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Resumo

Este trabalho esta dividido em trés partes. Na primeira parte, investigamos
o comportamento das constantes das desigualdes polinomial e multilinear de
Hardy—Littlewood. Na segunda parte, apresentamos uma nova classe de op-
eradores multilineares somantes, a qual recupera as classes dos operadores
multilineares absolutamente e multiplo somantes. Além disso, mostramos
um resultado 6timo de espacabilidade para o complementar de uma classe
de operadores multiplo somantes em ¢, e também generalizamos um resul-
tado relacionado a cotipo (de 2010) devido a G. Botelho, C. Michels, and D.
Pellegrino. Finalmente, provamos novos resultados de coincidéncia para as
classes de operadores multilineares absolutamente e multiplo somantes. Em
particular, mostramos que o famoso teorema de Defant—Voigt é étimo. Na ter-
ceira parte, provamos varias desigualdades 6timas para o espaco P (2D (%))
de polindomios 2-homogéneos em R? dotados com a norma do supremo no se-
tor D (%) = {ew 0 € [O, ﬂ } Além dos resultados principais, encontramos
desigualdades 6timas de Bernstein e Markov e calculamos as constantes in-

conditional e de polarizacao da base canonica do espago P (2D (%))

Palavras-chave: Constante incondicional, constante de polarization, desigualdade de Bern-
stein, desigualdade de Bohnenblust—Hille, desigualdade de Hardy—Littlewood, desigual-
dade de Markov, espacabilidade, operadores multilineares somantes.
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Abstract

This work is divided into three parts. In the first part, we investigate the be-
haviour of the constants of the Hardy—Littlewood polynomial and multilinear
inequalities. In the second part, we present a new class of summing multilinear
operators, which recovers the class of absolutely and multiple summing opera-
tors. Moreover, we show an optimal spaceability result for a set of non-multiple
summing forms on ¢, and we also generalize a result related to cotype (from
2010) as highlighted by G. Botelho, C. Michels, and D. Pellegrino. Lastly, we
prove new coincidence results for the class of absolutely and multiple summing
multilinear operators. In particular, we show that the well-known Defant—
Voigt theorem is optimal. In the third part, a number of sharp inequalities
are proved for the space P (2D (%)) of 2-homogeneous polynomials on R2,
endowed with the supremum norm on the sector D (%) = {eie RS [O, %] }
Among the main results we can find sharp Bernstein and Markov inequali-
ties and the calculation of the unconditional and polarization constants of the

canonical basis of the space P (2D (%))

Key-words: Bernstein inequality, Bohnenblust-Hille inequality, Hardy-Littlewood in-
equality, Markov inequality, polarization constant, spaceability, summing multilinear op-
eratos, unconditional constant.
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Preliminaries and Notation

For any function f, whenever it makes sense we formally define f(oo) = lim, .~ f(p).
Throughout this, E, Ey, Fs, ..., F shall denote Banach spaces over K, which shall stands
for the complex C or real R fields. L(E, ..., E,; F) stand for the Banach space of all
bounded m-linear operators from E; X --- X E,, to F' under the supremum norm and
when £y =--- = E,, = E we denote L(E\, ..., E,; F) by L(™E; F'). The topological dual
of E shall be denoted by E* and for any p > 1 its conjugate is represented by p*, i.e.,
14 # = 1. For p € [1, 00|, as usual, we consider the Banach spaces of weakly and strongly
p-summable sequences, respectively, as bellow:

SDGBE*

0 1/p
() = { (e € B el = s (z ww) <o
=1
and
0 1/p
p(B) = q ()52 C E: [[(@)5], = (Z H%‘Hp> < o0
=1

(naturally, the sum ) should be replaced by the supremum if p = c0). Besides, we set
Xeoo = ¢o and X, := {, := {,(K). For a positive integer m, p stands for a multiple

exponent (py,...,pm) € [1,00]™ and
‘ 1 ‘ 1 1
— = — .. + —_
P h Pm

The Khinchine inequality (see [62]) asserts that for any 0 < ¢ < oo, there are positive
constants Ay, By such that regardless of the scalar sequence (a;)52, in ¢, we have

0o % 1] oo q % S) %
Aq (Z |CL]‘|2> S (/0 Zajrj(t) dt) S Bq (Z |(lj|2> )
j=1 j=1 j=1

where r; are the Rademacher functions. More generally, from the above inequality to-
gether with the Minkowski inequality we know that (see [16], for instance, and the refer-

Xix



ences therein)

1 1
oo 2 oo q q
AZL ( Z ]ajl...jm ’2) S </] Z a/jl"'jmrjl (tl) c ij (tm) dt)
Il Jm=1 ]1,..,;])::1 % (1)
< B/ < Z |aj1~-jm|2> ;
J1yeesjm=1

where [ = [0, 1]™ and dt = dt, - - - dt,,, for all scalar sequences (aj,..;,,);, ; _; in lo.

The optimal constants A, of the Khinchine inequality (these constants are due to U.
Haagerup [72]) are:

INCORE
M) if ¢ > qo = 1.8474;

.Aq:\/§< Y

o A, = R if ¢ < qo.
The definition of the number gy above is the following: ¢y € (1,2) is the unique real

number with
r (po + 1) B ﬁ
5 —

5
For complex scalars, using Steinhaus variables instead of Rademacher functions it is well

known that a similar inequality holds, but with better constants (see [81], [124]). In this
case the optimal constant is

1
. qur(%zy if ¢ € [1,2].

The notation of the constant A, shown above will be employed throughout thesis.
Using the argument introduced in |29, Theorem 4] we present a variant of result by
Boas, that first appeared in [5, Lemma 6.1}, and that is proved in [1].

Kahane—-Salem—Zygmund’s inequality. Let m,n > 1, p1,...,pm € [1,+00|™ and, for
p > 1, define

, ifp>2;

1
ap) =9 2
0, otherwise.

Then there exists a m-linear map A : 7 X --- x {7 — K of the form

n

— E 1 d
A (Zl, Ce ,Zm> = €j1~~~jmzj1 e ij

j17~“’jm:1

with €j1jm € {_1, 1}, such that
||A|| S Cm . n%+a(p1)+"'+a(pm) (2)

where Cy, = (m!)lfmiﬂ{lﬂ} v/ 32mlog(6m) and p = max{pi,...,pm}-

XX



The essence of the Kahane-Salem—-Zygmund inequalities probably appeared for the
first time in [79], but our approach follows the lines of Boas’ paper [29]. Paraphrasing
Boas, the Kahane—Salem—Zygmund inequalities use probabilistic methods to construct
a homogeneous polynomial (or multilinear operator) with a relatively small supremum
norm but relatively large majorant function (we refer [I Appendix B| for a more detailed
study of the Kahane-Salem—Zygmund inequalities).

xx1
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Introduction

Part I: On the Bohnenblust—Hille and Hardy—Littlewood
inequalities

To solve a problem posed by P.J. Daniell, Littlewood [84] proved in 1930 his famous
4/3-inequality, which asserts that

(Z |T<ei,ej>|§> <V2|U|

,j=1

for every continuous bilinear form 7" : ¢y X ¢g — K. One year later, and due to his
interest in solving a long standing problem on Dirichlet series, H.F. Bohnenblust and
E. Hille proved in Annals of Mathematics (see [32]) a generalization of Littlewood’s 4/3
inequality to m-linear forms: there exists a (optimal) constant Bﬁg‘;{f > 1 such that for all
continuous m-linear forms 7" : ¢ x --- x {7 — K, and all positive integers n,

m-+1

n 5 2m
( > !T(ejl,---,ejm)!m“) < B T
J1

15eees Jm=1

The problem was posed by H. Bohr and consisted in determining the width of the max-
imal strips on which a Dirichlet series can converge absolutely but non uniformly. More
precisely, for a Dirichlet series ) a,n*, Bohr defined

n

0, = inf {7‘ ; Z a,n"° converges for Re(s) > 7"} :

n

o, = inf {r : Z a,n"° converges uniformly in Re (s) > r + ¢ for every ¢ > O} :

and
S :=sup{o, —ou}.
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Bohr’s question asked for the precise value of S. The answer came from H.F. Bohnenblust
and E. Hille (1931):
S=1/2.

The main tool is the, by now, so-called Bohnenblust—Hille inequality. The precise growth
of the constants Bﬁg‘#f is important for applications and is nowadays a challenging prob-
lem in Mathematical Analysis. For real scalars, the estimates of BR‘?";IJ are important in
Quantum Information Theory (see [92]). In the last years a series of papers related to the
Bohnenblust—Hille inequality have been published and several advances were achieved (see
[5, 52], (5 B8, 104, 112, 1T9] and the references therein). Only very recently, in [23, [104]
it was shown that the constants Bﬁg}g have a subpolynomial growth, which is quite sur-
prising because all previous estimates (from 1931 up to 2011) predicted an exponential
growth. For real scalars, in 2014 (see [65]) it was shown that the optimal constant for
m = 2 is v/2 and in general Bﬁ‘,‘#f > 91=%. In the case of complex scalars it is still an
open problem whether the optimal constants are strictly greater than 1.

Given o = (ay, ..., a,) € N define |a| := a1+ - -+a, and x* stands for the monomial
it - ad for x = (21,...,2,) € K". The polynomial Bohnenblust-Hille inequality (see
[5, 32] and the references therein) ensures that, given positive integers m > 2 and n > 1,
if P is a homogeneous polynomial of degree m on (7 given by

P(xy,...,z,) = Z X",

|a|=m
then
m+1
2m
D7 laal™ | < BELIIP
|a|=m
for some constant Bﬂiojn > 1 which does not depend on n (the exponent 27 is optimal),
where ||P| := SUD.cp,, |P(z)|. The search of precise estimates of the growth of the

constants Bp . is crucial for different applications and remains an important open problem
(see [23] and "the references therein). For real scalars, it was shown in [45] that the
hypercontractivity of Bﬁorln is optimal. For complex scalars the behavior of BH‘;O:R is still

unknown. Moreover, in the complex scalar case, having good estimates for Bp is crucial
in applications in Complex Analysis and Analytic Number Theory (see [55]); for instance,
the subexponentiality of the constants of the polynomial version of the Bohnenblust—Hille
inequality (complex scalars case) was recenly used in [23] in order to obtain the asymptotic
growth of the Bohr radius of the n-dimensional polydisk. More precisely, according to
Boas and Khavinson [31], the Bohr radius K, of the n-dimensional polydisk is the largest
positive number r such that all polynomials ) a,2* on C" satisfy

Yo

The Bohr radius K was estimated by H. Bohr, and it was later shown (independently) by
M. Riesz, I. Schur and F. Wiener that K; = 1/3 (see [31], B3] and the references therein).
For n > 2, exact values of K, are unknown. In [23], the subexponentiality of the constants
of the complex polynomial version of the Bohnenblust—Hille inequality was proved and

sup E |aa 2" < sup
zerDn zeDn

XX1V



using this fact it was finally proved that

K,
lim

n—oo log n

=1,

n

solving a challenging problem that many researchers have been struggling for several years.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust—Hille
inequality for £, spaces. The bilinear case was proved by Hardy and Littlewood in 1934
(see [73]) and in 1981 it was extended to multilinear operators by Praciano-Pereira (see

. . . . . 1 1
[T18]). More precisely, the classical Hardy—Littlewood inequality asserts that for ‘5’ <53

mult

there exists a (optimal) constant C| > 1 such that, for all positive integers n and all

K,m,p
continuous m-linear forms 7" : ¢ X --- x (! — K,
P Pm
m+172|%|
n 2m 2m
_o| 1
( > T (i) 2lp|> < it T
jl»-ijm:]-
When % = 0 (or equivalently p; = -+ = p,, = 00) since m+12i”2|%| = 72’]:1, we recover the

classical Bohnenblust-Hille inequality (see [32]).

When replacing (7, by £} the extension of the polynomial Bohnenblust-Hille inequality
is called polynomial Hardy—-Littlewood inequality. More precisely, given positive integers
m > 2and n > 1, if P is a homogeneous polynomial of degree m on £ with 2m < p < oo

given by P(x1,...,2n) = >, /=,, GaX”, then there is a constant C*! > 1 such that

Km,p =
mp+p—2m
2mp
2
D laa|7mem < Gty 111
|a|=m
and CHI;?;W does not depend on n, where || P|| = SUD.ep,y |P(2)].

When p = oo we recover the polynomial Bohnenblust—Hille inequality. Using the
generalized Kahane-Salem—Zygmund inequality (see, for instance, [5]) we can verify
that the exponents in the above inequalities are optimal.

The precise estimates of the constants of the Hardy—Littlewood inequalities are un-
known and even its asymptotic growth is a mystery (as it happens with the Bohnenblust—
Hille inequality).

Very recently an extended version of the Hardy-Littlewood inequality was presented
in [5] (see also [63]). Let X, := ¢, (for 1 <p < 00) and also X := ¢.

Theorem 0.1 (Generalized Hardy-Littlewood inequality for 0 < %‘ < 1 [). Letp :=

(P1y .-y Pm) € [1,+00]™ such that E‘ < % Let also q == (q1,...,qm) € [(1 — |§|)_1,2}m.
The following are equivalent:

XXV



(1) There is a (optimal) constant CEW > 1 such that

sM,p,q —

9m—1

am
qm) . S Cmult HTH

K,m,p,q

S (Z T (ej,s- - €j,)

Ji=1 Jm=1
for all continuous m-linear forms T : X, x --- x X, — K.

(2) gt b <

=

For the case % < |§| < 1 there is also a version of the multilinear Hardy-Littlewood
inequality, which is an immediate consequence of Theorem 1.2 from [4] (see also [63]).

Theorem 0.2 (Hardy-Littlewood inequality for ¢ < ’%‘ < 1). Let m > 1 and p =

2
(p1s---,Pm) € [1,00]™ be such that 5 <
DEut > 1 such that

Kvmvp -

Ll < 1. Then there is a (optimal) constant

N 1 1_|5|
_|1
( S T, e |v|> < Dt |7

1eim=1

for every continuous m-linear operator T : fﬁ X oo X E;Vm — K. Moreover, the exponent

(-

In this part of the work, we investigate the behavior of the constants C¥%' ) . Dgs'

(Chapter and C’]E?:n’p (Chapter. In Chapterwe answer, for 1 < p < m, the question
on how the Hardy-Littlewood multilinear inequalities behave if we replace the exponents
2mp/(mp + p — 2m) and p/(p — m) by a smaller value r (see Theorem [2.1)). This case
(1 < p < m) was only explored for the case of Hilbert spaces (p = 2, see [37, Corollary

5.20] and [51]) and the case p = co was explored in [46].

-1
) 1 optimal.

1
p

Part II: Summability of multilinear operators

In 1950, A. Dvoretzky and C. A. Rogers [66] solved a long standing problem in Banach
Space Theory when they proved that in every infinite-dimensional Banach space there
exists an unconditionally convergent series which is not absolutely convergent. This result
is the answer to Problem 122 of the Scottish Book [88], addressed by S. Banach in [21]
page 40]). It was the starting point of the theory of absolutely summing operators.

A. Grothendieck, in [71], presented a different proof of the Dvoretzky-Rogers theorem
and his “Résumé de la théorie métrique des produits tensoriels topologiques” brought
many illuminating insights to the theory of absolutely summing operators.

The notion of absolutely p-summing linear operators is credited to A. Pietsch [117] and
the notion of (g, p)-summing operator is credited to B. Mitiagin and A. Pelczynski [91].
In 1968 J. Lindenstrauss and A. Pelczyniski’s seminal paper [83], re-wrote Grothendieck’s
Résumé in a more comprehensive form, putting the subject in the spotlight. In 2003,
Matos [86] and, independently, Bombal, Pérez-Garcia and Villanueva [34] introduced a

XXVI1



more general notion of absolutely summing operators called multiple summing multilinear
operators, which has gained special attention, being considered by several authors as
the most important multilinear generalization of absolutely summing operators: let 1 <
D1y Pm < g < 00. A bounded m-linear operator T : E; X --- x E,, — F is multiple
(¢;p1, - -, Pm)-summing if there exists C,, > 0 such that

(1) (m)
( Z HT(:):]-I,...,xjm>

Jiseejm=1

1

q\‘ m k) oo

) <eull |
k=1 w,Pk

for every (xgk));";l € (y (Ey), k = 1,...,m. The class of all multiple (g¢;pi,...,pm)-
summing operators from E; X- - -x E,, to F' will be denoted by nglt(q;pl,...,pm)<Eh ey By F).

The roots of the subject could probably be traced back to 1930, when Littlewood [84]
proved his famous 4/3-inequality to solve a problem posed by P.J. Daniell. One year later,
interested in solving a long standing problem on Dirichlet series, H.F. Bohnenblust and
E. Hille generalized Littlewood’s 4/3 inequality to m-linear forms. Using that L (co; E)
is isometrically isomorphic to £} (E) (see [62]), the Bohnenblust-Hille inequality can be
interpreted as the beginning of the notion of multiple summing operators, because in the
modern terminology, the classical Bohnenblust—Hille inequality [32] ensures that, for all
m > 2 and all Banach spaces Ejy, ..., E,,,

L(Ey, ..., En;K) =117 o ) (B, ., B K) .

rnult(m—Jr17 yeer

In Chapter , we prove that, if 1 < s < p*, the set (£ ("(,; K) \qult(ﬂ- ) (", K))U
m+17°

{0} contains a closed infinite-dimensional Banach space with the same dimension of
L(™,;K). As a consequence, we observe, for instance, a new optimal component of
the Bohnenblust—Hille inequality: the terms 1 from the tuple (TZ—Tl, 1., 1) is also op-
timal. Moreover, we generalize a result related to cotype (from 2010) credited to G.
Botelho, C. Michels, and D. Pellegrino, and we investigate the optimality of coincidence
results for multiple summing operators in ¢y and in the framework of absolutely summing
multilinear operators. As a result, we observe that the Defant—Voigt theorem is optimal.
In Chapter [5| we present a new class of summing multilinear operators, which recovers the

class of absolutely (and multiple) summing operators.

Part III: Classical inequalities for polynomials on cir-
cle sectors

The study of low dimensional spaces of polynomials can be an interesting source of
examples and counterexamples related to more general questions. In this chapter, we
mind 2-variable, real 2-homogeneous polynomials endowed with the supremum norm on
the sector D (%) = {ew 10 e [O, ﬂ } The space of such polynomials is represented by
P (D (%)). This chapter can be seen as a continuation of [77] and [93]. Other publications
within the same direction of research are [69] [70], 94, 05| 96l 98].

In order to obtain sharp polynomial inequalities in P (2D (%)) we will use the so called

Krein-Milman approach, which is based on the fact that norm attaining convex functions
attain their norm at an extreme point of their domain.
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Let us describe now the four inequalities that will be studied in this chapter. Sec-
tion is devoted to obtain a Bernstein type inequality for polynomials in P (2D (%))
Namely, for a fixed (z,y) € D (%), we find the best (smallest) constant ®(z,y) in the
inequality

VP, y)ll: < @ I Pllpxys
for all P € P (2D (%)), where || - |2 denotes the Euclidean norm in R?. Similarly, we

also obtain a Markov global estimate on the gradient of polynomials in P (2D (Z)), or in
other words, the smallest constant M > 0 in the inequality

IV Pyl < MIP] sy,

for all P € P(*D (%)) and (z,y) € D(%). It is necessary to mention that the study
of Bernstein and Markov type inequalities has a longstanding tradition. The interested
reader can find further information on this classical topic in [28], [74] [75] 82, 89, 00, O7,
100, [122], 123, 125, 127].

