A" satisfies the same conditions of B and A®2w = Aw. For these two cases, let us
prove that A = 0. By lemma [3.32], A’ is separable and A is separable.

First, suppose A = S(A). Thus, A2 = S(AT)T = S(A)2T = A2T, by items 5 and 7 in
lemma [3.10] Since T is the flip operator and w is an anti-symmetric tensor then Tw = —w.
Therefore A2w = A2Tw = -A2w and A2w = 0. Therefore A = 0.

Second, suppose At = S(A). Thus, A2 = S(AT)T = S(A)=T = (A)2T = (A2)'T, by
items 5 and 7 in lemma [3.10, Since A2 is hermitian, (Af2)t = APz and A" = ART. Since
w=w and X\ € R then A2w = A2w = \w. Thus, \w = A2w = ATw = -Al2w = - \w and
A=0. O
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Remark 3.35. In the proof of the previous theorem We saw that, if A € Py and S(A) is equal
to A or At, then A2 has non null kernel. Remember that if A € Py is not PPT then A®2 has
full rank and has only one negative eigenvalue (see proposition 1 in |3]). Thus, A€ My ® My
must be PPT and separable by Horodecki’s theorem (see [29]). However, this argument does
not work for SPC matrices in My ® Ms.

Examples 3.36. Counterexamples for lemma|3.34) in My My, k > 3:

(1) The matriz C =|myld® Id+ D ® D + (iA) ® (iA) € M5 ® M; of proposition 25 in [13]
1s SPC, but it is not PPT.

(2) As discussed in ezample[3.9, Id® Id+uut-T € My® My is invariant under realignment.
Since its partial tranposition is Id ® Id+ T — uu! and (Id® Id+T —uul)u = (2 - k)u
then it is not PPT for k > 3. Notice also that S((Id ® Id +uut -T)?) = S(Id® Id+
T-uut) =uut+T -Id® Id and any anti-symmetric vector of C* ® C* is an eigenvector
of uut + T = Id ® Id associated to —2. Thus, S((Id ® Id+ uut — T)") is not positive
semidefinite and Id ® Id +uut - T is not SPC, by definiton[3.6.

(3) Let A=v0"+S(vvt) e M ® My, k >3, as in lemma . Notice that, by properties 2
and 3 in lemma and since V = F~Y(v) is Hermitian (definition[3.5), S(4) =V ®
Vot = (Ve V +ut)t = (S(vvt) +vt')t = At. Now, by lemma FpoGy: My — M
is not completely reducible then A is not PPT or SPC, by theorems|[3.3, [3.13

3.3.2 A Remark on the Application to the Separability Problem

All the results within this subsetion were published in [12].

A very useful tool to study separability in My ® M, is the so-called filter normal form
(section TV.D of |23|): If A € My ® M, ~ My, is a positive definite Hermitian matrix then
there exist invertible matrices R € My and S € M, such that (R ® S)A(R* ® S*) has the
following Hermitian Schmidt decomposition: Y1 A;7y; ® d;, where v = ﬁ[ d and §; = J_lﬁj d.
The known proof of the existence of this canonical form depends heavily on the positive
definiteness of A (|34}/46]).

Besides the positive definite case, there is another case where this filter normal form can
be used. Assume A is PPT. By theorem A=Y (V,e W)A(V; ® W;), where V;V; =0
and W;W; =0, for i # j. Notice that if s > 1 then A(V; ® W3) = 0. Hence, A is not positive
definite and we can not garantee the existence of the filter normal form for A.

Now, if rank(V;) = k; and rank(W;) = m; then we can embed (V; ® W;)A(V; ® W;) in
My, ® M,,.. If (V;@W;)A(V; ® W;) has rank k;m; then its embedding in My, ® M,,, is positive
definite and we can obtain its filter normal form. So in this particular case, where rank
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(V; e W) A(V; @ W) is kym; for every i, the filter normal form can still be used to study the
separability of (V;@W;)A(V;®@W;). Recall that A is separable if and only if (V;@W;) A(V;@W;)
is separable for every i (corollary |3.20)).

In theorem it was shown that each (V; @ W;)A(V; ® W;) is weakly irreducible. Thus,
if we could prove the existence of the filter normal form for weakly irreducible PPT matrices
then this canonical form would be useful to study separability of any PPT matrix. Recall
that in order to be separable a matrix must be PPT.

We can obtain some inequalities for weakly irreducible PPT matrices that imply sepa-
rability, even without the filter normal form. These inequalities are based on the fact that
every positive semidefinite Hermitian matrix with tensor rank 2 is separable (see theorem
. We want to emphasize that the filter normal form would also be useful to sharpen
these inequalities (see example [3.38)).

If Ae My® M,, is PPT or SPC or invariant under realignment then Fy oG4 : M}, — My is
completely reducible. By corollary |3.20, the Separability Problem is reduced to the weakly
irreducible case.

Let A e My ® M,, ~ M, be a weakly irreducible PPT or SPC or invariant under realign-
ment matrix. By proposition [3.17, A has the following Hermitian Schmidt decomposition:
Yy Aivi ® 95, such that Ay > Ao > ... > X\, >0 and J(v;) € I(71), I3(5;) € T(1), for 1 <i<n.

Proposition 3.37. Let A e M, ® M,, ~ My, and A € Py,,. Let A be a weakly irreducible PPT
or SPC or matriz invariant under realignment. Let Y0y \iv; ® 0; be a Hermitian Schmidt
decomposition of A such that A\y > Xy > ... > A\, > 0 and I(y;) € I(n), I3(6;) € I(d1), for
1 <i<n, by proposition[3.17. Let u be the smallest positive eigenvalue of y1 ® d;.

(1) If =24 > 1 then A is separable.

Ao+...+An

AL 1
Ao+...+An 2 2

(2) If A is SPC or invariant under realignment and then A is separable.

Proof. (1) Notice that Fy o Ga(7;) = A?y; for 1 <4 <n. Thus, the eigenvalues of Fyo0Gy :
My, - My are A2, 1 < i <n, and possibly 0. Hence, the largest eigenvalue of Fiqy0 G, is 3.
Since Fy oGy : My - M, is a self-adjoint positive map then associated to this eigenvalue
there exists v € Py, such that Fa 0 G4(7y) = A?7, by theorem (or |21, Proposition 2.5]).

Since A7 > A\? > 0, for every 1 < i < n, then the multiplicity of A} is 1. Therefore,
7 = Ay, for some A € R, since 7; and v are Hermitian. Hence, 6; = Ga(y1) = AGa(7)
and v, ® 01 = A2y ® G4() is a positive semidefinite Hermitian matrix, since v € P, and
Ga: My, — M, is a positive map.

Notice that the smallest positive eigenvalue of v ®4d; is 1 and, since tr(77) = tr(57) = 1,
the smallest eigenvalue of v; ® ; is greater or equal to -1. By hypothesis, J(v;®0;) ¢ J(71®01)
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then l%% ® 01 +v; ® ; is positive semidefinite and, by theorem , it is separable. Now if
A >Ag+ ...+ A, then A= (-0, Ai)(ifyl ®0)+ X0, Ai(%’yl ® 0, +7; ® 0;). Notice that
all the matrices inside parentheses are separable.

(2) Since FaoGa(vi) = A2y, for 1 <i < n, then by lemma 0; = Ga(7;) =, if Ais SPC,
and 0; = G4(v;) =, if A is invariant under realignment. In any case, since ¢r(y?) = 1 then
the smallest eigenvalue of v; ® §; (6; =~; or 7}) is greater or equal to —%.