In Section [6.2] we find the smallest constant K > 0 in the inequality

||L||D(

INE]

) < KHPHD(g)a

s
4

where P is an arbitrary polynomial in P (2D (%)) and L is the polar of P. Observe that

here ||L]| (=) stands for the supremum norm of L over D (%)2. Hence, what we do is to
4

provide the polarization constant of the space P (2D (%)) The calculation of polarization

constants in various polynomial spaces is largely motivated by the extensive research on

the topic (for examples, you can observe at [64] [75, [85] [121]).

Finally, Section focuses on obtaining the smallest constant C' > 0 in the inequality

P pezy < ClPI (=), (3)

4
for all P € P (2D (%)), where |P| is the modulus of P, i.e., if P(z,y) = az? + by* + czy,
then |P|(x,y) = |a|z?® + |bly* + |c|zy. The constant C turns out to be the unconditional
constant of the canonical basis of P (2D (%)). It is interesting to note that (in 1914) H.
Bohr [33] studied this type of inequalities for infinite complex power series. The study of
Bohr radii is nowadays a fruitful field (see for instance [23, 29, 64, 56], 57, [59]). It can be
observed that the relationship between unconditional constants in polynomial spaces and
inequalities of the type was already noticed in [56].
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Part 1

On the Bohnenblust—Hille and
Hardy—Littlewood inequalities






Chapter 1

The multilinear Bohnenblust—Hille and
Hardy—Littlewood inequalities

In this chapter we present the results from the following research papers:

[12] G. Aradjo, and D. Pellegrino, Lower bounds for the constants of the Hardy-Littlewood
inequalities, Linear Algebra Appl. 463 (2014), 10-15.

[13] G. Aratjo, and D. Pellegrino, On the constants of the Bohnenblust-Hille and Hardy—
Littlewood inequalities, arXiv:1407.7120 [math.FA].

[16] G. Aratjo, D. Pellegrino and D.D.P. Silva e Silva, On the upper bounds for the
constants of the Hardy-Littlewood inequality, J. Funct. Anal. 267 (2014), no. 6,
1878-1888.

Let K be R or C and m > 2 be a positive integer. In 1931, F. Bohnenblust and E.
Hille (see [32]) proved in the Annals of Mathematics that there exists a (optimal) constant
BE‘;E > 1 such that for all continuous m-linear forms 7" : ¢2 x --- x {2 — K, and all
positive integers n,

m—+1

n 2m
_2m_ mu
( > |T(€ju~-,6jm)|’"“> < By 1T (1.1)
Ji

The precise growth of the constants Bﬂ‘é’,‘;}f is important for many applications (see,

e.g., [92]) and remains a big open problem. Only very recently, in [23| [104] it was shown
that the constants have a subpolynomial growth. For real scalars (2014, see [65]) it was
shown that the optimal constant for m = 2 is V2 and in general Bﬁt‘;it > 9= . In the
case of complex scalars it is still an open problem whether the optimal constants are
strictly grater than 1; in the polynomial case, in 2013 D. Nunez-Alarcén proved that the
complex constants are strictly greater than 1 (see [I01]). Even basic questions related to
the constants By’ remain unsolved. For instance:

_, increasing?

e [s the sequence of optimal constants (B]%l"#f)

. oo
e Is the sequence of optimal constants (Bﬁg{,lf)m:l bounded?
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o [s Bpult =17

The best known estimates for the constants in (1.1)), which are recently presented in
[23], are (B'}" = 1 is obvious)

where Az2;—2 are the respective constants of the Khnichine inequality, i.e.,
J

Bt < ﬁ (2——)%,

m [T (a _ ;) 2=2
BR Wllt < 245456434801 i H _\* J; ’ for m > 1 4’ ( .
j=14 ﬁ
Bpat < 27, for 2 <m < 13,
7=2

In a more friendly presentation the above formulas tell us that the growth of the constants
B" is subpolynomial (in fact, sublinear) since, from the above estimates it can be proved

that (see [23])

1—v
mult 0.21139
Bghy < mz <m ,

Brut < 13, T < 1.3 086482
where v denotes the Euler—-Mascheroni constant. The above estimates are quite surprising
because all previous estimates (from 1931 up to 2011) predicted an exponential growth.
It was only in 2012, with [I12] (motivated by [58]), when the perspective on the subject
changed entirely.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust—Hille
inequality to ¢, spaces. More precisely, the classical Hardy—Littlewood inequality asserts

that for ’% < : there exists a (optimal) constant C'E?‘j}ltp > 1 such that, for all positive
integers n and all continuous m-linear forms 7": £} X --- x £ ~— K,
7n+172|%|
n om o
m+1—2|L1 m
( Do (e ey, lel) < oo I (1.3)
j1,---,jm:1

Using the generalized Kahane—Salem—Zygmund inequality (2)) (see [5]) one can easily verify

that the exponents — are optimal. When ‘%‘ = 0 (or equivalently py = -+ = p,, =

1 2|1|
m
m+l—2|%| m+1’

00) since we recover the classical Bohnenblust—Hille inequality (see [32]).

The precise estimates of the constants of the Hardy-Littlewood inequalities are un-
known and even its asymptotic growth is a mystery (as it happens with the Bohnenblust—



Hille inequality). The original estimates for Cg"s'  (see [5]) were of the form

m—1
i, < (V2)" (1.4)
Very recently an extended version of the Hardy—Littlewood inequality was presented
in [5] (see also [63]). Consider X, := ¢, for 1 < p < oo, and also X := co.

Theorem 1.1 (Generalized Hardy—Littlewood inequality for 0 < !%’ < 3 []). Letp :=

(P1y .-y Pm) € [1,+00]™ such that ‘%‘ < % Let also q := (q1, ..., qm) € [(1 — |%|)71,2}m.
The following are equivalent:

(1) There is a (optimal) constant CEU > 1 such that

7P, —

dm—1
am

o0 00
Z <Z |T(6j1,...,ejm)‘qm> S Cﬂ?ﬁp,qHTH
J1=1 Jm=1

for all continuous m-linear forms T : X, x ---x X, — K.

(2) gt g <

T =

Some particular cases of Cﬁ%t,p,q will be used throughout this chapter, therefore, we

will establish notations for the (optimal) constants in some special cases:

o If py =--- = p, = oo we recover the generalized Bohnenblust-Hille inequality and
we will denote Cﬁ‘;ﬁ(wwmm by Bﬁﬁq. Moreover, if g1 = -+ = ¢, = 72—:”1 we re-
cover the classical Bohnenblust—Hille inequality and we will denote BH‘;‘L:; (2m,.2m)

3110y TH?"'?TH
by By

e lfqgy = =¢q, = nwrffmzﬁ we recover the classical Hardy—Littlewood inequality

P

and we will denote C™1!t o
’m’p’(mﬂ—zu/m""7m+1—2\1/p\

pm = p we will denote Cﬁl";}ip by Cﬁgﬁp-

K,m,p*

Y by Cmult  Moreover, if py = -+ =

For the case % < |%’ < 1 there is also a version of the multilinear Hardy-Littlewood
inequality, which is an immediate consequence of Theorem 1.2 from [4] (see also [63]).

Theorem 1.2 (Hardy-Littlewood inequality for % < ’%‘ < 1. Letm > 1 and p =
(p1s---,Pm) € [1,00]™ be such that 5 < ‘%

Dt > 1 such that

< 1. Then there is a (optimal) constant

N 1 1_’5’
_ |1
( ST Tlen. )l ‘v‘) < DR ||

i1yeim=1

for every continuous m-linear operator T : @’X X oo X E;Xn — K. Moreover, the exponent

(-

-1
i > 1 optimal.
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The best known upper bounds for the constants on the previous result are DI <

R,m,p
m—1 m—
(v2)™ and Dt < (2/y/m)™" (see [ 63)).
We will only deal with this second case of the Hardy—Littlewood inequality (for % <

|1| < 1) in Chapter ??. Again we will establish notations for the (optimal) constants

mult : .
D]Km B In some spemal cases:

e When p1r =" =DpPm =P We denote Dﬂ%:lnl,ip by D%};};p-

Our main contributions regarding the constants of the multilinear case of the Hardy—
Littlewood inequality can be summarized in the following result, which is a direct conse-
quence of the forthcoming sections [1.1] and [1.2]

Theorem 1.3. Let m > 2 and let og = /2 and oc = 2/+/x. Then,

(1) Let q= (Q17"'7qm) € [1,2]"” = 5

1 ) 2m2—4m+2
al = 2 and max q; < “75—"= ) then

mult —
BK m,q — H 2

mp+2m— 2m2 —p

(2) ]Eu#:p >2  mr for2m < p < oo and Cnrzfl%itQm > 1.

(3) (i) For

<

1 1
P 27

m—1)]1
ot < (ox) V5l

g =

In particular, (CE) 00:1

s sublinear zf

(ii) For 2m3 — 4m? + 2m < p < oo,

mult —1
< JJ Azt

(4) Let 2m < p < oo and let q := (q1, ..., Gm) € [L Z}m such that % = mp“’ 2m - JIf

p—m’

2m2—4m+2 then

maxq; < = 5=~

mult -1
Kmvp)q - HA2

Note that, for instance, if 2m? —4m?+2m < p < oo, the formula of item (3)(ii) is not
dependent on p, contrary to what happens in item (3)(i), where we can see a dependence
on p but, paradoxically, it is worse than the formula from item (3)(ii). This suggests the
following problems:

e Are the optimal constants of the Bohnenblust—Hille and Hardy—Littlewood inequal-
ities the same?

e Are the optimal constants of the Hardy—Littlewood inequality independent of p (at
least for large p)?



Several advances and improvements have been obtained by various authors in this
context. We can highlight and summarize these findings in the following remarks:

Remark 1.4. D. Pellegrino proved in [111] that
Bﬁvuqlqt,(l,z,..g) - (\/ﬁ)m_l (1-5)

and, fori € {1,...,m},

2m—q;m—4+3q;

mult -
B ( 2(m—1)q; 2(m—1)q; 2(m—1)q; 2(m—1)q; ) Z 2 2ai )

R,m, (m4+1)g;—27""" (m+1)q; —2 iy (m+1)g;—27"" (m+1)q; —2

with q; € [1,2] in the i-th position. In [{4], when i = m, the above estimate it was
improved for J. Campos, W. Cavalcante, V.V. Fdvaro, D. Nunez-Alarcon, D. Pellegrino
and D.M. Serrano-Rodriguez to

3gmm—2m—5qm +4
2 2qm (m—1)

mult
BR m ( 2(m—1)gm 2(m—1)gm ) Z
e (m+1)(1'm—27.“7(m+1)‘hn—27qm

In particular, it was possible to conclude that

Bﬂ§1§124/3,4/3,2) - B&%{%4/3,8/5,8/5) - BHI§,§24/3,2,4/3) = 2%/,

D. Pellegrino and D.M. Serrano-Rodriguez proved in [113] the following (in some
sense) more general result: if m > 2 is a positive integer, and q = (q1, ..., qm) € [1,2]™
are such that |1/q| = (m +1)/2, then, for j =1,2,

(m=1)(1=gq;)q;+¥7%; d;

B]El}rlTlltq 2 2 q1-9dm

Y

with §; = %, i = 1,...,m. In particular, they proved that (1.5) also is true for the
exponent (2,1,2,...,2).

Remark 1.5. Very recently, D. Pellegrino presentecﬂ new lower bounds for the real case
of the Hady—Littlewood inequalities, which improve the so far best known lower estimates
(item (2) of the previous theorem) and provide a closed formula even for the case p = 2m
(see [44]). Pellegrino’s approach is very interesting because even with a simple argu-
ment, he “finds an overlooked connection between the Clarkson’s inequalities and Hardy—
Littlewood’s constants which helps to find analytical lower estimates for these constants”.
More precisely, using Clarkson’s inequalities, D. Pellegrino proved that for m > 2 and

p > 2m, we have

2mp+2m7p72m2

mp
Rm,p = 1+z)P* +(1—2)P*)1/P* ~
supr[O,l} d )(1+g(gp)1/20 )
Remark 1.6. If p = (p,...,p) in Theorem[1.3 (3)(i) we have the following estimate for

C’H{(“";}f’p with 2m < p < 2m? — 4m? + 2m:

2m(m—1) p—2m

cmult < (gg) v (Bgl;}f) v (1.6)

K’map -

!The original paper that D. Pellegrino presented the new lower bounds for the real case of the Hardy—
Littlewood inequalities has been withdrawn by the author (see [105]). This arXiv preprint is now incor-
porated to [44].
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Very recently, D. Pellegrino in [106] proved that, form > 3 and 2m < p < 2m3—4m?+2m,
we can improve (1.6)) to

2
2m—pt+mp—2m~ p—2m—mp+6m2—6m3t2m

O]Irg;::;p S (B]%l;l}lt)(m_l)( m2p—2mp )(O—K) mp(m—2)

When p = 2m?® — 4m? + 2m this formula coincides with Theorem (3)(ii) when p —
2m3 — 4m? + 2m.

Remark 1.7. Let py € (1,2) be the unique real number satisfying

F(p0+1):ﬁ

5 vy

5
D. Nuinez-Alarcon and D. Pellegrino in [102] found the exact value of the constant in
the particular case K = R, m = 2, q = (}%1,2) and p = (p,00) with p > P2 More

po—1
precisely, they showed that

D=

mult — 2%—
R,2,(p,oo),(ﬁ,2)

whenever p > pfﬂl. For 2 < p < pg, they found almost optimal constants, with better

precision than 4 x 1072,

Remark 1.8. D. Pellegrino proved in [109] that form > 2, p > 2m and q := (q1, ..., Gm) €

m _ 2
—2_ 2| such that |1| = DEE22M pd max g, > 2=AME2 e have
p—m q 2p m4—m—1 ~

(m+1)(2—max qi)(mfl)2

1_(m+1)(27maxqi)(m71)2 (m2 —m—2) max a;

Cmult < (O’K)(m_l)( (m2—m—2) maxq; ) <ﬁ AQ}Q) . (17)
j=2 7

K7m7p7q -

The estimates (L.7) behaves continuously when compared with Theorem [1.5 (4)(1).

1.1 Lower and upper bounds for the constants of the
classical Hardy—Littlewood inequality

From [23, 104] we know that B has a subpolynomial growth. On the other hand,

the best known upper bounds for the constants Cﬁgﬁp are (\/ﬁ)m_l (see [, B, [63]). In

. . -1 .
this section we show that (\/i)m can be improved to
2m(m—1)

2 P p—2m
ca<(z) T
AT (1.8)

2m(m—1) —om

o, < (V2) T (BE)

. . -1 . .
These estimates are quite better than (\/§)m because Bﬁ‘;}f is sublinear. Moreover, our

estimates depend on p and m and catch more subtle information since now it is clear that
the estimates improve as p grows. As p goes to infinity we note that the above estimates
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tend to the best known estimates for Brnlllt (see (1.2)) and, for instance, if p > m? we

conclude that (Cﬁ“;lfp) | has a Subpolynomlal growth. One of our main result in this

section is the following:

Theorem 1.9. Let m > 2 be a positive integer and ‘%‘ < % Then, for all continuous
m-linear forms T : ) X ---x £) — K and all positive integers n, we have
m+172|%|
n 2m —om
m41-2|L mul
( > T 2“‘) < Cny 1T (1.9)
jlv“’vj'm:l
with

2(m—1)| % _o|l
C]gu;rlltp < (\/5) ‘p‘ (B]E’t;it)l 2|p|

and

9\ 2(m N 12 ‘
Célultp < ( (Bmult)
,m, - ﬁ

In particular, (C]{(}“;,lfp) has a subpolynomial growth 1, < %
Remark 1.10. Ifp; = -+ = p,, = p and 2m>® — 4m? + 2m < p < oo, we already have
better information for H‘(f“}}fp when compared to the previous theorem (see Theorem 1.1@).

Proof of Theorem[1.9. For the sake of simplicity we shall deal with the case p; = --- =
Pm = p- The case p = oo in ((1.9) is precisely the Bohnenblust—Hille inequality, so we just
need to consider 2m < p < oco. Let % <s<2and

2s
ms+s—2m+2°

Ao =

Since
m—1 1 m+1

s+)\_0_2’

from the generalized Bohnenblust—Hille inequality (see [5]) we know that there is a con-

stant Bg‘#fo\o ) > 1 such that for all m-linear forms 7" : (7 x --- x {1 — K we have,
forallv=1,.
Lo %
> Z T (€1 s €5 < B rg.s 1T (1.10)
7i=1 \j;=1

Above, > means the sum over all jj for all k # i. If we choose
Ji=1
2mp

§=—,
mp—+p—2m
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we have
)\0 <5< 2.

The multiple exponent
(X0, 8,8,y S)

2m 2m )

can be obtained by interpolating the multiple exponents (1,2...,2) and (m_+1’ D

1 1
=2 —— =
' (/\0 8)
2
ngm(——1>,
S

It is thus important to control the constants associated with the multiple exponents

(1,2...,2) and (m+1’ ey nf—:”l) The exponent (m+1’ ey Ts—Tl) is the classical exponent of the

with, respectively,

in the sense of [5].

Bohnenblust-Hille inequality and the estimate of the constant associated with (1,2...,2)
is well-known (we present the details for the sake of completeness). In fact, in general,
for the exponent (k2+k1" . kQJfI’ 2,. ) (with ;2 lc+1 repeated k times and 2 repeated m — k
tlmes) using the multiple Khmchlne inequality (1] . we have, for all m-linear forms 7T :

0ox o x = K,

k41

<i ( i |T(ej1,...,ejm)|2>5'f+kl) 20

Jiyedk=1 " Jrt1,-dm=1

(X ()

j17"'7]k:1

n

> T (tresa) 1 (t)

ijrl: 7jm:1

k+

k+1dtk+l > )f) 2k

n
—(m—k) § : § '
— A ka < /;] ] . (T(e,jl? "'7€jk T]kJrl tk+1 €]k+1, ciey
. _ 7]_ m—

+
+

X T(ejl, ...,ejm)

dtpys - dtm)

n

—(m—k
:Ai )</[01}mk Z (T(ejl,...,ejk, Z Tiss (Pet1) €y -oes

J1yedi=1 Je+1=1
k+1
k+1 2k
E ’l“]m €]m> dtk;-H dtm>
Jm=1
n
—(m—k) mult
SA% sup B |IT( - s o E Tiper (Tkt1)€hgrs -oon E T (tm)€jn
tr+1, ---7tm€[071] jk+1 1 Jm=1
_ 4—(m—k) mult
— A% B 1T -

So, choosing k = 1, since A; = (\/5)_1 and Bg'}" = 1 we conclude that the constant
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associated with the multiple exponent (1,2, ...,2) is (v/2) et

Therefore, the optimal constant associated with the multiple exponent

()\0, Syeeny 8)

is (for real scalars) less than or equal to

ie.,
— 0> mu p—2m
Bﬂ?ﬁ(xo,s,..mﬁ(ﬁ) (Ba') * (1.11)

More precisely, (1.10) is valid with Bﬁ‘j}i( Nossos) &S above. For complex scalars we can

777777

use the Khinchine inequality for Steinhaus variables and replace /2 by \/%7 as in [103].
Let

A
A = op .
p— AoJ
for all 7 =1,....,m. Note that
A = S

and that

forall j =0,....m— 1.
Let us suppose that 1 < k£ < m and that

N 1
SA—1\ Me—1

Z Z\T €150 € )| < B ossns I Tl

Ji=1 j:—l

is true for all continuous m-linear forms 7" : £ X - -+ X £ X3, x -+ x {7 — K and for all

~—_——
k—1 times
1 =1,...,m. Let us prove that
Lk £Z
1
Z Z T(€jss s €5,) [ < Bl (rg.s) I T
.]z—l j;—l
for all continuous m-linear forms 7" : £} x -+ x €7 x{0 X -+ X {7 — K and for all
~—_———
. k times
1=1,....m
The initial case (the case k = 0) is precisely ((1.10]) with Bﬁ‘#}o\o s asin (L11)).
Consider
T e L(ly,. .00, ... 0 K)
~——

k times
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and for each z € By define

TE o X x Xl x e x ) — K
—_———

k—1 times
(2, ..., () = T(2W, L 2B k) H k) )y,

with 2z = (:szj(»k))?:l. Observe that

IT|| = sup{|| 7| : & € Bgy}.

By applying the induction hypothesis to T®), we obtain

1
L 1
SAk—1\ Me—1

n n
Do DT (e e ) |

Gi=1 \j=1

n n
S
= E E ‘T(ejl,...,ejkil,a;ejk,ejkﬂ,...,ejm)|

Ji=t =t (1.12)

1
L 1
Ak—1\ Me—1

_ Z Z‘T(I) (ejla"'>€jm)|s

Jji=1 fi:l
< BEY s 1Tl
< BEY s IT

foralli=1,....m.

We shall analyze two cases:

Since
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for all j = 1,...,m, we conclude that

Z Z T (e,

Je=1 ]kl

=1 \jr=1

Z IT (ej,, -

Jr=1

sSup Z |yjk

yEBgn ]k 1

Je=1 \j=1

7|

mult

< BK,m,(Ao,Sr--yS)

Z Z T (ej,, ..,

S T (e

A\ Pk
€]m)|
. 1 1
1 k-1 P )*
g)\kfl(hgp_l) (Ak—l
€ )|
n 1
=Ak—1 Ak—1
i)
Jrk=1 P
(v)
1
LN\ M1
S
E T (e, -, €5,)]
Jr=1
1
TAk—1\ M1
n
S
€j1s 7€jrn)|
Je=1
1
Ixe—1\ Mot

i)l |5,

where the last inequality holds by (1.12)).

Let us first suppose that k € {1,...,m

M1 < M < sforall ke{l,..m

— 1} . It is important to note that in this case
1}. Denoting, for i =1,.....m

Y

E]

e.]m)|

Z T (ejy, --

]121



14 Chapter 1. The multilinear Bohnenblust—Hille and Hardy—Littlewood inequalities

we get
Sk

S S e =35 =3 g4

Ji=l \j,=1 Ji=1 Ji=1

T(ej,....ej, T(€ej, s €5,
_ZZ| ejigs—/\kej ZZ| 6]5«8 )\ke] )|°

Ji=175= i Je=1j=1

s(s—Ag)
5=Ak—1 sQk—Ap—1)

L& T (e, ..., €5.) L
- Z Z “ SSfj)\k |T(ej1’ 7€]m)| *e—1

Jr=15 =1

Therefore, using Holder’s inequality twice we obtain

L,
Z Z|T (€515 s €5)[°
]7,—1 5;71
s=Ap Ak —Ak—1
n S=Ak—1 S=Ak—1
T(ej,...n e, )|
< Z Z 31; Py fm Z‘T €j1s e €jn)|°
I=1 \gp=1 k=1
)‘>‘k Aigl's::kl (1.13)
k—1
T (15 - €5)I°
Z Z T
k=1 \ =1
L.O‘k*)‘k 1)s
A\ Mk sTAe—1
Z Z|T €j1sees € )|’
k=1 \jr=1

We know from the case 7 = k that

L 1 Ce=Ae—1)s
SARN\ M STAk—1
Ng=Ap_1)s

Z ZIT €jrsees )| < (B o,s o ITI) %= (1.14)

Jr=1 ]k:l

Now we investigate the first factor in ([1.13)). From Holder’s inequality and ([1.12)) it follows
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inequality 15
that
Ak—1
A:E1 &
i Z T(ej,, ..., €5,)|°
[ Ak—1
=1 \j,=1
n

_ Z |T €j15 - ejm)ls
- S )‘k 1
.
Je=1||( 2o
(s)
T €1y oo ejm)|
~ s Yl Z T

yEBen

Ak 1 =t k=1
T(ej,, .. s 1.15
— sup sz 6]18, Akeljm” |$jk|k’“‘1 ( )
T(ej,,...,ej, )| 1
=mzz‘wdﬂ Tep g )P [
SCEB[;QL ]171 Ail
(- 1T ﬂsyn P
€ipyenny €5
< sup Y Z T D 1T (e, oo el |°
:L'EB[n ] =1 ]Z_]_ j;:]_
n n %Ak !
A
= sup Y [ D [T(ejr )l |° < (BEm o IT1)
ZGBZ;; jz 1 5;:1
Replacing ((1.14)) and (| - in - we finally conclude that
o
Z Z‘T €jrs s €|
.71—1 j;_l
5= (A =Ap—1)s

Ak—
< (Bﬂlél,lrllllt,()\o,s,...,s)||T||) o Re-1 (B]Ilglrlrlz()\o,s,...,s)||T||) e

)A’“

( mult
K7m7()‘0757~-'75)

It remains to consider £k = m. In this case \,, = s and we have the more simple
situation since

Z Z T(ejy, s €5,)I° = Z Z T (€51 -5 €5)|°
Ji=1 \ji=1 Jm=1 \jn=1
S B]]Ir(?lrllllt (X858 ||TH

where the inequality is due to the case i = k. This concludes the proof. O
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In order present a more concrete formula for the constants of the Hardy—Littlewood
inequality and to show that for p > m? these constants have a subpolynomial growth, we
need to recall the optimal constants of the Khinchin inequality and the best known
constants of the Bohnenblust—Hille inequality.

The best known upper estimates for Bmlﬂt and Bmlllt can be found in [23]:

mult < HAZg .

Combining these results we have, for 2m < p < oo,

p—2m

m 7‘7 - p
4m2—pm—2m | 446381 r(s-1 2-2j
Cﬁll;rlzt,p < (2 Sp—dm T 55440 | | < <\2/EJ) for m > 14,

j=14

p—2m 2m
2m(m 1)

it =7 (f) * wremens

and
2m(m—1) J_ )

N E T A

From [23] we know that

1—
B’““ult < mz2 <m

2—log2—~

Bt < 13.mTF < 1.3 m0I0s2,

0.21139
)

for all m’s, where  is the famous Euler-Mascheroni constant. We, thus, conclude that,

if p > m? then (C’H‘é“ﬁfp)oo has a subpolynomial growth. Similarly, in general we can

conclude that (CKT%'JP) , has a subpolynomial growth if

<o

Now we will provide nontr1v1al lower bounds for Cg'' . Nowadays the best lower
bounds for the constants of the real case of the Hardy—Littlewood inequalities can be
founded in [44] (see Remark [L.5), but the next result it was the first in this direction and

we will present the proof for the sake of completeness.

Theorem 1.11. The optimal constants of the Hardy—Littlewood inequalities satisfies

mp+2'm,72m2 —p

C’ﬁ“ﬁff,p > mp >1 for 2m <p < oo,
and
oty > 1.
m 2m 2m27
Proof. Following the lines of [65], it is possible to prove that Cgat > o >

mp+2m— 2m2
for 2m < p < oo, but note that when p = 2m we have 2 P = 1 and thus we do

not have nontrivial information.
All that it left to prove is the case p = 2m. This first step follows the lines of [65].
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For 2m < p < oo, consider Ty, : 2 X (2 — R given by (z(V), 2®)) Ve 4 2P 4

a:él)x(lg) xél)xg) and T, Ef,n%l X oo X €§M71 — R given by (z),...,2(™) s (xYn) +
m m m m—1 m—2

25V T (2, 2 (@ — 2 T (B (0 0), B (2, o, B2 (1),

where 7% = (xgk))?:; " e e 1 < k < m, and B is the backward shift operator in

Ef,m*l . Observe that

2m1

T oz, 2™ < 2™ 4 2™ | Ty, (2D, 20
+ (™ - <m’||Tm (BT (@), BT (@), L B2t )]
< Tzl (2™ + 28| + |25 — 28™))
= || T |2 maxc{ 2™ 257}
< 2 Tl 1™l
Therefore,
| Tonpll < 2772 Ty |- (1.17)

Note that ||T3,| = sup{||T2$() | : |, = 1}, where TQ(;(D) . £2 — R is given by

2?1 Ty, (M, 2®). Thus we have the operator T(xm)( (2)) = (2" + {2 + (xgl) —
2Mz? . Since (6,)° = ¢,-, we obtain HTz(x ) ( ) 4+ :r;é),:cg) —2$,0,0,...)|,»

M 4 2V — ) 2D+ 2V = 1}. We can

verify that it is enough to maximize the above expression when xg ), xgl) > 0. Then

Therefore ||T3,| = sup{(|:1:1

1
3

Py e [0,1]}
xe 27,1}

S =

|To |l = sup{((z + (1 — a")2)"" + |z — (1 — a7)
= max{sup{f,(z) : # € [0,277]}, sup{g, (=

where f,(x) = ((z+ (1 —a?)2)7" + (1 = a?)» — 2)?")#* and g,(x) = ((z + (1 —2?)»)*" +
Loy L
(x — (1 —2P)»)P )?". Examining the maps f, and g, we easily conclude that

| To,ll < 2 (1.18)

(for instance, the precise value of ||T5.4]| seems to be graphically /3 (see Figure )
From (1.17) and (1.18) we would conclude that ||T;,,| < 2™ '. On the other hand,

from Theorem [L.3] we have

mp+p—2m

om 1 2mp
_ mp+p—2m 2mp
(4m=h) e = ( > Toplesis s €, | 7700 2’") < CRmp2™
jl 77777 ]mzl
and thus o
m—1\ 2prp—<m 5
Comult (4 ) me %}27”*? 1
Rvmvp 2m—1 — o
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Figure 1.1: Graphs of the functions f; and g4, respectively.

1.2 On the constants of the generalized Bohnenblust-
Hille and Hardy—Littlewood inequalities

In this section, among other results, we show that for p > 2m3 —4m?2+2m the constant

Cﬂrg‘;:jp has the exactly same upper bounds that we have now for the Bohnenblust—Hille

constants ([1.2)). More precisely we shall show that if p > 2m?® — 4m? + 2m, then

m _J

1\ 225

cm, < IIr(2-3)7
j=2 J

" r (§ _ l) 2-2;
. T 2 g 1.19)
CR n}fp < 245456434801 2 H _ R for m > 14, (
j=14 VT
Cﬁl,;}rlzt,p < sz%_z, for 2 <m < 13.
j=2

It is not difficult to verify that in fact improves . However the most interesting
point is that in , contrary to , we have no dependence on p in the formulas and,
besides, these new estimates are precisely the best known estimates for the constants of
the Bohnenblust—Hille inequality (see (1.2])).

To prove these new estimates we also improve the best known estimates for the gen-
eralized Bohnenblust—Hille inequality (see Section . The importance of this result
(generalized Bohnenblust-Hille inequality) trancends the intrinsic mathematical novelty
since, as it was recently shown (see [23]), this new approach is fundamental to improve
the estimates of the constants of the classical Bohnenblust-Hille inequality. In Section
we use these estimates to prove new estimates for the constants of the Hardy—
Littlewood inequality. In the final section (Section the estimates of the previous
sections (sections [1.2.1] and [1.2.2)) are used to obtain new constants for the generalized
Hardy-Littlewood inequality.
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1.2.1 Estimates for the constants of generalized Bohnenblust—
Hille inequality

The best known estimates for the constants Bﬁg‘;ﬁ( g1..qmy are presented in [4]. More
precisely, for complex scalars and 1 < ¢; < -+ < ¢, < 2, from [4] we know that, for

q= (Q17 "'7Q7n)7

Y

Bk < <HF (2 - —) j)
k % 2k
x| T (F(§Z+2 HF(2——) )
7=1

In the present section we 1mprove the above estimates for a certain family of (¢1, ..., ¢ )-

More precisely, if max ¢; < %, then

(;_ ) ) (1.20)

k. 9k+1

A similar result holds for real scalars. These results have a crucial importance in the next
sections.

Lemma 1.12. Let m > 2 and i € {1,....m}. If ¢; € [2%_2,2] and q = (;(Jr% then

m
mult | | —1
BK7m7(q"“)q’qi7q7"'7q) S A#’
o

with q; in the i-th position.

Proof. There is no loss of generality in supposing that i = 1. By [23 Proposition 3.1] we
have, for each k =1, ..., m,

—_m
2m—2 m—2

5 2m
5 (z Tesmren) ) <z ir) < [l a1

jr=1 \Jk=1 j=2

(see [16], Section 2] for details).

We define g, = (qx(1), ...,qr(m)) = ((2m—2)/m, ..., 2m—2)/m, 2, (2m—2)/m, ..., 2m—
2)/m), where the 2 is in the k-th coordinate and take 6, = m — (2m — 2)/¢; and
Oy = -+ =0, =2/q — 1. Recalling that ¢; > 2”;”_2 we can see that 0, € [0,1] for
all k =1,....,m. It can be easily checked that

2! + + O _l and 01 + + O —lforj—Q m
qi (1) an (1) @ ai (J) an (j) ¢

Then a straightforward application of the Minkowski inequality (using that % < 2)
and of the generalized Holder inequality ([24], 68]) completes the proof. O
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Lemma 1.13. Let m > 2 be a positive integer, let 2m < p < 0o, let q1y ..., @m € [— 2]

p—m’
[f + qi = W then, for all s € (maxgq;, 2|, the vector (qfl, s Qi ) belongs
to the convex hull in R™ of

m m
E A1kCky -y E AmkCL s
k=1 k=1

if k=7, and A\, s = 2ps

mps+ps+2p—2mp—2ms ’

where aj, = st if k# j and ajr = N}

m,Ss

Proof. We want to prove that for (g1, ...,qm) € [p_Lm,Z} and s € (maxg;, 2| there are
0<#b;s<1,j=1,...,m, such that

2 0 =1,
j=1
1 b5 O Orm,s
— = 2y
q1 )\m s S S
1 91 s em 1,s em s
— = +
qm S /\m,s
.. 1, ... 1 _ mptp—2m ) 2mp
Observe initially that from St = Ty we have max ¢; > o Note
also that for all s € [f:;p 2725, 2} we have
mps + ps + 2p — 2mp — 2ms > 0 and P < Ams <2 (1.21)
p—m

Since s > max¢q; > — 2mp > 2mP3b (the ast inequality is strict because we are not
p+p—2m mp—2m

considering the case p = 2m) it follows that \,, s is well defined for all s € (maxg;, 2].

Furthermore, for all s > Tf% it is possible to prove that A\, s < s. Infact, s > —m2__

p+p—2m ) mp+p—2m

implies mps + ps —2ms > 2mp and thus adding 2p in both sides of this inequality we can

conclude that

2ps - 2ps
- — S,
mps + ps + 2p — 2mp — 2ms 2p
ie.,
Ams < 5. (1.22)
For each j = 1,...,m, consider ; ; = W Since 7" % = W we conclude
J
that
s(s—qj) Am.s 1
0, 2 — - s ——m| =
Z 7 Z QJ (S - )\m,s) s — )‘m,s JZI q;

Since by hypothe81s s > maxgq; > ¢; for all j = 1,...,m, it follows that 6;, > 0 for all
j=1,...,mand thus 0 < 0;, <> 0;, =1
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Finally, note that

Am,s(5—a5) 1— Am,s(5—g;)

0]"5 4 1 — 0‘7‘75 _ qj(s—)\,ms) + q]'(S—)\m,s) _ l
/\m,s S )\m,s S q;
Therefore
1 91 S ‘92 s 9m S
- = _|_ = _l’_ P _l’_ ) ,
q1 )\m,s S S
1 91 s em—l S 9m S
— =4+ =4 —
Im s s Am,s
and the proof is done. O

Combining the two previous lemmas we have:

Theorem 1.14. Let m > 2 be a positive integer and qy, ..., Ggm € [1,2]. ]fqi1 + et q% =

m+1

2m2—4m+2
5 S Cthen

, and max q; < ==

J

m
mult —-1
BKvm»(qlwqum) S H AQ]"*27
=2

where Az2i—2 are the respective constants of the Khinchine inequality.
J

Proof. Let s = % and ¢ = 222 Since 2=t 4+ 1 = ™ from Lemma [1.12] the
q 2
Bohnenblust—Hille exponents (ty, ..., t,) = (S, ..., $,q) , ..., (¢, S, ..., §) are associated to

m
mult -1
B e < T [ Az

Since by hypothesis max q; < % = s, from the previous lemma (Lemma |1.13|) with

p = 00, the exponent (g, ..., ¢n) is the interpolation of

2s 2s
, S,y S| | Sy, S, .
ms—+s—+2—2m ms—+s—+2—2m

But note that

2s _ 2m—2
ms+s+2—-2m  m
and from Lemma they are associated to the constants

m
mult -1
B]K7m7(q17"'7q7n) S HAQ]I‘_2.

J

=2

O

Corollary 1.15. Let m > 2 be a positive integer and qq, ..., ¢y € [1,2]. Ifqi1 + -+ qim =
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2_
mtl and max q; < 2R=AmAZ gpen

2 m2—m—1 7
It M 1\

Bcvmv(ql ----- qm) S H I <2 - 5) ’

j=2
i
m [T (5 _ 1) 2%
ot o< owEmr [ | 2K . form > 14,
j=14 VT

ppt o< [27 Jor 2 <m <13.

j=2
The following table compares the estimate obtained for B(‘é"‘;rlf’( g 111 [] (see (|1.20))

and the new and better estimate obtained in Theorem [1.14]

1<q < <@ <2 ng}:(ql ..... 4)
m > 2 qil +-F qu = 4 and Estimates of [4] | Estimates of
maxg; < % (see (1.20)) Theorem |1.14
4 G = =q3= 39 qs = 1.62 < 1.28964 < 1.28890
5 Q= =q =555 =167 < 1.34783 < 1.34745
6 G = =g =39 g5 = 1.72 < 1.39385 < 1.39783
7 = =qs = g2, qr = 1.755 < 1.44344 < 1.44224
8 G = =qr =20 gy =178 < 1.48273 < 1.48207
9 G = =qs = S8 o = 1.801 < 151863 < 1.51827
10 G = =qo= 208 qup = 1.8201 < 1.55231 < 1.55151
20 G =" = Q9 = Sgars g0 = 1.905 < 1.79162 < 1.79137
50 || qu=--=qu =300 gso = 1.9608 | < 2.170671 < 2.170620
100 || g1 =" =qo = g, G0 = 1.9802 | < 2511775 < 2.511760
1000 G =" = 0999 = S33000000333665 < 4.08463471 | < 4.08463446
1000 = 1.998002000002

1.2.2 Application 1: Improving the constants of the Hardy-
Littlewood inequality

The main result of this section shows that for 2m? — 4m? + 2m < p < oo the optimal
constants satisfying the Hardy-Littlewood inequality for m-linear forms in ¢, spaces are
dominated by the best known estimates for the constants of the m-linear Bohnenblust—
Hille inequality; this result improves (for 2m? —4m?+2m < p < oo) the best estimates we
have thus far (see ), and may suggest a more subtle connection between the optimal
constants of these inequalities.