Finally, repeat the argument of item (1) and write A = (\p - Xi, %)(i% ® 1) +
Yo /\i(i% ® 81 +7; ® §;). Note that if A > 2(Ag+ ...+ ;) then all the matrices inside
parentheses are separable by theorem [3.44] O

Example 3.38. Let {71,72,73,74} be the normalized Pauli’s basis of My, where ~; = %Id.

It is known that a necessary and sufficient condition for the separability of ¥ii \ivi ® Vi,
i 20, is the inequality of item (2) (see [34]).

Tensor Rank 2 Implies Separability in M, ®...® M,

Here, we show that tensor rank 2 in My, ®...® M}, implies separability of positive semidefinite
Hermitian matrices in My, ® ... ® My, = My, ® (M, ® ... ® My, ) ~ My, . -

First, let us recall some definitions and some well known results regarding tensor rank.

Definition 3.39. Let Vi ® ... ®V,, be the tensor product space of the complex vector spaces
Vi (1 <1 <n) over the complex field. Let r € V1 ® ... ®V,,. The tensor rank of r is 1, if
r=v1®...9v, and r #0. The tensor rank of r is the minimal number of tensors with tensor
rank 1 that can be added to form r.

Theorem 3.40. (Marcus-Moyls [37]) Let Vi and V, be complex vector spaces and let v;, r; € V4
and w;,s; € Vs, for 1<i<n and 1<j<k. Let Y} v; @ w; = Zf:lrj@)sj eVio .

(i) If {v1,...,v,} is a linear independent set then span{ws,...,w,} c span{sy, ..., S }.

(it) If {wn,...,wy,} is a linear independent set then span{vy,...,v,} c span{ry,..., 7 }.

Corollary 3.41. Let ¥ v; ® w; = Zle r; ®s;. If {vi,...,v,} and {wy,...,w,} are linear
independent sets then k > n. So the tensor rank of Y7, v; ® w; is n.

Recall that M) stands for the set of complex matrices of order £ and P, for the subset
of positive semidefinite Hermitian matrices of Mj. We are also identifying My, ® ... ® M,
with My, ., via Kronecker product.

Lemma 3.42. Let A € My ® M,,, A € Py, and tensor rank(A) = n. We can write A =
Yy v ® 0;, where v; € My, 8; € M, are Hermitian matrices such that J(~;) < J(y1) and
J3(6;) € 3(61), for every i, and v, € Py, 01 € Py,.
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Proof. Since A € My ® M, is Hermitian with tensor rank n, we can write A =Y, A; ® B;,

where {A;,..., A, } and {By,..., B,} are linear independent sets of Hermitian matrices (see
minimal Hermitian decomposition in [12]| or corollary [3.41). Let v, = Zﬁ%fﬁi)& and 0, =

Y tr(A;)B;. Since A € Py, then Fy : M, » M, and G 4 : My, — M, are positive maps then
FaA(£%) =y € P, and G4(Id) =61 € P,

First, let us prove that B = A -y, ® d; has tensor rank n — 1.

Notice that B is Hermitian and let B = Z§'=1 v;® 05, where {~1,...,7/} and {d],...,d;} are
linear independent sets of Hermitian matrices. Notice that [ > n—1, otherwise A would have
tensor rank smaller than n. Now, since {v{,...,7/} is a linear independent set, by theorem
3.40, we have span{d],...,d;} c span{By,...,B,,61} =span{By,...,B,}. Thus, [ <n.

Next, consider the trace inner product. Let 6’ be the projection of the Id inside the
span{ By, ..., B,}. Thus, tr(B;0") = tr(B;Id) = tr(B;) for every 1 <i < n. Notice that ¢’ # 0,
otherwise tr(B;) =0 for every 1 <i <n and tr(A) = 0.

Now, 0= ¥ty Aitr(B;) = yatr(61) = Xiy Aitr(Bid") = ntr(6:18") = Fp(6') = Loy vjtr(856").
Since {7{,...,7/} is a linear independent set then we get tr(d50’) = 0 for 1 < j < n. Since
8" espan{By,...,B,} and ¢’ is orthogonal to span{d],...,d;} c span{By,..., B,} thenl <n-1.
Hence, [ =n -1 and B has tensor rank n — 1, by corollary [3.41]

Thus, let us write A = ¥, v ® 0;, such that {y,...,7,} and {d1,...,9,} are linear
independent sets of Hermitian matrices and 7,9, as defined above.

Since {71,...,7} is a linear independent set of Hermitian matrices then there exist
Hermitian matrices C4,...,C, such that tr(y,C;) = 0,;. For each C; there exists ¢ > 0
such that Id + ¢,C; € P,. Since A € Py, then G4 : M, — M,, is a positive map and
Ga(ld + €C;) = 61 £ 6; € Pp,. By lemma 2.1 3(6;) ¢ J(61), for every i. Analogously,
we obtain J(;) ¢ J(y1), for every i. O

Remark 3.43. Notice that v, and 81 in the proof of lemmal[3.43 are multiples of the so-called
marginal states of A (see |30]).

Theorem 3.44. Let Ae My, ® ...® My, and A € Py, x,. If A has tensor rank smaller or
equal to 2 then A is separable.

Proof. Let A=A1®...08A,+B1®...®9 B,. Thus, A as an element of My, ® My, j, has
tensor rank smaller or equal to 2. If A has tensor rank 1 in My, ® My, , then A =~ ® 1,
where 1 € Py,,01 € Py, 1, . By theorem , 0y espan{A;®...® A,, By®...® B,}. So §; has
tensor rank smaller or equal to 2 in My, ® ... ® M}, and by induction on n, d; is separable
in My, ®...® My, . Therefore, A is separable in My, ® ... ® My, .
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Now, assume A has tensor rank 2 in My, ® My, .. By lemma[3.42] A =7 ® §; + 72 ® b2
such that v, € Py,,01 € Py, k, and vo € My, , 09 € My, x, are Hermitian matrices such that

I(72) €3(71),3(02) € 3(61).

Choose 0 # A € R such that 7 = Mo € Py and 0 # v € ker(71 = A2) N (1), by lemma [2.2]
Notice that A = (’}/1 - )\’}/2) ® 51 +7® (52 + /\51)

Since A € Py, 1, then G4 : My, - My, 1, is a positive map. Since tr((y1 — My)vv') =0
—t
then G4 (vt') = tr(y2v0")(d2 + A\dy) € P,,. Notice that 0 # M = tr(yuv"), since v € J(y1)
and v, € Py.

Now, let B = 61, B2 = tr(vt") (2 + A1), a1 = 1= AYa, Qg = tr(;#t) Notice that ay, 52, f1
are positive semidefinite Hermitian matrices such that J(f82) c 3(f;1) and A = a3 ® B1 + a2 ® Bs.

Next choose 0 # € € R such that 5, — €/, is positive semidefinite and 0 # w € ker(8; —€f2) N
J(61), by lemma . Notice that A =a; ® (81 —€62) + (a2 + €a1) ® fs.

Since A € Py, ., then Fp: My, 1 — My, is a positive map. Since tr((8; - €32)ww') =0
then Fy(ww') = tr(Boww’)(aq + €ay) € Py. Notice also that 0 # M = tr(Byww’), since
p1€ P, and w e J(f1).

Since tr(Byww’) > 0, by the positive semidefiniteness of 3,, we obtain the following
minimal separable decomposition: A =a; ® (81 — €82) + tr(Boww’) (g + €ay) ® tr(ﬁf#t)
Now since a; and tr(Bsww’)(ap + €y ) are linear independent, because A has tensor rank
2 in My, ® My, 1, , then (51—€fs) and tr(Bf#t) belong to the span{A4;®...9 A,,, B2®...® B, },
by theorem [3.40, Thus (f; - €f2) and e ﬁf Z@t) are positive semidefinite Hermitian matrices
with tensor rank smaller or equal to 2 in M, ®...® Mj, and, by induction on n, (5;-€/3;) and
are separable in My, ® ... ® My, . Therefore, A is separable in My, ® ... ® M, . O

2
tr(faww?)

Remark 3.45. There is a generalization of this result in My® M,,,. Every A € P,,, ¢ My®M,,
with tensor rank 3 is separable (See theorem 19 in |13]). However, this is not true in M3® Ms
(See proposition 25 in |13]).
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|Chapter 4

An application of Borsuk-Ulam
Theorem

All the results within this chapter were published in [11].

Given a topological space D, let us denote by C(D) the subset of the vector space C (D)
of all real-valued continuous functions on D formed by the functions that attain the maximum
exactly once in D. The set c (D) fails to be a vector space for many reasons, for example the
zero function does not belong to C (D). Gurariy and Quarta asked the following question:
Is it possible to find a linear subspace V of C' (D) such that V c (D) u{0}? If so, how big
can be the dimension of V7

The main results obtained by Gurariy and Quarta in this direction are the following:

(A) There is a 2-dimensional linear subspace of C[a,b) contained in C[a,b) u {0}.
(B) There is a 2-dimensional linear subspace of C'(R) contained in C'(R) u {0}.

(C) There is no 2-dimensional linear subspace of C'[a,b] contained in C [a,b]u {0}.

The purpose of this chapter is to obtain far-reaching generalizations of the aforementioned
results of Gurariy and Quarta. We investigate the existence of n-dimensional subspaces —
instead of 2-dimensional subspaces — formed by functions that attain the maximum exactly
once (question posed in |9, Problem 2.9]). While Gurariy and Quarta 27| used typical analyt-
ical techniques, the manifested nature of the problem led us to apply topological techniques,
for example the Borsuk-Ulam theorem.

47
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Our main result is theorem [{.I} If D is a compact subset of R™ and V is a linear
subspace of C'(D) such that V c C(D) u {0} then dim(V') < m. Thus, we recover theorem
(C) of Gurariy and Quarta. Moreover, this inequality is sharp.

Gurariy and Quarta also asked if there exists a 3-dimensional linear subspace of C[a,b)
contained in Cfa,b) u{0}. We can not prove or disprove the existence of this subspace. Our
approach seems to be useless when we replace the hypothesis of compactness of D c R™
by o—-compactness. However, it might be possible to use Borsuk-Ulam theorem locally and
some other topological features in order to tackle this problem. We shall describe in the
final section of this chapter an approach that seems promissing and one open question. An
affirmative answer to this question would imply a complete solution for the problem.

4.1 Main Result

Thegrem 4.1. If D is a compact subset of R® and V is a linear subspace of C(D) such that
V cC(D)u{0} then dim(V') < n.

Proof. Let fi(x),..., fm(x) be a basis of V. Thus, any non null linear combination of these
functions attains it maximum exactly once in K.

Define F': D - R™, F(x) = (fi(z),..., fm(z)). Notice that F' is continuous since every
fi is continuous. Notice that every function of V' can be written as (v, F'(x)), where v € R™.

Define f: 5™ - D as f(v) = the unique point of maximum of (v, F(z)) in D.

. . . . . n—oo
By contradiction assume that f is not continuous. Thus, there is a sequence v,, — v and

vp)—f(v)] > e Since f(v,) € D and D is compact, there is a subsequence f (v, 2% e D.
f (va) = f (0)] ) Y

fix z and let j — oo, since F' is continuous, we get (v, F'(y)) > (v, F(x)), for every x € D.

By definition of f(vy,,), we have (v, F(f(vn;))) 2 (Un;, F'(2)), for every x € D. If we
Thus, y = f(v) and f(vn;) =3 f(v) € D, but |f(vy,) - f(v)| > €. This is a contradiction. So
f: 8™ 1 - D is continuous. Remind that D c R".

Finally, if m > n then by Borsuk-Ulam theorem (see, for example, [19]) there is a pair of
antipodal points s and —s in S™! such that f(s) = f(-s). Hence, the point of maximum of
(s, F(x)) in D is the point of maximum of (-s, F'(x)) in D, which is the point of minimum
of (s, F(x)) in D. Thus, (s, F(x)) is constant and does not belong to C(D), which is a
contradiction. O

Remark 4.2. Since the Euclidean sphere S™1 c R™ is compact and every linear functional
defined on R™ restricted to S™ 1 attains its maximum at only one point of S™1 then there
is a m—dimensional subspace V of C(S™ 1) such that V c C(Sm-1)u{0}. Thus, the upper
bound for the dimension of the vector space V' in the previous theorem is sharp.
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4.2 An Infinite Dimensional Example

Let D be a compact subset of R”. We saw above that, for n < m, there is no m-dimensional
subspace of C'(D) formed, up to the origin, by functions that attain the maximum only at
one point. In this section we show that if we allow D to be a compact subset of an infinite
dimensional Banach space, C(D) may contain, up to the origin, an infinite dimensional
subspace of C (D).

Example 4.3. Let D be the following subset of /5:

p-{(2) et and @zl <1},

n Jn=1

It is clear that D is a subset of the Hilbert cube [] - [ 1] Since the Hilbert cube is

n'n
compact, to prove that D is compact it is enough to show that it is closed. Let (vj)]?’;’l

I\ \*® . . . .
((%) ) be a sequence in D converging to w = (w, ), € f. Since convergence in ¢y
n=1/j=1

implies coordinatewise conver ence, wy, = hm v" , SO Wy, = lim U% for every fixed n. For ever
- )
J

k,

k k
> s ? = zhm|v P = tim D fodf? < limsup | (02);2, 3 < 1.

n=1 J n=1 J

This shows that |(nw,)2, |2 <1, proving that w e D. So D is a compact subset of /5.

Now we proceed to show that C(D) u {0} contains an infinite dimensional subspace of
C (D). Consider the function

ot b{(5)] )t

n

Let b= (c1,¢2,...) €la, by=(c1,...,¢,,0,0,...) and ¢p:le — R, ¢p(x) = (b, x).

Consider ¢po F': D — R and note that |¢y, o F'(2) = dpo F(x)] < |by=b|2| F(x)|2 < ||br—=b| 2,
since |F(x)|2 < 1. Thus, ¢ 0 F': D — R is continuous as a uniform limit of a sequence of
continuous functions (¢, o F'(x))>2,

Next, ¢ 0 F(z) = (b, F(z)) < ( ”b” ) whenever F(z) # HbH As F' is a bijection onto the
closed unit ball of /5, there is a unique y € D such that F'(y) = —>—. This shows that ¢y o F(x)
attains its maximum only at y. Finally {¢po F': D — R, b e } is a c—dimensional vector

space.
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4.3 Open Problem

Gurariy and Quarta asked if there exists a 3-dimensional linear subspace of C[a,b) contained
in Ca,b) u{0}. Here, we shall describe an approach that might be useful to disprove the
existence of such subspace.