Theorem 1.16. Let m > 2 be a positive integer and 2m3 — 4m? + 2m < p < oco. Then,
Jor all continuous m-linear forms T : €7 X --- X £7 — K and all positive integers n, we

have
mp+p—2m

n 2mp 2mp m
( Z |T(ej17 "'7€jm)|mp+p_2m> < <H A2912> HTH (1~23>
1 =2

15eees Jm=1 I
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Proof. The case p = oo in ([1.23) is precisely the Bohnenblust—Hille inequality, so we just
need to consider 2m? — 4m? + 2m < p < co. Let % <s<2and

2s
ms+s+2—2m’

)\O,s =

Note that
ms+s+2—2m >0 and 1< Xos <2 (1.24)

Since
m—1+ I m+1
S /\0’5_ 2 ’

from the generalized Bohnenblust-Hille inequality (see [5]) we know that there is a con-
stant C,,, > 1 such that for all m-linear forms 7" : ¢7, x --- x {2 — K we have, for all
1=1,.....m,

1
1
g)\O,s )‘O,s

Z ZIT €1y oo € )| < Cn T (1.25)

Jji=1 :_1

2mp

mprpoam (Hote

Above, >  means the sum over all jj for all k& # i. If we choose s =
Ji=1
that this s belongs to the interval [M, 2}), we have s > =& (thls inequality is strict

because we are considering the case p < 0o) and thus A g < s. In fact, s > Tl implies

ms + s > 2m and thus adding 2 in both sides of this inequality we can conclude that

2s 2s
< = =5,
ms+s+2—2m 2

ie.,

Ao,s < S. (1.26)
Since p > 2m? — 4m? + 2m we conclude that

2m? — 4m + 2
m2—m—1"

s <

Thus, from Theorem [1.14] the optimal constant associated to the multiple exponent

is less than or equal to

More precisely, (1.25]) is valid with C,, as above. Now the proof follows the same lines,
mutatis mutandis, of the proof of Theorem [1.9| (see [16, Theorem 1.1]), which has its roots
in the work of Praciano-Pereira [118]. O

Remark 1.17. Note that it is simple to verify that these new estimates are better than
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the old ones. In fact, for complex scalars the inequality

2m(m—1) p—2m

m 2 ? m P
AL, < (== AL
15 a straightforward consequence of
m 9 m—1
AL, < [ = ,

which is true for m > 3. The case of real scalars is analogous.

The following table compares the estimates for C2U obtained in Theorem (see
(1.16) and [16]) and the estimate obtained in Theorem for 2m® —4m? +2m < p < oco.

o
m>2 | 2m* —4m?+2m < p < oo | Estimates (1.16) (seep Estimates of
[16] and Theorem Theorem ’m‘
p="173 < 1.30433
4 p = 500 < 1.29114 < 1.28890
p = 1000 < 1.29002
p = 1621 < 1.56396
10 p = 3000 < 1.55822 < 1.55151
p = 5000 < 1.55553
p = 240101 < 2.175275
50 p = 500000 < 2.172854 < 2.170620
p = 1000000 < 2171737
p = 1960201 < 2.514590
100 p = 5000000 < 2.512869 < 2.511760
p = 20000000 < 2.512037
p = 1996002001 < 4.08512258
1000 p = 6000000000 < 4.08479684 < 4.08463446
p = 50000000000 < 4.08465395

Recall that from the previous section that for p > m? the constants of the Hardy—
Littlewood inequality have a subpolynomial growth. The graph illustrates what we
have thus far, combined with Theorem [I.16]

1.2.3 Application 2: Estimates for the constants of the general-
ized Hardy—-Littlewood inequality

. -1
The best known estimates for the constants C’H‘é‘#fm are (ﬂ)m for real scalars and

m—1
(%) for complex scalars (see [5]). In the Theorem (see [16, Theorem 1.1]) and
in the previous section (see ([1.19)) better constants were obtained when ¢; = ... = ¢, =
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200 —

p=2m%— 4m? +2m
150 —

100 —

50 —

2 3 4 5
It m L 9+2,
mu “aTa .
--== Cg mp S [Ir (2 - j) (sublinear)
j=2
om(m—1) ,
mul 2 y mult ) sublinear
C mpS (\/E) (BC,m) ! ( )
2m(m—1) ,
— mult 2 » mult) =20 exponential growth
Ceimp < (ﬁ) (BEw) 7 (exp growth)

Figure 1.2: Behaviour of CE%" .

mpi%. Now we extend the results from [16] to genera,l multiple exponents. Of course
the interesting case is the border case, i.e., q— —|— o= oF B’; 2m  The proof is slightly

more elaborated than the proof of Theorem and "also a bit more technical that the
proof of the main result of [16].

Theorem 1.18. Let m > 2 be a positive integer, let 2m < p < oo and let q :=
(G1s s qm) € [_Lm,Z] be such that qil + ...+ qu = DmREp=m  Jf gy g < 2mo—dmd?

P 2p m2—m—1 7’
then
m
mult
K ,m,p,q

7=2

]

Proof. The arguments follow the general lines of [16], but are slightly different and

due the technicalities we present the details for the sake of clarity. Define for s €
(s it

2
- ps . (1.27)
mps + ps + 2p — 2mp — 2ms

m,s

—4m+2

Observe that A, s is well defined for all s € (max i, m2 — > In fact, as we have in

(1.21) note that for all s € [2mp 2 2] we have

mp—2m’

P <..<2

mps + ps + 2p — 2mp — 2ms > 0 and
p—m

Since 5 > maxq; > —22 > 22 (the |ast inequality is strict because we are not

— mp+p—2m mp—2m

considering the case p = 2m) and % < 2 it follows that A, s is well defined for all
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s € (max G, #)

m—1

Let us prove

Ot s < 1] A (1.28)

=2 J

for all s € (max i, W) In fact, for these values of s, consider

2s
)\OS: .
’ ms—+s—+2—2m

Observe that if p = oo then A\, s = Ags. Since

m—1_ 1 m+1
+— = :

S )\075 2
from the generalized Bohnenblust-Hille inequality (see [5]) we know that there is a con-
stant C), > 1 such that for all m-linear forms 7" : ¢% x --- x {2 — K we have, for all
1=1,.....m,
_1
g)\O,s >‘0,s
XZEJT%WGMI < Cn T (1.29)
]7,—1 ‘Efl
Since
2m 2mp 2m? — 4m + 2
< <maxgqg; < s <
m+1~" mp+p—2m m2—m—1

it is not to difficult to prove that (see (|1.26]))

2m? — 4m + 2
Aos <5< 5 .
m*—m — 1
Since s < M we conclude by Theorem [1.14|that the optimal constant associated

m
to the multiple exponent

(Xo.ss Sy Sy ey S)

is less than or equal to

fﬁA;T (1.30)

More precisely, (1.29) is valid with C,, as above. Since A, s = Ao if p = 00, we have
(1.28) for all for all s € (max 4, M) and the proof is done for this case.

<.
[\

m2—m—1

For 2m < p < o0, let

Ao,s
)\j,s 0 P A
p—= )\O,sj
for all j =1,....,m. Note that
2
)\m,s = be

mps + ps + 2p — 2mp — 2ms
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and'this notation is compatible with ([1.27). Since s > maxgq; > mpi’;f 5 > mpi";’i 5; for
all j =1,...,m we also observe that

)\j,s <S (131)

for all j = 1,....,m. Moreover, observe that

P\’ _ Ajtls
Ajs Ajs

for all j = 0,...,m — 1. From now on, part of the proof of (i) follows the same steps as
those of the proof of the main result in [16] [I18], but we prefer to show here the details
for the sake of completeness (note that the final part of the proof of (i) requires a more
subtle argument than the one employed in [16]).

Let us suppose that 1 < k£ < m and that

1
L 1
Ak—1,5\ M—1,s

Z Z’T(eha“'ae]’m)’s < Cm”TH

Ji=l \j;=1

is true for all continuous m-linear forms T": £ X - -+ X £ X3 X -+ x {7 — K and for all

k—1 times
t =1,...,m. Let us prove that
;Ak,s m
n n
S
Do DT (e el < CuIT]|
Ji=l \j,=1
for all continuous m-linear forms 7" : £} x --- x €7 X {0 X -+ X {5 — K and for all
—_——
k times

1=1,...,m.

The initial case (the case in which all p = c0) is precisely (1.29) with C,, as in (|1.30)).
Consider

T e E(fz, s U s s R)
~——
k times
and for each x € Bg; define
TE o XX )l X - x 0 — R
—_———
k—1 times
(2 ..., 2(m) = T(2W) L 2B g B L) - m)))

with 22 = (:E]z](k))" Observe that

J=1-

IT|| = sup{|| T : & € Bgy}.
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By applying the induction hypothesis to ™), we obtain

1
1 1
g)‘kfl,s >‘k—1,s

n n
Z Z|T<€j17"'7€jm)|s|l'jk|s

Ji=l \j;=1
" n %)\kfl,s Ap—1,s
S
= g E ’T (ejl,...,ejk_l,xejk,eij,...,ejm)‘
Ji=l \ji=1 (1.32)

1
1
SAk—1,5 \ k—1,s

= Z Z’T(I) (eju”'?ejm)‘S

7=l \ji=1
< O[T
< G |||

forallz=1,...,m.

We will analyze two cases:

o | =Fk.

Since
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for all j = 1,...,m, we conclude that

Z Z|T CAIN

Je=1 ]kl

1 1

X i
1y P Mo—1,s ( P )*
s k—los Ak—1,s Ak—1,s

= Z ZlT €jir e e]m>|

=1\ =1

1
1 n e
k1,5 Ak—1,s

= ZlT €jir 6Jm>|
k=1 ) %
Jk:l ()‘kfl,s)

1
k1| M-1s
n n
= Sup Z |yjk| Z ‘T(ejlv"’aejm)’S

yEByn L =
kfl s ]kil jk:l

1
L _ 1
SAk—1,5\ Mk—1,s

= | sup Z g, [Nt Z T (ejys oo €5)[°

x€B
b jr=1 Je=1

1
1 1
gkkfl,s )‘k—l,s

= sup Z Z |T (6]‘1, "'vejm)|s |Ijk|s

CCEB[Ipl ]kzl ]/I\C:I
< CnllT.

where the last inequality holds by (1.32)).

o i £k

It is clear that A\j_; s < Aps for all 1 <k < m. Since A\, < s for all 1 <k < m (see
(1.31))) we get
Mim1,s < Aps < sforall 1 <k <m.

Denoting, for i = 1,....,m,

Z T (€15 s €5,)]°

]121
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we get .
A
n n s ks n n
S _ )‘k,s _ )‘k,sfs S
E E 1T (e, - €5)] —E S; —E S; S;
7=l \ji=1 Ji=1 Ji=1
2 :2 :|T Cjis e €| 2 :2 : T () - €5,)]°
- S Aks S )\ks
‘7171.72—1 Ji= 1.7k 1
s(s— Ak’s)

s(A\g,s—Ak—1,s)

T(ej,...,€j, )| h-1s
—ZZ' J;’;{' (T e, eg)| 0

k=1 j=1 S

Therefore, using Holder’s inequality (twice) we obtain

%)‘k,s
Z ZlT €j1s e €y )|
Ji=1 5;_1
S_’\k,s Ak,s_kk—l,s
S—Ap_1.s s=Ak—1,s
T(ejys s €5, ’ ’
Z Z e Z\T s )|
P=1 k=1 Jr=1
R e (1.33)
Ak—1,s

Z Z |T( €1y s ejm)\
5 Ak— 1,s

= Jr=1

L 1 .(Ak,sfkk—l,s)s
;)‘k,s Ak,s Si)‘k—l,s

Z Z T (€, €5,)1°

=1 \jr=1

We know from the case i = k that

1 1 ‘(/\k,s_kk—l,s%s
gAk,s )‘k,s Si)‘k—l,s

()‘k,sf)‘kfl,s»s

’ < (Gl Tl) =ere o (1.34)

Z Z |T<ej1’ "'76jvn)

Je=1 \j =1

Now we investigate the first factor in ([1.33)). From Holder’s inequality and ([1.32)) it follows
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that
Ak—1,s
>‘k,s Ak,s
A
n k—1,s
2 : } : T(ejys - €4)1°
S Ak 1,s
k=1 \gp=1

_ ZlT €15 -5 ejm)|s

- S )‘k 1,s
ol

)‘k—l,s
IT(ejyy..es€5,)]°

= s Yl Z e

yEB[nk - ]k 1 ]k 1
T(ej,...,e; )| (1.35)

= oup 303 il

IGBZP jk: 1 - 1

n n
T(e € )|FT ML

= qup 3057 e s;:l L N

IEB[% j =1 ‘;\:1 S’L

R A
€ipyeens €

< sup Z Z ]175; = Z|T(6j17"'7ejm)|slxjk|s

$EB[IV)1 Ji=1 j::l i ﬁ:l

%)‘kfl,s
Ao

= sup Z Z|T (€515 o €5)[*||° < (O[T

v€Be ji=1 \ 5o

Replacing ([1.34)) and - in - we conclude that
n n i)\ks
s >‘k 1558)\)\]65 (Aks,i;\)‘kfl,s)s
Do DTl < (CullT]) e (C| TN et
Ji=l \j,=1
= (G| T|)

and finally the proof of ([1.28) is done for all s € (max %, 222—4771-5-2)'

m—1

Now the proof uses a different argument from those from [I6], since a new inter-

polation procedure is now needed. From ([1.31) we know that A, < s for all s €

(max i, W Therefore, using the Minkowski inequality as in [5], it is possible to

obtain from ([1.28)) that, for all fixed i € {1,...,m},

m
It -1
Cﬁ(ﬁlt}n)p( Sy 7S’>‘m,87s7“"s) S H A72j__2 (1‘36)
=2’

for all s € (max Qs %) with A, s in the ¢-th position. Finally, from Lemma |1.13
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we know that (ql_ L. q,;l) belongs to the convex hull of

[k ees™) e (57 s L))

2m2—4m+2

T =) with certain constants 6y, ...,0, s and thus, from the

for all s € (maqu-,

interpolative technique from [5], we get
It 1t 015 It Orm.s
mu. mu mu
O]K ,m,p,q — (CK m7p7()‘m 5585- 7S)> U (C]K,m,p,(s,...,s,)\m,s))

m 01,5+ +0m,s m
<H Azl ) =[] 4z

Jj=2

Corollary 1.19. Let m > 2 be a positive integer and 2m < p < oco. Let also q =

m
(G1, -y Gm) € Lﬁﬂ} be such that qil—i----—i—qim = W If max q; < %, then

J

Cgurlrlzt,pq S HF<2__>7]7

=2

Cmult S ﬁ 275

R,m,p,q
=2

<.

if2 < m <13,

.

3 1 2-2j5
m =z — =
mult 446381 _ m r (2 j> i
ORm,pq < 2755440 2 || T if m > 14.
j=14



Chapter 2

Optimal Hardy—Littlewood type inequalities
for m-linear forms on £, spaces with
I<p<m

In this chapter we present results from the following:

[14] G. Aratjo, and D. Pellegrino, Optimal Hardy-Littlewood type inequalities for m-
linear forms on ¢, spaces with 1 < p < m, Arch. Math. 105 (2015), 285-295.

In [37, Corollary 5.20] it is shown that in ¢§ the Hardy-Littlewood multilinear in-
equalities has an extra power of n in its right hand side. Therefore, a natural question
is:

e For 1 < p < m, what power of n (depending on r,m,p) will appear in the right
hand side of the Hardy—Littlewood multilinear inequalities if we replace the optimal
exponents 2mp/(mp + p — 2m) and p/(p — m) by a smaller value r?

This case (1 < p < m) was only explored for the case of Hilbert spaces (p = 2, see
[37, Corollary 5.20] and [51]) and the case p = 0o was explored in [46]. The results of this
chapter answer the remains cases of the above question (see Theorem and extends
137, Corollary 5.20] to 1 < p < m (see Theorem [2.1a) and Proposition [2.4)).

The main result of this chapter is the following:
Theorem 2.1. Let m > 2 be a positive integer.

(a) If (r,p) € ([1,2] x [2,2m))U([1, 00) X [2m, o0]), then there is a constant Hg%' . > 0
(not depending on n) such that

max{ 2mr+2mp—mpr—pr

1
n r
(‘ > |T<ej1,...,ejm>|’“) < Hplt | e BEREEEEEOL 7
J1

Jor all m-linear forms T : €} X --- x {7 — K and all positive integers n. Moreover,
the exponent max {(2mr + 2mp — mpr — pr)/2pr,0} is optimal.
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b) If (r,p) € [2,00) x (m,2m], then there is a constant HE >0 (not depending on
K7m7r?p
n) such that

<=

n p+mr—rp
( > \T(ejl,...,ejmw) < gyt e PSR 7

jl?"‘?jmzl

Jor all m-linear forms T : {7 x --- x {7 — K and all positive integers n. Moreover,
the exponent max {(p + mr — rp)/pr,0} is optimal.

Remark 2.2. The first item of the above theorem recovers [37, Corollary 5.20(i)] (just
make p = 2) and [[6, Proposition 5.1].

Proof of Theorem . Let 1 < ¢ <r < oo and E be a Banach space. We say that an
m-linear form S : E' x --- x £ — K is multiple (7; ¢)-summing if there is a constant C' > 0
such that

g1 Y gm J1yeesdm=1

|5 el

S (1) % S (m) é
< C sup oz )] -+ sup o (™)
Ly @EBp+ \ j=1 @EBp+ \ j=1
for all positive integers n.

(a) Let us consider first (r,p) € [1,2] x [2,2m). From now on T : £ x -+ x £y — K is
an m-linear form. Since

and since T is multiple (2m/(m + 1); 1)-summing (we will see in the next chapter that
from the Bohnenblust—Hille inequality it is possible to prove that all continuous m-linear

forms are multiple (2m/(m + 1); 1)-summing with constant Bg'"), we conclude that

m—+1
2m
m
p

( 2 !T(ejn---,ejm)!m“) < B T nv. (2.1)

j17'~~:jm:1

Therefore, if 1 < r < 2m/(m + 1), using the Holder inequality and (2.1]), we have

n r
( Z |T(€j17"'7€jm)|r>
jlrwjm:l

m+1 2m—rm—r
n m 2m n - T 2mr
S Z |T<€]17 ) €]m> m+1 z |1|2m—7‘m—r
jl,m,jm:l j17“‘1j7n:1
m+1

n 2m
= 2 |T<€j17 ey ejm)|m+1 (nm> amr
j17~~~,jm:1

2m—rm—r

mult o
< Bpa 7| n¥n®F

_ Bﬂrgl;gn2mr+2m2;;:mpr7pr HT“ .
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Now we consider the case 2m/(m+1) < r < 2. From the proof of [I5 Theorem 3.2(i)]
we know that, for all 2m/(m + 1) < r < 2 and all Banach spaces E, every continuous
m-linear form S : E x --- x E — K is multiple (r; 2mr/(mr + 2m — r))-summing with
constant Cgult omr . Therefore

M, r4+mr—2m

( Z ‘T(ejv“'vejm)‘?")
J1yeenfm=1
mr42m—r- M (22)

n  omr 2mr
SC}E&,# 1| ( sup |90(€j)|mr+2m_r>

r+mr—2m B * j—
PEB (epy I=1

Since 1 < 2mr/(mr +2m —1r) < 2m/(2m — 1) = (2m)" < p*, we have

mr—r+2m

mnr
( sup iW(%ﬂmngQm) = (n(n_pi*)mr@bm)mriﬁtm

SOGB(ZZ,)* j=1

2mr+2mp—mpr—pr

= n o (2.3)

and finally, from ([2.2)) and ([2.3)), we obtain

2mr4+2mp—mpr—pr

1
n s
( 3 \T(ejl,...,ejmw) <ot s, no w7

jl?"‘?jm::l 77‘+m7‘72m

Now we prove the optimality of the exponents. Suppose that the theorem is valid for
an exponent s, i.e.,

jl?"'?jm:l

1
n T
( Z ‘T(ejl’ 2 ejm)r) < H]Ii(n,%lzt,p,rns ||T|| :

Since p > 2, from the generalized Kahane—-Salem—Zygmund inequality we have

m+4+1_m
p

m —
n < CpHW nn 2

and thus, making n — oo, we obtain

s > 2mr+2mp—mpr—pr‘
— 2pr

The case (r,p) € [1,2mp/(mp + p — 2m)] X [2m, o0] is analogous. In fact, from the
Hardy—-Littlewood /Praciano-Pereira inequality we know that

mp+p—2m

n mp 2mp
( Z ’T(ejn ooy ejm)’mpip_zm) < Cﬁ%ﬁp HTH : (24)

jl:-~~7.jm:1
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Therefore, from Holder’s inequality and ([2.4]), we have

. :
( Z ’T<ej1"">ejm)r>
Il Jm=1

mp+p—2m 2mp+2mr—mpr—pr
n 2mp Zmp n 2mpr S Fmer
<X T, ) Y1
J1yeendm=1 J1yesdm=1
2mp+2mr—mpr—pr
< o, 7)) (o) ™ 5
2mp+2mr—mpr—pr
=Cgmpn 17|
(2.5)

Since p > 2m, the optimality of the exponent is obtained ipsis litteris as in the previous
case.

If (r,p) € (2mp/(mp + p — 2m), 00) X [2m, 00| we have

2mr+2mp—mpr—pr <0

2pr
and
1 mp+p—2m
n . T n 2mp 2mp
Z ’T(ejn""ejm)’ < Z ’T<€j17"'7€ )’mpﬂ) am
J1yeesim=1 J1yeesjm=1
< O, T
= o, e ),

In this case the optimality of the exponent max {(2mr + 2mp — mpr — pr)/2pr,0} is im-
mediate, since one can easily verify that no negative exponent of n is possible.

(b) Let us first consider (r,p) € [2,p/(p — m)] X (m,2m]. Define

and note that ¢ < 2m and r = ¢/(q¢ — m). Since ¢/(¢ — m) = r < p/(p — m) we have
p < q. Then m < p < ¢ < 2m. Note that

¥ _ __mr
4 = i

Since m < ¢ < 2m, by the Hardy-Littlewood/Dimant-Sevilla-Peris inequality and us-
ing [63, Section 5] we know that every continuous m-linear form on any Banach space
E is multiple (¢/(q —m);¢*)-summing with constant D'  i.e., multiple (r; WTLT)
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summing with constant Dﬂrglnlfm. So for T': £ x -+ x {7 — K we have (since ¢* < p*),

Tr—1

n
< Z |T (ejlv'“’ejm)r)
j17“‘)jm:1
mr+¥7r m

n e mr
SD%};&% ||| ( sup Y. |gp(ej)|mr+1_r>

S =

mr 7nr+1—r}7n

— DE,%,% ||T|| [(n(n_Pi*)mrﬂ»lfT) preys

ptmr—rp
= DR e T 0"

Note that if we have tried to use above an argument similar to , via Holder’s
inequality, we would obtain worse exponents. Now we prove the optimality following the
lines of [63]. Defining R : £ x -+ x (% — K by R(zM), . 2™)) = > xél) e :vg-l), from
Holder’s inequality we can easily verify that

IR|| < n'™%.
So if the theorem holds for n®, plugging the m-linear form R into the inequality we have

n% < [mult nsnl—%
- K,m,p,r
and thus, by making n — oo, we obtain

5> p—l—mr—rp'
el pr

If (r,p) € (p/(p —m),0) x (m,2m| we have

p+mr—rp < 0

pr
and
1 p—m
n S\ n _p g
Z IT(ejl""76jm)| < Z |T(€j17""6jm>|p7m
J1seejm=1 J1yejm=1
< Dt T

p+ﬂnr—rp’0
= D || T 0
In this case the optimality of the exponent max {(p + mr — rp)/pr,0} is immediate, since
one can easily verify that no negative exponent of n is possible. O

Remark 2.3. Observing the proof of Theorem[2.1 we conclude that the optimal constant

mult ; .
Hgr - satisfies:
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(Bt if (r,p) € [1,2%] x [2,2m),
Ct e if () € [ 2, 2] % [2,2m),
Hp < CRa if (r,p) € [1,00) X [2m, o0],
DR i (rp) € |2, 525] X (m.2m),
Dt if (r.p) € (25,00) x (m, 2m).
Using results of the previous chapters, we have the following estimates for the constants
Hmpr
( K.m if (r,p) € [1,73—111] X [2,2m),
(m—1)(mr+r—2m) 2m—rm . m
(JK> r (nK,m) r Zf (Tap) S (2_H’2:| X [2a2m)7
mul m(m—1) —2m
HK,mt,p,r < ((TK)2 . (nK,m)pPQ if (r,p) € [1,00) x [2m,2m> — 4m? + 2m)],
MK, m if (r,p) € [1,00) X (2m?® — 4m? + 2m, 0],
( (V2! if (r,p) € [2,00) x (m,2m],
where og = /2 and oc = 2/\/7 and
m _J_
2-2;
Ne,m = r (2 - l) ,
31;12 !
mrm = | 272 for m < 13,
j=2

m 3_1 2-25
Mo = 25500 ~ 2 [ (%) J form > 14.

=14

Now we will obtain partial answers for the cases not covered by our main theorem,
i.e., the cases (r,p) € [1,2] x [1,2) and (r,p) € (2,00) x [1,m)].

Proposition 2.4. Let m > 2 be a positive integer.

(a) If (r,p) € [1,2] x [1,2), then there is a constant Hg's' >0 such that

n r 2mr+2mp—mpr—pr
( > |T(ey, ---,ejm)lr> < Hgyl,.n 17| (2.6)
J1yedm=1
Jor all m-linear forms T : £} x --- x £ = K and all positive integers n. Moreover

the optimal exponent of n is not smaller than (2m — r)/2r.

(b) If (r,p) € (2,00) x [1,m], then there is a constant HEY >0 such that

K7m1p7T

1 2m—p+te
™

n " gyt TN if p> 2
< Z ’T(ejla'“aejm)’ > S b m—p

o gm=1 Hs, o 5| T) ifp =2
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Jor all m-linear forms T : £ x - - - x £ — K and all positive integers n and all & > 0.
Moreover the optimal exponent of n is not smaller than (2mr+2mp—mpr —pr) /2pr
and not smaller than (2m —r)/2r if 2 <p < m.

Proof. (a) The proof of (2.6) is the same of the proof of Theorem [2.1)(a). The estimate
for the bound of the optimal exponent also uses the generalized Kahane-Salem—Zygmund
inequality . Since p < 2 we have
m mu s, %
nv < CpHEW'  n*na

and thus, by making n — oo,

s > 2m—r'
— 2r

(b) Let 6 = 0if p =2 and § > 0 if p > 2. First note that every continuous m-
linear form on ¢, spaces is obviously multiple (oo;p* — §)-summing and also multiple
(2;2m/(2m — 1))-summing (this is a consequence of the Hardy-Littlewood inequality and
[63, Section 5]). Using [37, Proposition 4.3] we conclude that every continuous m-linear
form on ¢, spaces is multiple (r;mpr/(2m + mpr — mr — p + ¢))-summing for all € > 0
(and € = 0 if p = 2). Therefore, there exist H2"* > 0 such that

K7m7p7r

n s
Z |T(6j17‘“7ejm)|r
J1yeendm=1
2m—+mpr—mr—p+e

< Hp, . (o7 ) e e R )

]K7m7p7,r

2m+mpr—mr—p+e l—l

— Hpult P (g hym 7
— H |7

The bounds for the optimal exponents are obtained via the generalized Kahane—-Salem—
Zygmund inequality as in the previous cases. [

Remark 2.5. Item (b) of the Proposition[2.4| with p = 2 recovers [37, Corollary 5.20(ii)].
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Chapter

The polynomial Bohnenblust—Hille and
Hardy—Littlewood inequalities

In this chapter we present results of the paper:

[11] G. Aratjo, and D. Pellegrino, Lower bounds for the complex polynomial Hardy-
Littlewood inequality, Linear Algebra Appl. 474 (2015), 184-191.

Given a = (ayq, ..., a,) € N define |o| := ay+- - -+, and x* stands for the monomial
it xlr for x = (xq,...,2,) € K". The polynomial Bohnenblust-Hille inequality (see
[5, 32] and the references therein) ensures that, given positive integers m > 2 and n > 1,
it P is a homogeneous polynomial of degree m on {7 given by

then

> Jag|m < By, 1P| (3.1)

|a|=m
for some constant BpOl > 1 which does not depend on n (the exponent -= 2 is optimal),
where || P := supzeBm |P(2)|. The search of precise estimates of the growth of the

constants Bp is fundamental for different applications and remains an important open
problem (see [23] and the references therein).
For real scalars it was shown in [45, Theorem 2.2] that

(1.17)™ < BES, < C(e) (2 +¢)™,

where C'(g) (2+ €)™ means that given £ > 0, there is a constant C'(¢) > 0 such that
B(Iéofn < C(e)(2+¢)™ for all m. In other words, this means that for real scalars the

hypercontractivity of Bp is optimal.
For complex scalars the behavior of Bpojn is still unknown. The best information we
have thus far about BIDO are due D. Nifez-Alarcén [101] (lower bounds) and F. Bayart,
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D. Pellegrino and J.B. Seoane-Sepiilveda [23] (upper bounds)

1 \i
(1 + ) for m even;

2m—1

pol
B(C,m Z -

1\ im
(1 + 2m_1> for m odd;
B < Cle)(1+¢e)™.

The following diagram shows the evolution of the estimates of B]%f:n for complex scalars.

’ Authors H Year H Estimate ‘
Bohnenblust and Hille (jiil}\}ij?}]t) B(‘é?:n < m e ( \@) m—1

T i and Seip | (o bty | P = (1) v 62
T, | aa | Ezcouer

When replacing (7, by £} the extension of the polynomial Bohnenblust-Hille inequality
is called polynomial Hardy—Littlewood inequality and the optimal exponents are mi:%m
for 2m < p < co. More precisely, given positive integers m > 2 and n > 1, as a conse-
quence of the multilinear Hardy-Littlewood inequality (see [4],[63]), if P is a homogeneous
polynomial of degree m on £} with 2m < p < oo given by P(xy,...,7,) = Z‘M:m X",

then there is a constant C’Hzorln » > 1 such that

mp+p—2m
2mp
2mp
> laa|mwrem < O 1Pl (3.2)
|a|=m
and Cﬁ?;,p does not depend on n, where ||P|| := sup,cp,, |P(2)]. Using the generalized

Kahane-Salem-Zygmund inequality (see, for instancpe, [5]) we can verify that the
exponents mpi% are optimal for 2m < p < co. When p = oo, since mpi’;f o = TSTP
we recover the polynomial Bohnenblust—Hille inequality.

As in the multilinear case, for m < p < 2m there is also a version of the polynomial
Hardy-Littlewood inequality (see [63]): given positive integers m > 2 and n > 1, if P is

a homogeneous polynomial of degree m on £ with m < p < 2m given by P(zy,...,x,) =

Zlalzm a,Xx%, then there is a (optimal) constant D]%O:np > 1 (not depending on n) such
that

p—m
P

Y laa™7 | <D NP, (3.3)

K,m,p

|a|=m
and the exponents —2— are optimal.
p—m

In this chapter we look for upper and lower estimates for Cﬂz?;%p and D%j,lmp. Our main

contributions regarding the constants of the polynomial Hardy—Littlewood inequality can



43

be summarized in the following result (in this chapter we will only present the proof of
the items (1)(7i) and (3). For details of other results see [§]):

Theorem 3.1. Let m > 2.

(1) Let 2m < p < c0.
(_ ] . pol m2p+10'r27p767n274 16 m .
i) If K=R, then C, >2 mp 2(\/5) ;

Rzmzp -

(i) If K = C, then

pol
CC,m,p Z

m—1

2% for m even;
2 7 form odd.

(2) For2m <p < 0,

m
Cpol < Cmult m
Kym,p — ~Km,p mptp—2m )
()™ 2me

(3) Form < p < 2m,

2% for m even;
2 » for m odd.

(4) For m < p < 2m,

pol mult
DK7m7p S DK7m7p p—m )

(m!)»

Remark 3.2. Trying to find a certain pattern in the behavior of the constants of the

Bohnenblust—Hille and Hady-Littlewood inequalities, we define Bg’}n(n), Cﬂzilnvp(n) and

D%?,ln’(n) as the best (meaning smallest ) value of the constants appearing in (3.1), (3.2))
and (3.3), respectively, for n € N fized. A number of papers related to these particular
cases are being produced and we can summarize the main findings of these papers (see
19, (46, [48, [49, [78]) as follows:

ol
¢ B(IE,Z(Q) =3 %;

3 3
. Bﬁ?é@) _ (2153/3 n (2\/m)4/3)3/4’ with tg — 2\/107+9\/@+3\6/856772\/@+16;

o BY%(2) > 25525, BR%(2) > 6.83591, BR%(2) > 10.7809, BE%(2) > 19.96308,
BR%(2) > 33.36323, BE%(2) > 90.35556, BR%,(2) > (1.65171)%%°, BR%,(2) >
(1.61725)602;

(AVARAVS

e For4 <p<oo,

4p
3p—4

20 — 1
a?+(1-— af")%

Chy (2) = 2
Rop(2) nax

- p 3€)1;4
P24 (1—af)» \7
a+ (1- ap)%

+ <2a (1-— ap)%
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ol ol ol ol ol ol
o CE%4(2) = DR%,4(2) = V2, CF% 4(2) = DE% 4(2) > 2.236067, CR% 1(2) = DR 14(2) >
6.236014, CB% 15(2) = D% 1,(2) > 10.636287, CE%,,(2) = D% 1,(2) > 18.095148,
Oﬂgf’g,w( ) = Dﬂg"; 16(2) > 31.727174, Cﬂgj’fo’m@) = Dﬂg‘j{mo(z) > 91.640152.

o For2<p<4, DY, (2) =22,

3.1 Lower bounds for the complex polynomial Hardy—
Littlewood inequality
In this section we provide nontrivial lower bounds for the constants of the complex

case of the polynomial Hardy—Littlewood inequality. More precisely we prove that, for
m > 2 and 2m < p < 00,

pol
Clomp = 2%
for m even, and
pol
C(Cmp > 9"

for m odd. For instance,
V2 < CP%, < 3.1915.

Let m > 2 be an even positive integer and let p > 2m. Consider the 2-homogeneous
polynomials Q5 : 2 — C and Qs : /2, — C both given by (21, 22) = 27 — 25 + cz125. We
know from [19, [45] that

1Qa]l = (4+¢)?
If we follow the lines of [I0T] and we define the m-homogeneous polynomial @, : £;' —
C by Qum(z1, s 2m) = 23 ... 2mQa(21, 22) We obtain

1Qmll < 275 1Qull < 275 Gall = 2775 (44 ¢2)2,

where we use the obvious inequality

Qx| < [1Qall

Therefore, for m > 2 even and ¢ € R, from the polynomial Hardy—Littlewood inequality
it follows that

mp+p—2m
2mp

2mp
2+ |c| mp+p72m>
27" (4+ )

2p+4—2m mp+p—2m %
27 » — 2 mp
c > _2m—4 9
1—-2""»

it is not too difficult to prove that

V(44 2)? < ((2’"”%2”)2 + 02) :

=

It

[SIE
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le.,
_m=2 1 mp+p—2m
2 (44 @) < || (275 )|
2
: 2mp
Since 5 < 2, we know that ﬁmpﬁgm Clyand || |2 < |- Hmpir{ffzm' Therefore, for
all
2p+4—2m mp+p—2m %
2 p — 927 mp
(& > _2m—4 Y
1—-2 >

we have

27 (44 )t < || (275 )|

mp+p—2m
- 2mp

mp+p—2m

mp+p—2m

__2mp 2mp
— <2 + Cmp+p—2m> )

from which we conclude that

mp+p—2m

2mp
(24 cmmtam)

27" (4+ )

> 1.

N

3

If m > 3 is odd, since Q|| < [Qu1ll, then we have [|Qn ]| < 27" (4+c*)* and
thus we can now proceed analogously to the even case and finally conclude that for

1
2p+6—2m mp+p—2m 3
27 » — 2 mp
c> _2m—6
1-2"»

we have
mp+p—2m
__2mp 2mp
<2 -+ cmp+p—2m>
pol
Cemp > — s T > 1.
277 (44 2)z
So we have:

Proposition 3.3. Let m > 2 be a positive integer and let p > 2m. Then, for every e > 0,

1 2mp

2p+4—2m mp+p—2m 2 mp+p—2m
2 P -2 mp
2 + _2m—4 + €
1-2 P
1 2
m—2 22p+472m 2mp+p72m 2
— D —_ mp
2 P 4 + —2m—4 + €
1-2 P

mp+p—2m
2mp

T >1 if mis even
3
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and
mp+p—2m
1 2mp 2mp
2p+6~ 2m mp+p—2m 2 mp+p—2m
2 P —2 mp
2 + _2m—6 + €
1-2 P
pol . .
Comp — >1 if m is odd.

1 2
m—3 2p+6—2m mp+p—2m 2
—m=3 0" 5 9 mp
27 4+ —2m—"6 + €
1-2 p

However, we have another approach to the problem, which is surprisingly simpler than
the above approach and still seems to give best (bigger) lower bounds for the constants
of the polynomial Hardy—Littlewood inequality (even for the case m < p < 2m).

Theorem 3.4. Let m > 2 be a positive integer and let m < p < oco. Then 27 if m s

cven and 27 if m s odd are lower bounds for the constants of the complex polynomial
Hardy—Littlewood inequality.