Assume that there is a 3 dimensional subspace of C[a,b) contained in C[a,b) u {0}. Let
f1(x), fo(x), f3(x) be a basis. Define f:S? > [a,b) as f(v) = the unique point of maximum
of (v, F(x)) in [a,b), where F(x) = (f1(x), fa(z), f5(x)). Let [a,b) = | [a,b—l] for some

n

n>k,neN
suitable k € N.

Notice that f~'([a,b-2]) is closed in S? and f: f~'([a,b-1]) - [a,b- 1] is continuous,
by the same argument that was used in the proof of theorem [4.1]

Now, for every ¢ € [a,b- 1], we have f‘l(c) c f1([a, b ~11) and there is n such that

int(f([a,b-£])) # @ in 52, since S* = U f([a,b- —]) by Baire category theorem.
n>k,neN

But can we find n € N and c€ [a,b- 1] such that (f~'(c)) cint(f~'([a,b-1]))?

Let us assume that the following conjecture is true and let us obtain a contradiction.
Thus, the key result to disprove the existence of this subspace is the following conjecture.

Conjecture 4.4. There isn €N and c€[a,b- 1] such that O(f(c)) cint(f~'([a,b-2])),
where (A) and int(A) mean the frontier and the interior of A in S2, respectively.

In order to obtain a contradiction, we need the following lemma :

Lemma 4.5. If x1,29 € f~1(c) c S? then the geodesic arc that connects x1 and xs, which
shall be denoted by Tixz, is also contained in f~1(c).

Proof. Notice that x5 # —z1, otherwise ¢ would be the point of maximum of (zy, F'(z)) and
(z2, F(x)) = —(z1, F(x)). Thus, (z1, F(x)) would be constant and (xy, F'(z)) ¢ C[a,b) UO.

: . c o (1-t)zi+tao
The geodesic arc connecting x; to zs is (=0)zr ] 0<t<1.

Notice that ({4=DZe2 () =

|(1—t).7}1+t.1}2| )

z, F(2)) + Ty, F'(x))

t
|(1 t)CC1 +t$2| ( |(1—t):1}1+tl‘2‘ (

< it (1 F(0)) + syt (72, F(€)) = ((opeiies F(c)), for every € [a,b).

Thus, f(:8=222) = ¢ for every 0 <t < 1. O

‘(1—1‘):{21 +t:l?2|
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Next, let zg € d(f~1(c)) c int(f'([a,b- £])). There is a small circle S c int(f'([a,b-
11)) around =.

The function f:S — [a,b- %] is continuous, by Borsuk-Ulam theorem, there is a pair
of antipodal points in S, z; and xg, such that f(x1) = f(x2) = d. By the previous lemma,
the geodesic arc 7173 ¢ f~1(d). Since xg € T1Z3 then ¢ = d, because f~!(c) is closed and
zo € 0(fH(c)) c f~1(c). Thus, 7175 c f~1(c) (see figure 1 below).

If i e Tywg nint(f~1(c)) then xy € int(f~1(c)) (We can connect, by geodesic arcs, all the
points of a neighborhood of i within int(f~!(c)) to x; and xy. Thus, g € int(f~1(c)). See
figure 2 below). So Tz c I(f~1(c)).

Now, consider the circle S!, centered in C' = (0, 0,0), which contains the geodesic arc T1x3.
Notice that if z € d(f~!(c)) nS! then we can repeat the argument and obtain a geodesic arc
Z122 € O(f~1(¢)) such that z € Z1z; (see figure 3 below).

If Z1Z3 is not contained in S' then we can prove that z; or z5 belongs to int(f~1(c)) (by
connecting the points of Z1z; and Tz, via geodesic arcs), which is a contradiction. Thus,
Z1z2 ¢ O(f~t(c)) n St

We have just proved that O(f~1(c))nSt is open in S!, but it is also closed as an intersection
of closed sets. Since S' is connected then 9(f~'(c)) nS! = S!. Thus, there are antipodal
points in S!, s and —s, such that f(s)= f(-s) = ¢, but this is a contradiction.

Figure 1. Figure 2. Figure 3.
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Chapter

Basic Sequences in {, spaces

All the results of this chapter were published in [15].

During a Non-linear Analysis Seminar at Kent State University (Kent, Ohio, USA) in
2003, Richard M. Aron and Vladimir I. Gurariy posed the following question:

Question 5.1 (R. Aron & V. Gurariy, 2003).
Is there an infinite dimensional closed subspace of Lo every mnonzero element of which has
only a finite number of zero coordinates?

Question has also appeared in several recent works (see, e.g., |9,120,22,38]) and, for
the last decade, there have been several attempts to partially answer it, although nothing
conclusive in relation to the original problem has been obtained so far.

Throughout this chapter, and if X denotes a sequence space, we shall denote by Z(X)
the subset of X formed by sequences having only a finite number of zero coordinates. Here,
we shall provide (among other results) the definitive answer to Question Namely, if X
stands for ¢, or ¢,, with p € [1,00], we prove the following:

(1) There is no infinite dimensional closed subspace of X inside Z(X)u{0}(Corollaries

and [5.16)).

(i1) There exists an infinite dimensional closed subspace of X inside V \ Z(V)) u {0}, for
any infinite dimensional closed subspace V' of X (Theorem [5.18]).

In order to obtain the results above we shall make use of Functional Analysis techniques,
basic sequences, complemented subspaces, and some classical Linear Algebra and Real Anal-
ysis approaches. From now on, if Y is any sequence space and y € Y, then y(j) shall denote
the j—th coordinate of y with respect to the canonical basis (e;);. Also, if (my)gen is a subse-
quence of (1) gen, we shall write (my)ren € (g )gen- If V' is a normed space and (vg)ken €V,
we denote by (vy,vy,...) the linear span of {vy,vy,...} and by [v1,v,... ] the closed linear
span of {vy,vy,...}. W c V', we denote S;(W) = {w e W, |w|=1}. The rest of the notation
shall be rather usual.

93
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51 The case: X =10, pe[l,o0]

We need a series of technical lemmas in order to achieve the main result of this section. We
believe that these lemmas are of independent interest.

Lemma 5.2. Let V be an infinite dimensional closed subspace of £,, p € [1,00[. Given
O<ex< % there is an increasing sequence of natural numbers (si)ren and a normalized basic
sequence (fi)ren € V' such that

(1) fu(sj)=0 for1<j<k-1.
(2) fi(s1) #0.

(3) [fi(ske) + -+ fu(ske1)] < g7 o1 (Se1)] for every k
(thus fr(sk) #0 for every k e N).

(4) (fe)ren has basis constant smaller than 32
(5) [f1, f2,...] is complemented in €, with a projection Q : £, > {, of norm ||Q|| < £=2=.

Proof. Let f; €V be such that |fi]|, = 1. Let V; € N be such that

(1) fi(N1) 0.

(12 |(f1(n)):zo=1v1+1|p < 3.

Let s; = N;. Suppose we have defined fs,..., f; € V and
$1=N1<89<Ny<...<8: <N

such that

(1) |fsl, = 1for 1<k <t

(2) fi(n)=0for 1<n< Ny forevery 1<k<t
(Thus fi(s;) =0for 1 <j<k-1 since sp_1 < Nj_1).

3) 1UA@+ -+ 1 () Dsey, by < 5 for 1<k <t

(4) |f1(8k+1)| + ...+ |fk(5k+1)| < 2k€T|fk’+l(Sk+l)| for1<k<t-1.
(Thus fr(sg)#0 for 1 <k<t)
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Since V' is an infinite dimensional closed subspace of ¢,, there exists fi11 € V' such that
|ft+1|p =1 and ft+1(1) =...= ft+1(Nt) =0.

Now, if there is no n > N; such that |fi(n)|+ ... +|fi(n)| < 55| fr+1(n)| then

oo € €
2t+1 > (A + -+ e MIDnNals 2 ﬁ|ft+1|p T gt

which is absurd. Therefore there exist s;.; > IN; such that

i(se)|+ o+ | fi(sea)] < %\fm(smn.

Next, since (|fi(n)| + ... +|fe1(n)])nen € €, then there exist Nyq > s44q such that

€

I(fe()] + o+ [ fer (M) D, salp < Stz

The induction to construct (fi)rey enjoying the four properties above is now complete.
Now, in order to show that (f)rey is a basic sequence, let us define

x> _ fl(n), iflSTLSNl s _ fk(n), if Nk_1<n£Nk
Ji(n) = { 0, otherwise Ji(n) = 0, otherwise

Notice that fj, # 0, since Njy_1 < s < Nj, and ﬁ(sk) = fr(sk) # 0. Note also that (ﬁ)keN is
a block basis of the canonical basis of /,,.

Since
€

(A () (DR Nl <

then
|(fr(n))e Nk+1|p 2k+1

Now since fi(n) =0 for 1 <n < Nj_; we obtain

1- 2]€+1 < |fk|p <1and |fk fk|p 2k+1

| |
that (gr)ren is a normahzed block basis of the canonical basis of £,. So | Y721 argrly = |(ar)kenl,

and (g )ren has basis constant K = 1. Let {0y, k€ N} be the followmg partition of N:

for k£ € N. In particular, 4— =1- fk <1 for every k e N. Let g; = for every k. Notice
b P

0'12{1,...,N1} and O'kZ{Nk_1+1,...,Nk}.
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Next, let By, = {f €l,, f(i)=0, fori¢o,}. Thus, g € Ej; and by |32, Theorem 30.18] the

closed subspace [g1, g2, . ..] is complemented in ¢, with a projection P :{, - £, of norm 1.

Let us now prove that (fi)gey is equivalent to (gx)ren and [ f1, fo, . . .] is also complemented
in ¢,. Indeed,

Jx ~ fo
|fkp|' <l Ifk|p| +'|ﬁ|p |ﬁ|p"’

il 1 e 4
" ok+1 S4_ ( |fk|p 2k+1)
|fk|p |fk|p

4 (26)
< — .
4 — e\ 2k+1

Thus, (gk)ken is @ normalized basic sequence such that [g1, g2, .. .] is complemented in ¢,
with a projection P : ¢, - ¢, of norm 1 and

|fk_gk|p :| fr—

4 € 4e
5_Z|fk_gk|p—24 €§:4

k=1

— €

Since 0 < € < 33, we obtain 8K§||P|| = 80 < 8& < 1. By the principle of small perturba-
tion (|16, Theorem 4.5]) the sequence (fi)ren is equivalent to (gx)geny and [f1, f2,...] is also
complemented in £,,.

Finally, let us compute an upper bound for the basis constant of ( fi)gey and for the norm
of the projection @ : ¢, - £, onto [ fi, fa,...].

First, the linear transformation T'(X. 721 argr) = Yopeq arfk is an invertible continuous linear
transformation from the closed span of (gi)keny to the closed span of (fi)gen-

In the proof |16, Theorem 4.5] it is shown that ||T|| < (1 +2K06) < (1 +85) < 2 and
|71 < (1-2K0)7'. Let Po(X521 argr) = Yp-q axgk- Notice that ||B,|| = 1.

Thus, for n <m,

[ > anfulp = 1T 0 Puo T (Y arfi)lp < ITI Pl T anfuly
k=1 k=1 k=1

2 m
< .
< 1_2K5|k;akfk|p

Then, the basis constant of (fi)ren is smaller than %K(S < i 36, since K =1 and 0 < 46

Again, using |16, Theorem 4.5|, the linear transformation

Id=(ToP):[fi. fo.-- ] > [f1. for -]
is invertible and has norm smaller than 8 K0||P|| = 8J < 1.

Therefore, there exists an inverse for S = T o P : [f1, f2,...] = [f1, f2,...] with norm
157! < &5. Now @ = S Lo (To P) ¢, - {, is a projection onto [fi, fa,...] with norm

QU < 1S T 1] = 5 x 2 1 < 226 since 6 < .
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Remark 5.3. In the previous theorem, note that the convergence of Y1, arfr tmplies the
convergence Y poq Qo for and Y.poq aok-1 for-1, since (gk),‘j’zl 15 a block basis of the canonical
basis of £, and (fi)kenis equivalent to (gr)ken-

Lemma 5.4. Let V be an infinite dimensional closed subspace of {,, p € [1,00[. There exist
an increasing sequence of natural numbers (sg)ren and a basic sequence (Is, )gen € V' such that

(1) s, (sg) %0
(2) 15,(s;) =0 fork+j

(3) [lsyslsy,---] is complemented in C,.

Proof. Let 0 <e< =. Then 4-9¢>1, 4-33¢> 1 and

512
8 - 2¢ 8 - 2¢
12¢ < 1.
86(4—96)(4—33E)<5 €<

Let (sg)geny and (fx)ren be as in Lemma , using this e.

Define lO,k = fk Notice that lo}k(sk) = fk(Sk) +0 and lO,k(Sj) =0 for S; € {81, e Sk} N\ {Sk}
Define
lo k(5k+1)

fk+1 (5k+1) fk+1

Lig=lok—
Notice that

(1) Lig(s;)=0for sje{sy,..., 5k Ske1} N {5k}
(2) lik(sk) = fu(sk) #0.

(3) Since [lox(ske1)| = [fu(5t21)] < 57| Fror (01| thus Gl < cer <
and [l x(n)| < |fe(n)| + | fer1(n)| for every n e N.

(4) |l1,l<: - lO,k|p < 2k%|fk+1|p = Qk%
Suppose we have already defined Iy, ..., [, such that

1) l;x(s;)=0for s; € {s1,...,Skpi} N{sp}, for 1<i<t
K\ Sj J

(2) Lix(sk) = fr(sg) #0, for 1<i<t
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(3) |Lix(n)| <|fe(n)]+...+|frsi(n)], for every n e N and for 1 <i<t

(4) |l27k - li—l,k|p < ﬁ, for 1<e<t.

Lo i (Skacs . .
Define lpi1 4 = le g — #’:;;thtﬁ. Since frree1(sj) =0 for 1 <j<k+t then g 4(s;) =

lix(s;) for 1 <j<k+t. Since lyr1 (Sket+1) = 0 then

(1) lt+1,k($j) =0 for S; € {81, cee $k+t+1} A {Sk}
(2) lerre(se) = lig(sk) = fu(se) #0

(3) |lt,k(3k+t+1)| < |fk(5k+t+1)’ +...+ ’fk+t(5k+t+1)’
< |f1(5k+t+1)| +...+ |flc+t(5k+t+1)| #|fk+t+l(5k+t+1)|-

[0tk (Skrts1)]
: < <
Therefore T G s < 1 and

leer ()| < [l ()] + [freen (M) < [fr ()] + -+ | et ()]

for every n € N.