Proof. Let m > 2 be a positive integer and let p > 2m. Consider P; : 612) — C the
2-homogeneous polynomial given by z — z;25. Observe that

1 _2
| Pl = sup  |z122| = sup |z] (1 — |2|")» =27 ».
|21 [P+]22|P=1 |z|<1

More generally, if m > 2 is even and P, is the m-homogeneous polynomial given by
Z > 21 Zm, then
[Pl <277

Therefore, from the polynomial Hardy—-Littlewood inequality we know that

mp+p—2m
2mp
E ‘aa ’ mpirgf%n
|a|=m 1 m
cr > > =27
b = [P "7

If m > 3 is odd, we define again the m-homogeneous polynomial P, given by z —

m—1

21+ Zy and since || Py|| < || Pn—1||, then we have ||P,| <27 » and thus
1 m—1
1 m—1
P B
277 p

With the same arguments used for the case 2m < p < oo, we obtain the similar
estimate (3) of Theorem [3.1| for the case m < p < 2m. O

The estimates of Theorem seems to become better when e grows (this seems to be
a clear sign that we should avoid the terms 27 and 22 in our approach). Making ¢ — oo
in Theorem [3.3 we obtain

= ‘

for m even;
Cpol
Cm

3
&

P —

NN

= ‘

for m odd,
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which are slightly worse than the estimates from Theorem [3.4]

3.2 The complex polynomial Hardy-Littlewood in-
equality: Upper estimates

In this section, let us use the following notation: Sg» denotes the unit sphere on £} if
p < 00, and Sy denotes the n-dimensional torus. More precisely: for p € (0, 00)

Sem = {z = (21,.,2,) €C": ||Z||£g = 1}7

and
Spn, =T"={z=(21,...,2:) €C": |z5] = 1} .

Let pu™ the normalized Lebesgue measure on the respective set. The following lemma is
a particular instance (1 < p = s < 2 and ¢ = 2) of the Khinchin-Steinhaus polynomial
inequalities (for polynomials homogeneous or not) and p < g.

Lemma 3.5. Let 1 < s < 2. For every m-homogeneous polynomial P(z) = Z|a|:m 0 Z*
on C" with values in C, we have

> lel| < (2) (. |P<z>|5du“<z>)i.

|lal=m

When n = 1 a result due to F.B. Weissler (see [126]) asserts that the optimal con-
stant for the general case is \/2/s. In the n-dimensional case the best constant for

m-homogeneous polynomials is (1/2/s)™ (see also [22]).

For m € [2,00] let us define po(m) as the infimum of the values of p € [2m, oo] such
that for all 1 < s < ]% there is a K, > 0 such that

p—2

2p l

> a2 < K7, (/S !P(Z)!Sdﬂ"(Z)) b (3-4)

|a|=m

for all positive integers n and all m-homogeneous polynomials P : C* — C. From Lemma
m we know that this definition makes sense, since from this lemma we know that
is valid for p = co. We conjecture that po(m) < m?. If it is true that py(m) < oo, it is
possible to prove the following new estimate for C’}é?;%p (see [§]).

Theorem 3.6. Let m € [2,00] and 1 <k <m —1. If po(m — k) < p < oo (and p = o0
if po(m — k) = o0) then, for every m-homogeneous polynomial P : €3 — C, defined by
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P(z) = )| 0j=m Gaz”, we have

mp+p—2m
2mp

2mp
E ’aa’mp-&-p—Qm

|a|=m

e (e F (N
< m— . . . mu »
- %m (m—k;)m—k ( m)! > (ﬁ) ( (C,k) H ||7

where B{c“",i“ 1s the optimal constant of the multilinear Bohnenblust—Hille inequality asso-
ciated with k-linear forms.
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Summability of multilinear operators






Chapter I

Maximal spaceability and optimal estimates
for summing multilinear operators

In this chapter we present results of the paper:

[15] G. Aratjo, and D. Pellegrino, Optimal estimates for summing multilinear operators,
arXiv:1403.6064v2 [math.FA].

If 1 <p < q < oo, we say that a continuous linear operator 7' : E — F is (q,p)-
summing if (7'(z;));2, € £,(F) whenever (7;);2; € €, (E). The class of (g, p)-summing
linear operators from E to F' will be represented by Il (E, F). An equivalent for-
mulation asserts that 7' : £ — F' is (g, p)-summing if there is a constant C' > 0 such

that Vg
(Z HT(fﬂj)Hq> < C|(=p)5ll,,

for all (z;)52, € ¢;)(E). The above inequality can also be replaced by: there is a constant
C > 0 such that

n 1/q
(Z ||T($j)||q) < Ol

for all xy,...,2, € E and all positive integers n. The infimum of all C' that satisfy the
above inequalities defines a norm, denoted by (4, (1), and (g (E, F) , m(gp) (+)) is a
Banach space.

More generally, we can define:

Definition 4.1. For 1 < py,...,p,m < o0 and % < Z;n:1 pij recall that a continuous m-
linear operator T : Fy X --- X E,, — F is absolutely (q; p1, ..., pm)-Summing if there is a

C > 0 such that

w,Pk

(Sl o) <ol

for all positive integers n and all (xg-k))?:l €Ey, k=1,..,m.
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e We represent the class of all absolutely (g;pi, ..., pm)-summing multiple operators

from E, ..., Ey, to F by 1LY ) (Er, ..., B F);
e When p; = -+ = p,, = p, we denote II}} p)(E1, iy By F) by

Hm(qp)(E]_, ,Em, F)

as

The infimum over all C' as above defines a norm on IL (B4, ..., Ep; F), which

we denote by Tas(gips,....pm) (1) (OF Tas(gp) (T) if p1 =+ = pm = p).
In 2003 Matos [86] and, independently, Bombal, Pérez-Garcia and Villanueva [34]
introduced the notion of multiple summing multilinear operators.

Definition 4.2 (Multiple summing operators [34, 86]). Let 1 < p1,...,pm < g < oo. A
bounded m-linear operator T : Ey X -+ x E,, — F is multiple (q; p1, - .., Dm)-summing if
there exists C,, > 0 such that

0o q m
1 m 1 k
( 3 HT(@Q,...,@J) ‘ )< cmHH(x§> H (4.1)
J1yeesim=1 k=1 o
E)\oo w
for every (xg ))j:1 €ty (By), k=1,....,m

e The class of all multiple (¢;p1, ..., pn)-summing operators from F; X --- X FE,, to

F" will be denoted by . )(El, ooy By ).

e When p; = -+ = py, = p we write I, p)(E1, eory Ep; F) instead of
77mzult(q;p ..... D) (Ela ) Em7 F)

The infimum over all C,, satisfying (4.1]) defines a norm in Hmult( P )(El, ooy By F)

and is denoted by Twuit(gpr,...pm) (1) (or Toult(gp) (1) f p1 = = pp = p).
Using that L (co; F) is isometrically isomorphic to £ (E) (see [62]), Bohnenblust—
Hille’s inequality can be re-written as:

Theorem 4.3 (Bohnenblust—Hille re-written [I15] (see also [37])). If m > 2 is a positive
integer and T € L(E, ..., Ey,;K), then

m41

o0 27771 2m
1 m)y | m+1
(z 1), .. ) )
j1 ..... jm=1

for every (xgk));";l elY(Ey), k=1,...,mand j=1,...,N, where Bﬁ‘j}f is the optimal

constant of the classical Bohnenblust—Hille inequality.

mu k
< By “HTHHH Vel @)

Proof. Let T € L(Ey,...,Ey,;K) and let (xgk));’ozl € lY(Ey), k =1,...,m. From [62]

Prop. 2.2.] we have the boundedness of the linear operator uy : ¢ — Ej such that

uy, (ej) = xgk) and

Y

k)N oo
el = || @) |
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for each k =1,...,m. Thus, S : ¢y X --- X ¢g = K defined by

Sy Ym) =T (ur (Y1) 5+ Um (Ym))

is a bounded m-linear operator and ||S|| < ||7||||u1]| - - - ||m||. Therefore,
m+1 m—+1
o 2m 2m S 2m 2m
1 m+1
( § : ’T <I§1)7"’7x§::)> ) - ( Z |S<€j17"‘7ejm)|m+l>
J1yeesim=1 Jiyeim=1

m m
k
< Bt < BERITI T Il = BT T || -
k=1 k=1 ’

]

In this sense the Bohnenblust—Hille theorem, ((1.1)) can be seen as the beginning of the
notion of multiple summing operators, that is, in the modern terminology, the classical
Bohnenblust-Hille inequality [32] ensures that, for all m > 2 and all Banach spaces
Ela ) Em7

LBy, B K) =107y (B B K.

2m .
'm<0—1’1

4.1 Maximal spaceability and multiple summability

In this section we are interested in estimating the size of the set of non multiple
summing (and non absolutely summing) multilinear operators. For this task we use the
notion of spaceability.

For a given Banach space F, a subset A C F is spaceable if AU {0} contains a closed
infinite-dimensional subspace V' of E (for details on spaceability and the related notion of
lineability we refer to [I8], 26], 27, [47] and the references therein). When dim V' = dim F,
A is called mazimal spaceable. From now on ¢ denotes the cardinality of the continuum.

Proposition 4.4. Let F, ..., E,, be separable Banach spaces. Then,
dim L(Ey, ..., By K) = ¢

Proof. From [36, Remark 2.5] we know that dim L(FE1, ..., E,,; K) > c.
Since Fjy, ..., B, are separable, let w; C Ej, j = 1,...,m, be a countable, dense subset
of E; and let v be a basis of L(E1, ..., E,; K). Define

g . ,y _) Ku}lX---me
T = T|oscswys

with K«1**“m the set of all functions from w; X - -+ X w,, to K. Observe that g injective.
Indeed, let S, T € « such that ¢(S) = g(7), i.e.,

S’wlx---xwm = T‘wl X+ X Wy *

Given x € Fy x --- X E,,, since w; X --+ X w,, is dense on F; X --- x FE,,, there exist
()22, C wy X +++ X Wy, with lim,,_, x, = z. Since S and T are continuous, it follows
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that
S(x)=9S(lim z,) = lim S(z,) = lim T'(z,) =T (lim z,) =T (x).

n—oo n—0o0 n—oo n—oo

Thus S =T and hence g is injective, as required.
Therefore,

dim L(Ey, ..., Ep; K) = card(y) < card(K* > **m) = card(K") = ¢,
where K is the set of all functions from N to K. O]
Corollary 4.5. dim(L(™/,;K)) =
Before we introduce the next result, it is important to note that:

Remark 4.6. Let1 < s <r < oo and let Fy, ..., E,,, F' be Banach spaces with dim E; < oo
forall j =1,...,m. Then

LB, oo By F) = T2y ) (B, ooy By F).

In fact, since s <r we have ly C 4, and || - ||, < | - ||ls- Since E; has finite dimension
for all 5 = 1,...,m, it follows that Ew( i) = Us(E;) for all j = 1,...,m. Thus, consider