(4) ek = lirlp < s | freentlp = s

The induction to construct (I¢ )2, for each k € N is completed. Next, let ¢ > m and notice

that
€ € €

|lt,k: - lm,k|p = |lt,k: - lt—l,k|p + ...+ |lm+1,k‘ - lm,k:|p < W +...+ W < W

Therefore (l.x)2, is a Cauchy sequence in V', for each k. Let tlim i =l € V. Now notice
that

(1) Since for every ¢, we have l; ;(sx) = fx(sk) # 0, then
lp(sk) = }Lfglo Lie(sk) = fu(sk) #0

(2) Since for ¢t > j and j # k, we have l; ;(s;) = 0, then
li(s;) = }Lrglo lix(s5) =0.

. . . €
(3) Since |lt,l~c - lO,k’|p <o then [l - fk:|p = }E({lo |lt,l~c - lO,k,’|p S oF

Thus, (fi)ren is a normalized basic sequence with basis constant K < 2¢ such that

4-9¢
[ f1, fa,...] is complemented in ¢, with a projection P : ¢, - £, with norm ||P|| < e

(5 Z|lk_fk|p— Z 2€k €.

k=1

and

Finally 8K||P|| < 86(2:32) (%) < 512¢ < 1. By the principle of small pertubation

[16, Theorem 4.5] the sequence (Ij)key is equivalent to (fx)xey and [Iq,ls, . . .] is complemented
in ¢,. Finally define [,, = [} for k e N. O
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Remark 5.5. Since (fi)ken is equivalent to (ls, )gen then the convergence of Yoy als, im
plies the convergence of Y12, asls,, and the convergence of Y721 ask-1ls,, ,, by remark .
Therefore Y021 agls, = Yopoi Goklsy, + 2opot Gok-1lsy, ;-

Proposition 5.6. Let V' be an infinite dimensional closed subspace of £, p€ [1,00[. There
exists 0 = he VN Z(V).

Proof. Consider any I, from Lemma Notice that any I € V ~ Z(V). O

Corollary 5.7. There is no infinite dimensional closed subspace V' of £,, p € [1,00[, such
that V c Z(¢£,) u{0}.

Corollary 5.8. Let V' be an infinite dimensional closed subspace of £,. Then V \ Z(V') is
dense in V.

Proof. Let 0 # f € V. Define f; = |f|p

Consider the proof of Lemma [5.4] n For a sufficiently small € (independent of flp), we found
aly e VN Z(V) such that |f; — 1], < 57 then

We can start the proof of Lemma using this f.

=161, 1l < 22,

Now 0 # |f|,l1 € V N Z(V). O

5.2 The case: X =¢y or {

This section shall provide the definitive answer to Question by showing that /., does not
contain infinite dimensional Banach subspaces every nonzero element of which has only a
finite number of zero coordinates. In order to achieve this we shall need to obtain a sequence
(15 Jken similar to that from Lemma [5.4] (see Lemma [5.14)). Despite losing the hypothesis of
the closed span of (I, )key being complemented, we gain the property [, (sx) = 1, obtaining
still a basic sequence.

Definition 5.9. Let V' be an infinite dimensional closed subspace of {+. Let s € N and define

Vi={rev f=0, o)z M=)

Lemma 5.10. Let V' be an infinite dimensional closed subspace of {o,.
For every K cV, K + {0}, there exists s € N such that

V.n K £@.
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Proof. Let fe K, f#0. Since |f|e = Supgey |f (k)| there is s € N such that |f(s)| > % So
feVinK. O]

Lemma 5.11. Let V' be an infinite dimensional closed subspace of L. There exist an in-
creasing sequence of natural numbers (ny)ken and a basic sequence (fy, )gen €'V with:

(1) fnk(nk) =1,
(2) fn,(ni) =0 for j>i, and
(3) |fuiloo <2 for every k e N.

Proof. This proof is a variation of Mazur’s lemma (|16, Proposition 4.1]).

Let €; = 1 and ¢; € ]0,1[ be such that [J(1+¢;) < oo.

i=1
By Lemma [5.10] there exists s € N such that V,=V,nV + @.

Let ny =min{s e N,V # @} and let f; € V},,. Define

_ A
fnl B fl(nl)‘
Notice that
fo(n1) =1 and 1< |fn]e = |f|,1f(17|:)| <2.

Consider the projection m,, : V. - C, m,, (f) = f(n1). Let Wy = ker(m,,). Since
codim(W;) in V is finite then dim(W;) = oo, by Lemma [5.10] there exists s € N such that
V; N W1 * .

Let ny = min{s e N, V,n W # @}. Since V; > Vo n Wj then ny > n;.

Now for every f e Wy, f(ny) =0 then V,,, nW; = @ then ny > ny. Next, let fo € V,, nW);
and define ;
fm = 2

B f2(n2).

Notice that

ol
halnn)] <

oz (n2) =1, foy(n1) =0, and 1< |foy]e0 =
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Next, for ay,as € C, |ay fn, + a2 fnsloo 2 |0, (a1 fn, + a2fn,)| =|a1| and 1 +€; =2 > |fp, |0, SO

Consider now the compact set S1({fn,, fn,)) and let {y1,...,yx} € S1({fuy, fny)) be such
that if y € S1((fn,, fn,)) then there exists y; such that |y - y;|e < 2. Consider {¢1,..., ¢} C
S1(V*) such that ¢;(y;) = 1.

Take m,, : V - C, T,,,(f) = f(n2). Let

W,y = ﬁker(qﬁi) nker(m,,) nW;.

i=1

Since codim(ker(¢;)), codim(ker(m,,)), and codim(W;) are finite in V' then codim(WW5)
is finite and dim(W3) = co. By lemma there exists s € N such that V, n W, # @.

Let ng =min{s e N, V,n Wy # @}. Since V; n W >V, n Wy then nz > ns.

Now, for all f e Wy, f(ng) =0 then V,,, n Wy = @& then n3 > ny . Next, let f3 e V,, nW;
and define
3

f3(n3)‘

fngz

Notice that

| /300
| f3(n3)] <2

fm(ni‘l) =1, fn:s(n?) = fns(nl) =0, and 1< |fn3|°<> =

Now, let y € S1({fn,s fny))- Notice that

[y + Afngloo 2 Ui + AMngloo = Ui = Yloo

> |yi + Afngloo — it (for some 7€ {1,...,k})

2
> Gi(yi + Moy) - 2

2
2@'(%‘)—%2

si-2y 1
2 1+€2

Thus, for every y € S1({fn,, fn,)) and any X € C we have

Y+ Moo (1 + €2) 2 [y]oo-
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Then
|a'1fn1 + a?fnz + a3fn3|oo(1 + 62) > |a1fn1 + a?fng'oo
for all a;,as,as in C. We can repeat the procedure to build f,,, fu, ... satisfying
|ar fry + oo+ A frploo(L+€m1) o (L+€x) 2 arfo, + ...+ arfny]oo
for every ay,...,a, € C and m > k and by Banach’s criterion (f,, )ren € V' is a basic sequence.
Note that (fn, )ren satisfies the desired conditions. O

Lemma 5.12. Let g1, 92 € {oo and let (my)ren be an increasing sequence of natural numbers.
There exists (m}.)gen © (M )ken Such that

(1) There exists l}im g1(m}) = Ly,
(2) There exists l}im ga(my.) = Ly, and

(3) md>ml>mg>my.