T e L(Ey,....En F), neN and (z; ))Jk LELY(ER), k=1,....,m, cmd observe that
1
(1) m\ || _ (1) (m)
( 7 (a,..o ) ) o] [t
Ji jm=1

~~~~~~
>’T'L
Ji Jm=1 s

-----

w =

1
m|*) _ =1L S [
'“%H) —HT“<Z‘% "'Z‘%m )
.jl_ ]mzl
(k
—IITHHH Wy —HTHHH

ie., T € 1T i S)(El, iy B F).

S ’

Theorem 4.7. Let m > 1, p € [2,00). If 1 < s < p* and

2ms
s+ 2m — ms

then

LK) ST (M, K)

mult(r;s)

18 mazximal spaceable.

Proof. We consider the case of complex scalars. The case of real scalars is obtained
from the complex case via a standard complexification argument (see [37]). An extended
version of the Kahane—Salem—Zygmund inequality (see and [5, Lemma 6.1]) asserts



Chapter 4. Mazimal spaceability and multiple summability 55

that, if m,n > 1 and p € [2, 00|, there exists a m-linear map A, : £ x - x {3 — K of
the form

N EORN Z 240 (4.3)

such that

s [3

1A, < Cpun ™ =%

for certain constant C, > 0.

Let
p+s—ps

S
Observe that s < p* implies 5 > 0. From the previous remark (Remark we have

- e, €im ei\"
(> n(%s) )
G1yeenrd jl Jm Jj=1

Bi=

> < Tmult(r;s) (An)

""" Jm=1 w,s
ie.,
1 m
n 1 T\ r @j n
Z 3 .A < Tmult(r;s) (An) =B (44)
J1se-Jm=1 J1-e-Jm J J=1 w,s
Let us investigate separately the both sides of (4.4]). On the one hand,
1 1
n 1 T T r
(> ) - (sl
e i Rl (4.5)

(e 505

=171 jm=1Jm j=

1 1
On the other hand, for n > 2, since +— + — = 1, we obtain

= p_
Bs s
1 1
S s s
= Ssup gO -
> pEB o (Z‘ ’ BS)

Bs\ "\’
) ) =(2)) (49

Il
VR
—_
+
]
=)
=y
SHN
8
m
=
|
\.)—‘
=,
—
~_
@
A
N
[a—y
+
»—\3
SN
QL
)
N———
»
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Hence, replacing (4.5 and - in ., we have

"o 0 N
(Z jT’B) < Tmult(r;s) (An) (1 + 1Og n) g

J=1

n

and consequently (si

n
Z Z n71"5 = nl_”ﬂ)
=1

(n'7%) " < Taa(ris) (An) (1 +logn)™.

Since ||A,] < C’manH_%, we have
Tmult(r;s) (An) n%_(%%ﬂ o n%J“%_%_%
| An|| (1+log n)mﬁ Cmanﬂf% Cp (1 + log n)rﬂ'

Using that r < S+22n’?fms we get 4 B — 7 — 1> 0. Therefore, by making n — oo, it
follows that

. Tmult(r;s) (An)
lim —————— = o0. (4.7)
nooo A

Using the above limit, let us prove that I ( (,;K) is not closed in £ (™,;K). 1

mati(rs) (" lp3 K) is closed in £ ("4; K). Then
I () ("l K) | - H) is Banach space and since || - || < Tmug(rs)(-) (see Proposition
p-3)

mult(r;s)
fact, suppose (contrary to our claim) that 1"

we conclude that

id : ( mult(r;s) ( 619; K) 77Tmult(r‘;5)(')> ( zult (r33) (mfpa K) H ) H)

is continuous. Thus by Open Mapping Theorem (see [43, Corollary 2.7]) we conclude
that id~" is also continuous and thus there exists C' > 0 such that s () < C| - I,
contrary to (4.7)).

Therefore, from [67, Theorem 5.6 and its reformulation] (see also [80]) we conclude
that £ (",; K) ~ I ?,; K) is spaceable.

It remains to prove the maximal spaceability. From Corollary we know that
dim (L£("™¢,; K)) = ¢. Thus, if

mult(r;s) (

VS (L(Mp; K) NI ey (M3 K)) U {0}

is a closed infinite-dimensional subspace of £(™/,;K), we have dim(V') < ¢. Since V is
a Banach space, we also have dim(V') > ¢ (see [36, Remark 2.5]). Thus, by the Cantor-
Bernstein-Schroeder Theorem, it follows that dim(V') = ¢ and the proof is done. O]

Remark 4.8. Note that it was not necessary to suppose the Continuum Hypothesis. In
fact, for instance the proof given in [36, Remark 2.5] of the fact that the dimension of
every infinite-dimensional Banach space is, at least, ¢ does not depends on the Continuum
Hypothesis.
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4.2 Some consequences

Here we show some consequences of the results of the previous section. For instance,
we observe a new optimality component of the Bohnenblust—Hille inequality: the term 1

from the pair ( 2’]:1, 1) is also optimal.

The following result is a simple consequence of Theorem [4.7]

Corollary 4.9. Let m > 2 and r € [ 2&,2} Then

2mr

sup {S : mfp’K) Hmult(rs ( ép’K)} < m

fora112§p<2L

r+mr—2m’

Proof. Since 2t <1 < 2 < 2m, it follows that 1 < # and 2 < H;% Note
that
2mr
s§> —
mr+2m—r
implies

2ms
r< —m—mm.
s+ 2m —ms

Therefore, for 2 < p < L’"m, from Theorem we know that

r+mr—2

LK)~ (7 K)

mult(r;s)

is spaceable for all mQL < s < p* (note that p < er implies p* > —27 ) In

r4+2m—r r4+mr—2 mr+2m—r

particular, for 2 < p <

2mr
r+mr—2m’

" . . 2mr
sup {s P L(Ml; K) = T rgrss) ( ng)} = mr+om—r

]

This corollary, together with our main result, ensure that, for r € [ 2T1, 2] and 2 <
< 2mr
p r+mr—2m’

2mr

sup {s: L(™(,;K) = (" K)} =

When p = 2 the expression above recovers the optimality of [37, Theorem 5.14] in the
case of m-linear operators on £y X - -+ X £5.
In 2010 G. Botelho, C. Michels and D. Pellegrino [37] have shown that for m > 1 and

Banach spaces Ey, ..., E,, of cotype 2,

LB, Bt K) =17 oy (B Bt K)

and for Banach spaces of cotype k£ > 2,

LB, o Bt K) =100 i (B B K)

’km—1

for all sufficiently small € > 0.
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We now remark that it is not necessary to make any assumptions on the Banach spaces
Ey, ..., E, and 22m holds in all cases. Given k > 2, in [I10, page 194] it is said that it is

not known if s = kﬁ@ml is attained or not in
km
sup{s : L(E1, ..., En; K) =TI 0.6 (B, -y B K) for all Ej of cotype k} > k T
m —_—

The fact that 5 ”11 can replace kk’ﬁl in all cases ensures that s = kfn"jl is not attained

and thus improves the estimate of [I10, Corollary 3.1, which can be improved to

sup{s : L(E\,..., By K) = I 2.6) (B1s -, B K) for all Ej of cotype k}
2m 2km
2m — 1" 2km+k — 2m

if k> 2 and m > k is a positive integer.

More precisely we prove the following more general result. Let us remark that part (i)
of the theorem above can be also inferred from [4, [63], although it is not explicitly written
in the aforementioned papers:

Theorem 4.10. Let m > 2 and let r € [ oo) Then the optimal s such that

+1
L(E1, B K) =17 4 (By, oy B K)

mult(r;s)

for all Banach spaces FEn, ..., E,, is:

(i) 20— ifr e [ 2% 2];

mr+2m—r m—+17

(i) = if r € (2,00).

Proof. (i) For ¢ > 1, let X, = ¢, and let us define X, = ¢;. Let

o 2mr
I — w—
Since r € [ H,Q} we have that ¢ € [2m, oco|. Since
m 1 2m
— <= and r=—s-,
q — 2 m+1— =

q

from the multilinear Hardy—Littlewood inequality (see, for example, [, [73], [118]) there is
a constant C' > 1 such that

( > IA(eju---,ejm)!’) <Al
J

.17-'“7jm:1

for all continuous m-linear operators A : X, x --- x X, - K. Let T' € L (E1, ..., E,; K)
and (ng))]oil € (y.(Eg), k = 1,..,m. Now we use a standard argument (see [4]) to lift
the result from X, to arbitrary Banach spaces. From [62, Proposition 2.2] we know that
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exist a continuous linear operator uy : X, — Ej so that ug(e;,) ==

k)yoo
el = ()32

w,q*

for all k& = 1,...,m. Therefore, S : X, x --- x X, — K defined by S(y1, ..., Ym) =
T (u1(¥1), -y Um(Ym)) is m-linear, continuous and

k) oo
181 < 170 T rualt = T [ =832
k=1 k=1

Hence

1
" r T m . -
( ‘T( 2! ,...,x§m>)\ ) < C||T||H”(a:§ ))FlH .
J1yeeerim= k=1 Wi

.....

2mr
mr+2m—r’

L(Ey,..,EpK) =17 ey (B s B K) -

mult( ‘mr4+2m—r

the last inequality proves that, for all m > 2 and r € [ 2m 2}

. .
and, since ¢* = oD

. . . 2m
§OW let us prove the optimality. From what we have just proved, for r € [ +1,2},
ave

Um,r
=sup{s: L(E, ..., En; K) = I te(ris) (B, -y B3 K) for all Banach spaces E;}
2mr

T mr+2m-—r

From Corollary we have, for 2 < p < —2mr

r+mr—22m’

. . . 2mr
sup {S . E( KP,K) Hmult (r3s) ( gl”K)} — m

Therefore,

o 2mr
Up,y < sup {s: L(",;K) = I ey (" pK)} < mr+2m—r

2mr

and we conclude that Uy, , = Pt el

mnr

(1) Given r > 2 consider m < p < 2m such that r = p . In this case, p = ™ and
. From [63] we know that

p = mr+1

2oy (B, ooy B K) = L(Ey .., B K) (4.8)

for all Banach spaces E, ..., E,,, i.e.,

m .__mr )(E17,Em,K) :L(E17,Em,K)

mult(r,mr+1_T
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for all Banach spaces Ej, ..., E,,. Also, for E; = ¢, for all j we know that

Zult( L ;p*)(épa ,“’Ep; K) = ‘C(épa 7€p7K) (49)

p—m

is optimal, i.e., # cannot be improved. If s > p* let ¢* = s and then ¢ < p (we can

always suppose s close to p* and thus m < ¢ < 2m). From (4.8)) we have
H’rlgult(q_im;q*)(Eh sy Em; K) - L(El, ceey Em; K)

and from (4.9) in the case of ¢, instead of ¢,, we have

gult(q_qm;q*)(&b Xy g‘b K) = E(gfb XS g(IJ K)
and q_im is optimal. Since q_im > p_Lm we conclude that

T,ﬁult( pm;q*)(éq, by K) # L(Ly, ..., L K),

p—

ie.,

;s)(‘gq; 7‘€Q7K> 7& E(&h 76(]’K)

m
mult(

P
p—m

[
The following graph (Figure illustrates for which (r, s) € [1,00) x [1,7] we have

,C(El,,Em,K) =1I" )(El,,Em,K>

mult(r;s

3 p
P
y
P
P
P
P
p
y
P
p
P
P
p
y
2 — -7
p
p
p
y
P
P
p
p
P
p
P
P
2m -
et (i B ot B O o O O R i
2m—1 P o
p o~
177,,,,,,,,,,,4 ,,,,,, - I
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
. | | | \
O 1 2m 2 3
m+1
non coincidence — coincidence

Figure 4.1: Areas of coincidence for II} .. (E1, ..., Epn; K), (r,s) € [1,00) x [1,7].

The table below details the results of coincidence and non coincidence in the “bound-
aries” of Figure We can clearly see that the only case that remains open is the case
(r;s) with r > 2 and 522 < 5 < 2~

2m—1 — mr+1-—-r"
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’ r>1 H s=r H non coincidence ‘
’ 1<r< 77%_-1—1 H s = H non coincidence ‘
’ 73—111 <r<2 H s = mri’;;# coincidence ‘
’ r> nf—fl H s = H coincidence ‘
’ r>2 H §= i H coincidence ‘

4.3 Multiple (7; s)-summing forms in ¢y and /., spaces

From standard localization procedures, coincidence results for ¢y and /., are the same;
so we will restrict our attention to ¢y. It is well known that Hmult(T 9 (Meo; K) = L (Meo; K)
whenever r > s > 2 (see [37]). When s = 1, as a consequence of the Bohnenblust—Hille
inequality, we also know that the equality holds if and only if s > 2 . The next result
encompasses essentially all possible cases:

Proposition 4.11. If s € [1,00) then

inf {7 : i) (Mco; K) = L ("eo; K)} =

Proof. The case r > s > 2 is straight forward (see [37, Corollary 4.10]). The Bohnenblust—

Hille inequality assures that when s = 1 the best choice for r is % So, it is obvious

that for 1 < s < 2m the best value for r is not smaller than —=.. More precisely,

H?nlult(rs ( Co; )# ‘C( Co; )

whenever (r,s) € [1, nf—Tl) X [1, n%_iﬂ and r > s. For linear operators a deep result due
to Maurey and Pisier (see [62]) alerts us that the notions of absolutely (r;1)-summing
operators and (r; s)-summing operators coincide when s < r. An adaptation of this result
to multiple summing operators (see [116, Theorem 3.16] or [37, Lemma 5.2]) combined

with the coincidence result for (r;s) = ( 2m 1) tells us that we also have coincidences for

m+1
(m;5) for all 1 < s < 27 The remaining case (r;s) with 2% < s < 2 follows from an
interpolation procedure in the lines of [37]. More precisely, glven =M< r<2and 0 <
0 < r(279572 where § = =2 consider € = nf’fl — 2(21799()7,( ) Slnce 1 < ——6 < m_+1’

. 2m

we know that £(™cp; K) = II™ (22 )(mco, K). Since L(™c; K) = H7nn1ult(2;2)( co; K)

m+1'm+1
and
1 6 N 1-6 q 1 0 N 1-6
S =51 Tm an =5t o
T 2 Py T — 5 2 el €
by interpolation we conclude £(™co; K) = II7 (.5 (" co; K). O

The following graph (Figure illustrates for which (r, s) € [1,00) x [1,r] we have

L(Mcy; K) =IIm 1iirey (Meo; K

mult(r;s)
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3 =
e p
2m | ____
m+1 /4‘
A l
/// [
L o |
| |
| |
| |
| |
| |
l l
0 \ | \ |
0 1 2m 2 3
m+1
non coincidence ; coincidence
3 . 3 3 m m .
Figure 4.2: Areas of coincidence for II7 . ("co; K), (r, s) € [1,00) x [1,7].

The table below details the results of coincidence and non coincidence in the “bound-

aries” of Figure [1.2]

’ 1<r< Tfl—Tl H s=1 H non coincidence ‘
’ r= nf—fl H 1<s< % H coincidence ‘
’ r> 7721—;”1 H s=1 H coincidence ‘
’ 1<r< W2L_+1 H s = H non coincidence ‘
’ % <r<? H s=r H unknown ‘
’ r>2 H s=r H coincidence ‘

We can see that the only case that remains open is the case (r;s) with 7721—3’:1 <r<?2
and s =r.

4.4 Absolutely summing multilinear operators

In this section we investigate the optimality of coincidence results within the framework
of absolutely summing multilinear operators and, as consequence, we observe that the
Defant—Voigt theorem (first stated and proved in [7, Theorem 3.10]; see also, e.g., [20,
Theorem 3], for complex scalars, or [39, Corollary 3.2]) is optimal.

Theorem 4.12 (Defant—Voigt). For all Banach spaces Ey, ..., E,,
Hg;(l;l)(Ela cery Em; K) = E(El, ey Em; K)

Combining the Defant—Voigt Theorem and a canonical inclusion theorem (see [42, 87])

we conclude that, for r,s > 1 and s < —2— we have
mr+1—r

HZ;(T;S)(Eh ceey Em; K) = E(Eh ceey Em; K)
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for all B4, ..., E,,.

From [128, Proposition 1] it is possible to prove that for » > 1 and —~— <t <r,

mr+

aS(t,mT+1 T)<E17 ) Em’K) 7é L(Eh EE) EmaK)

for some choices of 1, ..., E,,. In fact (repeating an argument used in the proof of Theorem
, given r > 1, consider p > m such that Lm = r and observe that in this case

mr
mr+1—r

= p* and thus we just need to prove that for all p <t< -

m?

7 oy (B, ooy B3 K) # LB .o, B K).

From [128, Proposition 1] we know that if p > m and %* <t< #, then there is a
continuous m-linear form ¢ such that

gé Has (t;p* )(Eb s EmaK)a

le.,

Hzg(t;p*)(Ela ceay Em; K) 7& ﬁ(El, ceey Em; K)

All these pieces of information provide Figure , which illustrates for which (r,s) €
[1,00) x [1, mr] we have

L(By, s By K) = 12 (Br ey B K.

EERSSRT
/ j,
1 I I I I g o | s
| |
| |
| |
| |
| |
| |
| |
| |
0 \ \ \ |
0 1 1 2 3
m
non coincidence — coincidence

Figure 4.3: Areas of coincidence for IL, o (E1, ..., En; K), (1, s) € [1,00) x [1,mr].

The table below details the results of coincidence and non coincidence in the “bound-
aries” of Figure . The only possible open situation is the case (r;s) with s = 1 and
r < 1, which we answer in the next lines.
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]%§r<1H s=1 H not known ‘
’ r> % H s =mr H non coincidence ‘
’ r>1 H 5 = H coincidence ‘
’ r>1 H §= coincidence ‘

Proposition 4.13. The Defant—Voigt Theorem is optimal. More precisely if m > 1 is a
positive integer,

s L(Ey,....,En;K) = H;’;(T;l)(El,...,Em;K) forall | ]
AT infinite-dimentional Banach spaces E; -

Proof. The equality holds for » = 1; this is the so called Defant—Voigt theorem. It remains
to prove that the equality does not hold for » < 1. This is simple; we just need to choose
E; = ¢ for all j and suppose that

L(Ey, ..., Epn; K) = gy (B, -, By K). (4.10)
For all positive integers n, consider the m-linear forms
T,:co X - Xcg—K

defined by
To(zW, ..., 2™ = ny) . $§m)
j=1

Then it is plain that ||7,| = n, and from (4.10) there is a C' > 1 such that

(Z ITn(ejw-wej)IT) < CIT T sup > leley)| = Cn,
j=1

k=1 P€BE; 1
i.e., n'/" < Cn and thus r > 1. O

This simple proposition ensures that the zone defined by » < 1 and s = 1 in the Figure
is a non coincidence zone,i.e., the Defant—Voigt theorem is optimal. Therefore, we can
make a new table for the results of coincidence and non coincidence in the “boundaries”
of Figure [4.3}

’ % <r<l1 H 5= H non coincidence ‘
’ r> % H s =mr H non coincidence ‘
’ r>1 H s = H coincidence ‘
’ r>1 H s = coincidence ‘




Chapter

A unified theory and consequences

In this chapter we present results of the paper:

[2] N. Albuquerque, G. Aratjo, D. Nunez-Alarcén, D. Pellegrino, and P. Rueda, Summa-
bility of multilinear operators: a unified theory and consequences, arXiv:1409.6769
[math.FA].

5.1 Multiple summing operators with multiple expo-
nents

For p := (p1,...,pm) € [1,4+00)™, we shall consider the space

lp(E) i= Ly, (yy (- (6, (E)) .. )),

(e 9]

namely, a vector matrix (zi,..4,,);. ;. _1 € {p(£) if, and only if,

Pm—1 oo p1

pry P1
= Z Z (| < +o0.
p(E)

i1=1 im=1

77777

When E = K, we simply write ¢,. The following definition seems natural:

Definition 5.1. Let p,q € [1,+00)™. A multilinear operator T : Ey X -+ X E,, — F is
multiple (g1, ..., Gm;P1,- -, Pm)-summing if there ezist a constant C' > 0 such that

1
q 1
9m—1 @ q1

q2
am \ ™ m .
F) SCHH(x§ ))jzl
k=1

WPk

()

J11

for all (x; (k) )32, € Ly (Ey). We represent the class of all multiple (g1, - - ., Gm;P1; - - - Pm)-

summing opemtors by Hmult( ,,,,, GriPLreeesPr) (Bry.oo B F).
Of course, when ¢ = --- = q,, = ¢, then
gult(ql ..... QmiPl s )(E177Em7F) HZult(qpl ..... )(E177Em7F)
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As it happens with absolutely and multiple summing operators, the following result
characterizes the multiple (qi, ..., ¢n;P1,- - -, Pm)-Summing operators.

Proposition 5.2. Let T : Ey; X --- X E,, — F be a continuous multilinear operator and
p,q € [1,+00)™. The following are equivalent:

(1) T is multiple (q1,- - ., Qm;D1s - - -, Pm)-SUMMINgG;

[e.e]

(2) <T(:v(l) e x(.m))> ' € Uy (F) whenever (z k));?‘;l €ty (E).

(
Ji1? 7 Im J

(8) There exist a constant C' > 0 such that

)

., . kE)\n w
for all positive integer n and all (xg ))j:1 €ty (Ey).

Im—1 o a1

n n = m
) m qm am k n
k=1

J1=1 Jm=1

WPk

Proof. By definition, it follows that (1) = (2). Let us prove now that (2) = (1). Sup-
posing (2), we can define the m-linear operator

T o (0 (B) % x (2 (By) — (oF) )
((a;(-l))oo ...,(;c(m))oo) o (T(:c(l). x“”)))% . '

Jj /j=D J Jj=1 J1 07 Y im

Observe that 7 is a continuous m-linear operator. In fact, let ((xﬁ));‘;l);’;l C 4y (Ey),
k=1,...,m, such that

k oo k o : w
()52 = ()32 in 6, (Ex) (5.2)
and
T~ 1) Yoo m) \oo o :
T (@50 @)% 1) = W) 10 (). (5.3)
From ((5.2]) we have that for every k € {1,...,m}, given ¢ > 0, there exist N € N which
verify
1
s k k Pk E
s> N = sup Z‘(p(x;’s)—x;)) < e.
$€Be; \ j=1
So .
P
s> N = Z ‘gp(méks) - xgk))) " < e for all ¢ € By and all k € {1,...,m}