Proof. The sequence (g1(my))ken is bounded since g; € {o,, therefore there is a subsequence
(M) kew € (M )ken and Ly € C such that %im g1(mY) = Ly, and by same reasoning, there is a

subsequence (m})ren € (MQ)gen and Lo such that lim g2(m}.) = Ly. Therefore lim gi1(my) =
L, and ]}im g2(m},) = Ly. Removing, if necessary, the first two terms in the sequence (mi)gey

we may assume that md >mi >mg > m;. O

Lemma 5.13. Let V be an infinite dimensional closed subspace of o, and let (ng)gen be as
mn Lemma m For every (my,)ken € (ng)ren there exist (tr)ren © (Mg )ren and basic sequence
(he, )ken € V' satisfying

a) hy, (ts) =0 for s <k,
b) htk(tk) = 1,
c) |hleo <8, and
d) lim hy, (t5) = 0.
Proof. Let (fn,)r be as in Lemma [5.11} Define g; = f, = fin, (m2) fim, and g = f,,. Notice

that g1(my) =1, g1(mg) =0, g2(my) = 0 and g2(mz) = 1. Now by Lemma there exist
(mi)keN c (mk)keN such that

]}im g1(m}) = Ly, kl:im ga(my) = Ly, and m3d >m} > my > my.
—00 —00

We now have the following possibilities.
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(1) If Ly =0, let hy = g1. Notice that, since |f,|e <2 (1 <7 <2) we have |hy| < 6. Notice
also that hy(mq) = 1.

(2) If L1 +0 and L2 = 07 let hl = (gs>. We have |h1|oo <2 and hl(MQ) =1.

L
(3) If Ly # 0, Ly # 0 and |Ly| < |Lsl|, define hy = g1 — L—lgg. Notice that |hi|e < |g1]eo +
2
| L]

m|92|w <8. AAlsO7 hl(ml) =1.
L
(4) Finally, if Ly # 0, Ly # 0 and |Ly| < |L4|, let hy = go - L—le, having now that |h|e <
1
L
92|00 + le]w < 8. Also, note that hq(mg) = 1.
1

Next, if hi(mq) = 1, define t; = my and, if hy(my) # 1, then hy(msy) = 1 and we let t; = my. In
any case, note that k!im hi(my) = 0. Let us now suppose that, by induction, we have already
defined

(1) (mj)ren © -+ € (M ke € (M) ke With

mb>mi>mit>mit > o> mb>mi>me>my,

2) t1 =mq or my and ¢, =m? ! or mjfl, 2<g<.
j 1 2
(3) hj eV, 1<j<i, verifying conditions a),b) and ¢) of this lemma, and

(4) ]}Lrg hij(ml)=0,1<j<i.

Next, repeat the construction of A; in order to obtain h;,; by means of fmi , fmé instead
of finy, frms-

Using the sequence (m])gen, instead of (my)xey in the previous construction, we obtain
(m?l)kEN c (mi)keN such that

+1 1 i i : j+1
my>mitt >mb>mi  and I}l_)Iilo hivi(mi ) = 0.

Define now t;,1 = m} or mi, depending on whether h;,1(m?) = 1 or h;1(mb) =1, as we
previously did for ¢;. Therefore we have h;,1(t;11) = 1. Next, since h;,1 is a linear combination
of fini, fini, and

my >mi >myt>mit > o> my > mi > mg > my,
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we obtain that hi+1(m1) = ]’Li_,.l(mg) = hHl(m{_l) = h“l(m;l) =0 (fOI‘ 2 S] < ’L), but tl =ms
or my, t; =ml " or m}™" (for 2 < j <), which implies that h;,,(t;) =0 for 1< j <.
Finally, notice that (¢5)%,,, € (m})gen, thus lim h;(¢,) = 0 (for every i € N).

Notice that (fi,, )ren is a basic sequence as subsequence of the basic sequence ( fy, )ken-
Notice also that hy is a linear combination of fmllc—l and fm;QH, hy is a linear combination of
fm, and fr,, and m5=t > mbEL > 0> ml > ml > my > my for every k. Therefore (hy)gen is

a block sequence of the basic sequence (fi,, )ren. Therefore (hy)ren is also a basic sequence.
Finally, let hy, = hy. [

Lemma 5.14. Let V be an infinite dimensional closed subspace of Lo, and let (ng)gen be as in
Lemma m For every (mg)ken € (ng)ken there exist (Sg)ken © (Mi)ren and a basic sequence
(Ls, )ken €V, satisfying

a) ls,(sg) =1,
b) ls.(s;) =0, for j+k.

) |ls,|eo <9, for every k e N.

Proof. Consider (tg)ken € (my)keny and (hy, )ren € V' as in Lemma . Let K be the basis
constant of the basic sequence (h¢, )key and let 0 < € < % (Recall that K is always equal
or bigger than 1, therefore e <1 ). Let s; = t;. Suppose defined, by induction, {s1,...,s,} c
{t1,ta,...}. Since ]111110|h31(tj)| + ...+ |hs, (t;)] = 0, there exists s,.1 € {t1,t2,...}, Spr1 > Sn,

such that ]

< —.
2n+1 x 8

The induction to construct (sg)reny © (Mg )ren is completed.

|Ps, (Snst)|+ - +|hs, (Sns1)]

Now define lo, = hs,. Notice that lox(sk) = 1 and lyx(s;) = 0 for s; € {s1,...,s6} N {sk}.
Define ll,kz = lO,k: - l07k($k+1)h

Sk+1°

Notice that

o l1;(sp)=1and l;x(s;) =0 for s; € {s1,...,Sks1} ~ {8k},

e since |hsk(8k+1)| < 2;%—61)(8 then

Lo (5))] + Ry ()] = sy (57)] + Ry, (55))]

|11,k (s5)] <

for every j € N.
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L |l1,k - lO,k'OO = |l0,k‘(5k‘+1)||h8k+1|°° < 2’€+—61><8 x8 = 2k+T

Suppose we have already defined, by induction, lo,lik, ..., lr € V such that

ln,k(sk) =1lfor0<n< t,

lni(s;) =0 for sje{s1,...,Spn} ~ {5k} and 0 <n < ¢,

Uk (55)] < Ry (85)] + sy (55)] + -« + |hsy,, (5)], for every je N and 0<n<t,

ke = U1k oo < i for 1<n <,

Next, define lyi1 k= le g — le gk (Skate1) Py, - Notice that

o lpik(se) =1,
o li14(sj) =0 for sj € {s1,..., Spsts1} ~ {8k},

e since |lt,k(3k+t+1)| < |hsk(3k+t+1)| + |hsk,+1 (3k+t+1)| +..0t |hsk+t(3k;+t+1)| <

€

|Psy (Skata1)]| + |Psy (Skatsr)| + - -+ [Py, (Sheta)| € Skl 1 8

then |li11.6(s;)] < |lek(s;)] + b (s;)| for every j e N and by induction hypothesis

Sk+t+1

1,685 < [hsy (85)] + [Py (8] + -+ (R (55)],

for every j e N.

o Lok = likloo = ek (Shets1) | Pspris|oo < grmsreg X 8 = st

The induction to construct (I;;)2, c V, for every k € N, is completed. Now

€
l2,k - l17k|(x, +...< |lO,k|oo + W +

+...< |l0,k|<x> + €.

110, k|oo + 1115 = lok|oo + ok+2

Thus, for each k € N, the series tlim bg =log+ (g —log) + (log — lig) + ... is absolutely
and coordinatewise convergent to some [, € V. Notice that [, x(s;) = 1 for every ¢ then
tlim Lie(sk) = le(sk) = 1. Next l,,(s;) =0 for t > j and j # k then tlirn lLii(s;) = lk(s;) = 0.
NOW, lt,k - lng = (lt,k - lt—l,k) + ...+ (ll,k - lgyk) then

€ € € €

[ i — < —
ok+t + ok+t-1 tot 9k+1 — Qk’

|lt,k - lO,k|oo <
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then tlim ek = losloo = [lk = Psy|oo < 2—2, for every k € N, so

lkloo < [Pyloo + o7 <8 +1=9.

Since hg, (si) =1 then |hs, |« > 1 and we have

lk _ hsk €
hploo  |Psploo |y, ~ 28
) lk o ¢
Then ¢ := — =€
D |hsk|% L7

Now the normalized sequence (‘hhs’f ) as a block basis of the basic sequence (A, )ken
Sk oo €

is also a basic sequence with basic constant K’ < K. Then 2K’ <2K§ <2Ke< 1.

By the principle of small pertubation |16, Theorem 4.5] the sequence ( )k N is a basic
€

[Ps |oo

sequence equivalent to the normalized basic sequence (lhhs"“ )k . Notice that (Ix)rey is a
Skle° €

block basis of <| T |m) , therefore it is also a basic sequence. Finally define [, = Ij. O

From the previous lemma, we can now infer the following.

Proposition 5.15. Let V' be an infinite dimensional closed subspace of .. There exists
0+heV~NZ(V).

Proof. Consider [;, from Lemma|5.14] We have that [;, € V N\ Z(V). O

Corollary 5.16. There is no infinite dimensional closed subspace V' of lo,, such that V c

Z(le)u{0}.

As a consequence of Lemma we also have the following result, whose proof is simple.

Corollary 5.17. Let V be an infinite dimensional closed subspace of co. Then V \ Z(V) is
dense in V.

Proof. Let (ng)x be as in Lemma(5.11} Every 0 # f € V' c ¢, satisfies kl:im f(ng)=0. Let € > 0.

There exists (mg)gen € (ng)ken such that (f(myg))gen € 11 and |(f (mg) )ren|r < g

By Lemma [5.14] there exist (si)gen € (my)ren and I, € V' such that
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a) ls, (sg) =1,
b) ls,(s;) =0, for j # k.

¢) |ls,]eo <9 for every k e N.

Notice that [f(s1)ls;|eo + [f(52)lss]eo + - < (If(s1)|+|f(s2)]+...) 9<e.

Therefore f — f(s1)ls, — f(s2)ls, — ... converges absolutely and coordinatewise to some
g € V. Notice that for every k e N

g(sk) = f(s) = f(s1)ls, (5x) = f(s2)lsy(5k) = .. = f(si) = f(s)ls, (sk) =0
and |g — fle <€ O

Theorem 5.18. Let V' be an infinite dimensional closed subspace of £, p € [1,00]. There
ezists an infinite dimensional closed subspace of £, p € [1,00] inside V.~ Z(V)u{0}.

Proof. By Lemmas and [5.14] there is an increasing sequence of natural numbers (sy)xen
and a sequence (s, )gen € V such that

a) ls, (sg) #0,
b) I, (s;) =0, for j k.

Let W =(l,,ls,, s, - - -) and notice that every f e W satisfies f(sox-1) =0 for every k e N.
Since convergence in norm implies coordinatewise convergence in ¢, p € [1, co] then for every

f eW, we obtain f(sy-1) =0 for every k € N.

Notice that {lo, € W, k €N} is a linear independent set then W is a infinite dimensional
closed subspace of V' with W cV ~ Z(V)u{0}. O

Remark 5.19. If V of theorem[5.1§ is also an algebra with the coordinatewise product then
every element of the closed subalgebra generated by W has zeros at coordinates s1,S3,Ss .. .

Corollary 5.20. Let V' be an infinite dimensional closed subspace of €, p € [1,00[. Then
the infinite dimensional closed subspace W c V'~ Z(V')u {0}, obtained in Theorem 18
complemented in £,,.

Proof. Notice that the sequence (Is, )kenw € V' used in the proof of Theorem is the basic
sequence constructed in lemma [5.4] when p € [1,00[. Thus, [l,,,ls,,...] is complemented in
ly. Since W = [ly,, 1, g, - - -] is complemented in [ly,,ls,,--.] by [lsyslssslss, - - -], by remark
(.5l We got the result. O






List of Symbols and Notation

Chapters 2 and 3:

CF — The set of column vectors with k complex entries.

M, — The set of complex matrices of order k.

P, — The set of positive semidefinite Hermitian matrices of order k.

X ®Y — The Kronecker product of the matrices X, Y.

Ck ® C™ — The tensor product space of Ck and C™.

M, ® M,, — The tensor product space of M, and M,,.

My, ® ... ® My, — The tensor product space My, ® (M, ® ...® My,).

Id — The Identity matrix.

VMW — The set {VXW, X € My}, where V,W € M, are orthogonal projections.

tr(X) — The trace of the matrix X.

Xt — The transpose of the matrix X.

X — The matrix whose entries are the complex conjugate of the entries of the matrix X.
X* — The conjugate transpose of the matrix X, i.e., X* = X .

(X,Y) — The trace inner product of the square matrices X, Y, i.e., tr(XY™).

J(7v) — The image (or the range) of the matrix ~.

T+ : WM,W - VM,V — The adjoint of T": VM,V - WM, W with respect to (X,Y).

| X |2 — The spectral norm of the matrix X € M.

X+ — The pseudo-inverse of the matrix X.

R+ R — The sum of the spaces R’, R.

R"® R — The direct sum of the spaces R, R.

R’ 1 R — The orthogonality of the subspaces R’ ¢ M}, and R c M, with respect to (X,Y).
L|g — The restriction of the map L: VMV - VM,V to RcVM,V.

Fa:M,, - My — The map Fa(X) =Y, tr(B;X)A;, where A=Y", A;® B; € M}, ® M,,.
Ga: My - M,, — The map G4(X) =Y, tr(A;X)B;, where A=Y, A; ® B; € My ® M,,.
xt — The transposition of the column vector x € C,

T — The column vector whose entries are the complex conjugate of the entries of x.
(x,y) — The usual inner product of the column vectors z,y € C¥, i.e., (x,y) = 2'7.
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At2 — The partial transposition of A=Y, A; ® B; € M, ® M,,, i.e., A2=Y", A, ® Bl
det(v) — The determinant of the matrix ~.

Chapter 4 and 5:

C' (D)— The set of real-valued continuous functions on a topological space D.

C(D) — The subset of C' (D) formed by the functions that attain the maximum exactly once
in D.

dim (V') — The dimension of the vector space V.

Sk — The Euclidean sphere of radius 1 of RF+1,

0(A) — The frontier of A c S2.

int(A) — The interior of A c S2.

y(j) — The j—th coordinate of the sequence y, i.e., y = (y(J))jen -

(M) ren € (Mg )key — This symbol means that (my)ren is a subsequence of (1) gen-
(v1,v,...) — The linear space spanned by (vg)gen-

[v1,v2,... ] — The closed linear space spanned by (vg)gen-

S1(W) — The sphere of radius 1 of the normed set W, i.e., S; (W) ={weW, |w|=1}.
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