j=1
and thus

58 J

‘gp(x(k) - x(k))’ < efor all ¢ € Bg: and all {j,k} € N x {1,...,m}.
Then, from the Hahn—Banach theorem we conclude that

go(xgks) — x(k)) <eforall {j,k} € Nx{1,...,m},

SZN:>‘ ;

o]

= Sup
Ey, (pEBEZ
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ie., xycs) — xgk) in Ey, for all j € N and all £ € {1,...,m}. Since T is a continuous

multilinear operator, it follows that

T (x(l) ™ > — T (x(l) ...,x(-m)> in F for all fixed jq, ..., jx € N.

J1,87 77 Y im,s J1? Jm

From (5.3, given € > 0, there exist M € N such that

-~ 1) \oo m) \oo o0
s> M= HT <($§‘1?s)11:1> o0 <x§'m,)s)jm=1> = Wit i) im=1 <6

Lo(ry

from which we can obtain that, for s > M,

(1) (m)
HT (xth, e ijrLys) - yjl:"wjﬂl

(F < e for all fixed jy, ..., jx € N.

We deduce from the uniqueness of the limit that T <:c§-i), ,xﬁ?) = Yj,,..jm fOU every

,j17 7jk € N. Thus

T (<I§1?5)j1:17 Tt (x§m7)5>]m:1> = (T <x§1?87 Y Igm?8)> = (yjl,n-,jm)jl,...,jm:l?

jl:"'mjmzl

and then, from the closed graph theorem, we obtain that T is a continuous m-linear
operator.

Thus, there is C' > 0 such that

(1) m)\ ™
H<T (20l )Y
.]17"'7]7'1_1 Eq(F)

7 1 m
= |7 (@ @52

s

Jj /j=1

Lo(r)

w,p1 w,Pm

(1) = (3). Fixn € Nand let (z{")7_, € By, ... (a/"™)7, € B,. Then (z{")

j=1 i =1 i Ji=1 T
(xgk),a;gk), ...,x;k),0,0, ..) €4y (Ey) for every k € {1,...,m}. Thus, using (1), we get

(1) m\\"
H(T (:zz:j1 ey g )) .
]17~~'7Jm—1 Eq(F

_ (1) m)\ ™
= H<T (le yeey &g )) -
J1yee dm=— Kq(F

|

7=1
w,p1 w,Pm
— (]H (Dyn H (m)yn
(x] )j—l w1 (IJ )j—l wpm
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(3) = (1). Consider ("), € 0¥ (E1), ..., (z{")2, € €% (E,,). Therefore

1 m
H <T(a:§1), ...,:L‘;m))>

150 Jm=1
J1seIm Kq(F

1 m n
— sup H (T({E;l), e $§-m)> )jl,..,,jmzl

Lyr

1
<capleal,, .,
=Ca >r1H ).,
w,p1 W,Pm

O

It is not to difficult to prove that I, .~ ,pm)(Eb ..., Epn; F) is a subspace
of L(Ey,...,E,; F) and the infimum of the constants satisfying the above definition

(D 1 1 ? i'e"
J l w,Pk

1 m &0
H T(95§'1)a b ))>

I ) G eiim=1

inf ¢ C >0; £q(

for all (xgk))é”;l €y ()
(B4, ..., Ey; F), which will be denoted by

m
defines a norm in Hmult(qh @M P15 Pm)

Tmult(q1,....gmiP1,--»Pm) (T)

Proposition 5.3. Let p,q € [1,+o00)™. If T € I} ;0 0 (Er, ..o Egi F), then

||T||£(E1,-~~7Em§F) < 7Tmult(m,v--,qm;p1,---,pm)(T)-

Proof. Consider z; € Bg,, j = 1,...,m, and define (z Ej))fol = (z;,0,...). It is clear that

(z 53))1 1 eﬁw( ;) for every j =1, ..., m. Therefore, for T II} 0 b m)(Ela-"aEm;F)a
IT (s ) 1
SR TA "
ol D31 B D) (4 C Rl
< Tmult(g1,eeesgimp1, pm)(T>HH(‘TZ(]));)iI )
. w,p;
J=1 N
SIEONAN
:Wmult(ql,...,qm;pl,...,pm H sup Z‘(P(:Cz )
i= 19€8er \i=1
:7Tmu1t(q1,...,qm;pl,...,pm)(T)H sSup |90(95J)|
] 1506BE*

= Trnult (g1, gmip1,e o) H 1251l £, = Tonutt(a,gmip,eoom) (T)-
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By means of taking the supremum, the result follows. O
Given T € H?;L\,-..,qm;m,-..,pm)(El’ ..oy By F), we have defined in (5.1) the continuous

m-linear operator 7'. Furthermore, let us prove now that

1T = ﬂ-mu“i(‘h,~~~7Qm§p1:-~~7pm)(T>' (5.4)

In fact, first note that

1 m e
H (T(mgl), ...,x§m))>

j17'~~7jm:1

Lq(r)

A~

~ P ()5 )

ZC1(F)
R .
<ITITT |z

k=1 W,Pk

that 1S, Tumult(qr,...gmip1,..pm) (1) < 7. On the other hand, we have

- - 1 o0 m)\ oo
17 = s HT(@ N2, (3 >)j:1)(
(a ))}?‘;ﬁBegfk(Ek)
= sup H(T(a:ﬁ),...,xg.:))) -
(m§k))§‘;1€B£ng(Ek) Ihoredm ba(r)
k) oo

= ﬂ'mult(m,---,qm;m,---,pm)(T)’

which proves (5.4)).

We can naturally define the continuous operator

§:Hm

mult(q1,...,qgm;P1,-,Pm )

T — T

(Br, .. B F) = L((BY), ... 08 (En);lq(F))

Pm

Y

which, due to equation (5.4)), is an isometry. These facts allow us to prove the following:

Theorem 5.4. Let p,q € [1,+00)™. Then

( gult(ql,...,qm;pl,...,pm)(E17 cee 7Em7 F)’ Tmult(q1,-..,Gm;p1,--, pm)())

1s a Banach space.

Proof. Let (T;)72, be a Cauchy sequence in IIfy ~ (Ex, ..., Ep; F). Since || - || <

T (gt rsgmipropm) () (PTOpOSition , it follows that (7)), is also a Cauchy sequence in
L(Ey,...,Ey; F). Thus, consider T € L(FE, ..., E,; F') such that

T; — T in L(E,..., Ep; F).



70 Chapter 5. A unified theory and consequences

Let us prove that T € I}~ \(E1, ..., B F). In fact, let (x§ ))] , C O (Ey), k=
1,...,m. It is enough to prove that (T( g), . xg;")));’f 7777 =1 € Lq(F). Since 0 is an isome-

try, (i)‘;‘;l is a Cauchy sequence in L(€)) (E1), ..., £, (Ep); lq(F)), which is a Banach space
because (q(F') is a Banach space. Thus, there exist S € L((y (E1),.... 4 (En);lq(F))
such that R

Ty — S in L(0° (Ey), . 2 (Ep); (q(F)).

Therefere, if we consider Py, g, : {q(F) — F the continuous linear operator given by

seeJm

and € > 0 a positive real number, there exist a positive integer N such that
1)\ oo m)\ oo 1 m
P (S5 (@2 2)) = TGl

S Hpkl ..... km (T}((JZ’E )>j1 1y 0 (*7:5::))?2_1))
1 m
..... S((@§) )y e (@0 )|,

1 mN oo 1 m
+|P... km( (@5 5 2)) = T o)

= [[Pes..n ( (@) (@) )
= S(@ D)5 @) |

1 ™m)\\co 1 m
+ HPk1 ..... km, ((T( 51)7‘ ‘,l’gm)))jl ..... jm:1> - T('rl(cl) xém))H

T, o @)

F

|
s
3
/\

J1 .7171’ Jm

— S((alyzy, e (™))

J1 Jm /jm=1

,,,,, e |l

tq(F)

1 m m
Ty(af), o afl) = T, )|

F
< CHPkl

<€

el Ty = S|+ CIT; = T

.....

for every j > N. Then

Pryroion (S((@D)2 o (22 L)) = T,y 2™

Jj1 /j1=1 Jm /Jm=1

for all k4, ..., k,, € N, and consequently

Sy, (@M )y = (1), e (5.5)

J1 Jm ]1 ’ 7 Im

This proves that (T'(z\", ..., z{™))®  _ € (4(F), as required.

Ji 7 Im

By definition we have

T((@)y, o @) = (T, . 2l

J1 Jm /Jm=1

Replacing the above expression in (5.5) we conclude that T =5. Thus, given € > 0, it
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follows from ([5.4)) that for sufficiently large j
Tonult(q eosgmipr,epe) (L3 — 1) = [T = TN = [[T; = T = [[T; = S| <,
that is,
T; — T in I}

and this proves that (Hzl,.‘.,qm;pl,...,pm)(El’ ooy By F) Mottt (g s gmiprop) () 18 @ Banach

space. ]

Eb ceey Ema F>7

1,~~-,Qm§P1u~~-,Pm)(

Using that
o\l # 0 (5.6)

if 1 <p<q< oo, let us prove the following result:
Proposition 5.5. If ¢; < p; for some j € {1,...,m}, then

(Er,...,En; F)={0}.

m
mult(q1,...,qm;P1,--,Pm)

Proof. Since q; < pj, we know from (j.6) that there is a sequence (a;)i2; € £, \ £,,. Let
z; € E;\ {0}. Then for all p € £ we have

[e.@] 00 .
>l i) < 3 el ol llzsls = il ;12 el < oo,
=1 =1 i=1

Le., (az;)2y € €, (Ej). Let us suppose, by contradiction, that there exist

T ey (B, -y By F) \ {0}

(q15-@m;P15-,Pm)

Then, we can take z, € Ei \ {0}, k € {1,...,m} \ {j}, such that T'(z,...,x,,) # 0. For
each k € {1,...,m} \ {j} let us consider (:L‘z(k))fil = (2,0, ...). Since (ZL‘(-k))?il € ly ()

7

for every k € {1,....,m} \ {j} and (ayz;)32; € £} (Ej;), the Proposition 5.2 ensures that

H(T(x(l) oz g 20T ...,m(m))>

i1 0 i 0 Y Tj41 im ) )
11 4oyt =1

ba(r)
m
k
<™ | i)z,
k—=1 W,Pk
ki

However,

i1 0 1j41 ) Tm . .
it 11 5eeytm =1

H<T(x(1) 2T g G m’ww))
j—1 J

Ly(r)
1
a5

()
— § : 45
= HT(xla-~-7xjfluc(ijxj7xj+l7"'7xm)H

ij=1

= ||T(z1, ..., 2| <Z|a,~|qj> ,

1=1
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from where we can conclude

1

171, )] (Z\ai\%) <c | I] ||z
=1 k=1
k#j

Therefore, Y7, |a;,|¥ < oo, which is a contradiction since (a;)32; € €,, \ £, O

Using the generalized Bohnenblust-Hille inequality (Theorem together with the
fact that L(cp, E) and ¢}'(E) are isometrically isomorphic (see [62, Proposition 2.2]), it is
possible to prove the following result (recall the notation of the constants Bﬂrg‘;}f (L) in

Theorem [1.1)). The proof is similar to the proof of Theorem [£.3]and we omit it.

Proposition 5.6. If q1,...,q, € [1,2]| are such that

1 1 m+ 1
J— + e _l_ PR S ,
q1 dm 2
then
1
Gm—1 =\ @
) qm am
> (- Z!T(hw-a o)
Jj1i=1 Jm=1
mult k
< B 7 7Qm ||HH :1le’
for all m-linear forms T : Ey X --- X E,, — K and all sequences (x ;k))] L € UV (Ey),
k=1,...,m

In other words, if ¢1,...,qn € [1,2] are such that q% + -4+ qL < mT“ we have the
following coincidence result:

- a0 (B By K) = L(By, . B K)

mlﬂt(qlv“':qﬂhl -----

With the same idea than in the proof of Proposition (but now using L(co, E) =
(Y(E) and L({y, E) = (}).(F)), we can re-write the Theorems and (recall the

notation for the constants on each result):

Proposition 5.7. Let m > 1, p:= (p1,...,pm) € [1,00]™

1
p

—1 m
= < % and q:= (QD‘ . 7Qm) S [(1 - > 72} such that

—F =<
q1 qm 2

1 1 m+1 '1’
5l
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Then, for all continuous m-linear forms T : E1 X --- X E,, = K,

> i Tom «
S (a0, qm)
hZZI <lmZ=1 $1 :Em

k
]Ilél;l?llt,pq |T||HH ( z 1

w,py,

regardless of the sequences (x E ))i:1 € by (Ex), k=1,...,m.

(2) X By — K,

N 7|%| m

u k) oo

( Z ’T( 511)7"'7 zm> . | |> <DK, lt,pHTHHH(Iz( ))z_l
k=1

ilv---vimzl

regardless of the sequences (xl(-k))fil €ly (By), k=1,....m.

In other words, the previous result says that if p := (p1,...,pn) € [1,00]™ and

-1 m
(q1,---.qm) € [(1 — % ) ,2] are such that
1 1 1 1 1 1
OSHS— and  — 4t — <7 ‘—,
p 2 q1 dm 2 p
then
mult(q1, ,qm;P7 pE) (E17 Em; K) == L (El, Em7 K)
Also, if
1 < 1 1
2 7 |p ’
then
" (Er, ..., B K)=L(Ey, ..., By K).

mult((17|1/p|)_1;p’l‘,...,pﬁn)
The following proposition illustrates how, within this framework, coincidence results
for m-linear forms can be extended to m + 1-linear forms.
Proposition 5.8. Let p,q € [1,4+00)™. If
Eult(ql,A..,qm;pl,‘..,pm)<E17 sy Ema K) = ‘C<E17 cee Ema K);

then

! (Ei,....Em, By K) = L(Ey, ..., Ep, By K).

mult(q1,...,gm,2;P1;-+-,Pm,1)

Proof. Let us first prove that, for all continuous (m + 1)-linear forms 7" : Ey X - - - X E,;, X
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co — K, there exist a constant C' > 0 such that

am o a1
n n 2 2 2
1) (m)
E E ‘T<317""xjm7€Jm+1
J1=1 Jm+1=1

(5.7)

)
W,Pk

< AT ||y
k=1

where A, is the constant of the Khintchine inequality (I)). In fact, from Khintchine’s
inequality, we have

Jma1=1
1 n am ﬁ
1) (m)
< /0 Z TGt (t)T (le s ,Z'Jm , Jm+1) dt
Jm+1=1
! n dm qim
1 m
— / T xgl), ,.'L“S'm)7 Z r]m+1 (t)ejerl dt
" Jm+1=1
Thus
y T(ztY (m) 2% B
Z ' Z (.’L' 10 ,IL']m , ]m+1)
]1:1 jm+1:1
o (1) (m)
<4 (X <(Z/ T, ..,
Jl:l j'm*l 0
n q A —1 a1 1
Z Tjm41 <t>eJm+1) dt) me ) 92 ) q1
Im+1=1
n L
= A, (1) (m)
A (- (/ S|,
Jji=1 0 =1
- dm dm—1 a1 1
T]m+1 <t>€]m+1) dt) am ) q2 ) q1
]m+1:1
< Al sup Z T(x; ...,z
te[o 1] 1 —=
- qm dm—1 a1
am q q
Z ij+1<t>ejm+1) ) ) 2) 1
Im+1=1

m
< Aq SUP Tmult(qy,...,qm;p1,-- ,pm)( E Timir ()€ i )H H

W,Pk
te(0,1] =1
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Since || - || < Tmutt(gu,....qmip1,...pm) () (s€C Proposition and since, by hypothesis

L(Ey,..., E;K) =117 (Er, ..., En; K),

mult(q1,...,qm;p1,.-sPm)

the open mapping theorem ensures that the norms Tmu(q,,...gmip1,..pm) (1) and || - || are
equivalents. Therefore, there exists a constant C' > 0 such that

n n 2 QT E b
(1) (m)
2. > (el )|
Jji1=1 Jm+1=1
n m
1 k
<CA, sup [[T|-. ..., Z s (£)€50 iy HH(xS ));‘:1H
™ te[0,1] Pt Pl w,pi

k
<CA, 1||T|| sup Z Tjmnrs (0)€5, i HH 5)

€l0.1] Jm+1=1 WPk

< CAZ|T) ﬁ H(ﬂﬁ-k))?:l‘
k=1

WPk

Let T € L(Ev, ..., By B3 K), (2)2 € 04 (By), k=1,...,m, and («/"")_ €

j
0¥ (Epq1). From [62, Proposition 2.2] we have the boundedness of the linear operator

u : ¢g = Epi1 such that e; — u(e;) = xgmﬂ) (x§m+1))j ) Then,
St By x - X By x ¢ — K defined by SW1, .- Ymi1) = T(1,- -, Y t(Yms1)) is a
continuous (m + 1)-linear form and ||S|| < ||T||||u||. Therefore, from (5.7,

and Jlul| = |

n n 2
(1) (m) _(m+1)
S| X (el
Jj1=1 Jm+1=1
1 m
(S (3 I )
=1 jm+1=1
< CA Tl || @Sy |
w,p1 w,Ppm
= oA ||| eS| @S|
w,p1 w,pm w,1
e, T el o ) (Bl By K. O
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5.2 Partially multiple summing operators: the uni-
fying concept

Let 1 <m e Nand 1< py,....pm < 0. For p:= (p1,...,pm) € [1,+00]™, recall

that % = p% + - 4 ﬁ, Xy =4, for 1 < p < oo, and X := ¢o. In addition to
Bohnenblus-Hille and Hardy-Littlewood inequalities (see (|1.1)) and Theorems and ,
respectively), the following results on summability of m-linear forms 7" : X, x---x X, —

K are well known.

e Zalduendo ([I28], 1993): Let
Xp X x X, —K,

< 1. For every continuous m-linear form 7' :

1
P

00 1 1_’%’
(Z T (e, ...>ei>\1-‘p‘) < |7, (5.8)
=1

and the exponent 1/(1 — |1/p|) is optimal.

e Aron and Globevnik ([I7], 1989): For every continuous m-linear form 7" : ¢ X - - - X
Cop — K,

D T ye) < T, (5.9)
i=1

and the exponent 1 is optimal.

The main purpose of [2] is to present a unified version of the Bohnenblust—Hille and
the Hardy-Littlewood inequalities with partial sums (i.e., it was shown what happens
when some of the indices of the sums iy, ..., are repeated) which also encompasses
Zalduendo’s and Aron—Globevnik’s inequalities. A tensorial perspective[] was the key in
this matter, establishing an intrinsic relationship between the exponents and constants
involved and the number of indices taken on the sums.

From now on, if nq,...,n; > 1 are such that ny + --- + ny = m, then (6?11, e ,ezck)
will mean (e;,, ".tmes e, ... e, st e, ). The main result of [2] is:

Theorem 5.9. Let 1 < k < m and nq,...,ng > 1 be positive integers such that n; +-- -+
n; = m and assume that

1 i k times m
P = (pg )7 nl't'm'ws?pq(zll)a s 7p§ )7nk' s 7p7(1’z)> € [17 OO]

issuchthatOﬁ‘%‘ < 1. Let r; given by%:%—i—---—l—%,i:l,...,k’.
v P Pn;

(1) If0 <

k
-1
5 L > ,2} then, for every continuous
p P

S%andq: (Qhuq]f)e |:<]-_

IThe idea of introducing in this context this tensorial perspective was of the Prof*. Maria Pilar Rueda
Segado.
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m—linear form T : (Xlgz‘ngp(D) X oee X <X1Si§nkXp(k)) — K,

1
o L
g1 AN ¢

[e%¢) [ee} dk
> (Z T (e, el") qk) <Ot g ITI (5.10)

i1=1 ir=1

if and only if ‘é‘ < k—'zH — ‘%‘ In other words, the exponents are optimal.

1
P

(2) If 3 <

(X 1§i§nkXp(_k)> — K,

< 1 then, for every continuous m—linear form T : <><1§i§mXp(_1)) X +ee X

00 1 17|E|
( > \T(egl,...,e;;k)yllé|> <pgtt T (5.11)

01 yeeeytp=1
Moreover, the exponent in 15 optimal

Let us establish the following notation: for Banach spaces Fj, ..., E,, and an element
r € E;, for some j € {1,...,m}, the symbol z; - e; represents the vector z; - e; €
FEy x -+ x E,, such that its j-th coordinate is x; € £}, and 0 otherwise. This theorem
motivated us to give the following unifying notion of absolutely summing multilinear
operators (the essence of the notion of partially multiple summing operators (below) was
first sketched in [I07, Definition 2.2.1] but it has not been explored since):

Definition 5.10. Let Ey, ..., E,,, F be Banach spaces, m, k be positive integers with 1 <
k< m, and (p,q) := (P1,-- -, PmsqQ1,---,qr) € [1,00)™ k. Let also T = {I,,...,I;} a
family of non-void disjoints subsets of {1,...,m} such that Us_ I, = {1,... ,m}, that is,
T is a partition of {1,...,m}. A multilinear operator T : Ey X -+ x E,, — F is Z-partially
multiple (q; p)-summing if there exists a constant C' > 0 such that

a1 o\ @
9] [e'e] k qk qK m
> (2 (nx ) <cfT e,
i1=1 ip=1 n=1 jel, . j=1 WP

for all (:L‘Ej))?il €l (E;),j=1,...,m. We represent the class of all Z-partially multiple

(q; p)-summing operators by Hl(i’:;)I(El, ooy B ). The infimum taken over all possible

constants C' > 0 satisfying the previous inequality defines a norm in HZZ}’)I(El, oy By F),
which is denoted by m(q.p)-

As usual, H?&:’;‘)’)I(El, ..., By F) is a subspace of L(E,..., E,;F). Moreover, note
that when

e k = 1, we recover the class of absolutely (q;pi, ..., pn)-summing operators, with
q = q1;
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ek =mand ¢g = -+ = ¢, =: q, we recover the class of multiple (¢;p1,...,Pm)-
summing operators;

e k = m, we recover the class of multiple (qi,...,Gmn;p1,- .., Pm)-Summing operators,
as we defined in the section .1l

The basis of this theory can be developed in the same lines as those from the previous
section, as we will be presenting in what follows. From now on, m, k are positive integers
with 1 <k <m, (p,q) = (P, P, q1s - Q) € [1,00)™"  and T = {I,...,I;} is a
partition of {1,...,m}.

Proposition 5.11. Let T : E4 x--- X E,, — F be a continuous multilinear operator. The
following assertions are equivalent:

(1) T is I-partially multiple (q; p)-summing;

2) (T (Shas Syer, @ e5)) € Lo (F) whenever (o), € 63 (By), for j =

U150t =1
1,....,m.

Proposition 5.12. If T € I (Ey, ..., Ep; F), then

HT||E(E17---7Em§F) < 7T(q;p)<T)-

Given T € H](C(;::)’)I(El, ..., Epn; F) we may define the m-linear operator
08 (By) X - x LY (Ep) — ly(F) N (512)
1)\ oo m)\ oo k j .
< E ))1 IR (IE ))i=1) = (T (Zn:l Zje[n Igi) ) 6]’)) i1
V] gernslfg=—

By using both, the closed graph and the Hahn-Banach theorems, it is possible to prove
that T' is a continuous m-linear operator. Furthermore, we can prove that

171 = 7 (ap) (1), (5.13)
therefore, naturally we define the isometric operator

0« WH(Ey, .. By F) = L(C(Ey),. .. 08 (Bp)ibg(F))

(a;p) " “pm
T — T.

These facts lead us to the following result.

Theorem 5.13. (qu”;I(El, ooy By F), W(q;p)(')) is a Banach space.

Also,

Proposition 5.14. If there exists n € {1,...,k} such that qin > then

J€ln p’

As in Proposition , it is possible to prove the following result (now using the
Bohnenblust-Hille inequality with partial sums, i.e., Theorem [5.9 with p = (o0, ..., 00)):
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_ ko 1 1 o ktl
fq=(q,...,q) €[1,2] is such that -4 ---+ -~ < 5=, then

Hk,m,I (E1’7Em’F):£(E1,,Em;K)

(a1, times 1)

With the same idea of Proposition 5.7, we can re-written Theorem in general: Let

1 <k <mandnq,...,n. > 1 be positive integers such that ny + --- +n, = m and let
p:=(p1,-.-,pm) € [1,00]™. Then,
Y
(1) if0 < ﬁ <itandq:=(q,...,q) € {(1— i) ,2] is such that q%+"'+i§
%— 11 we have
P

k,m,Z . _ . .

H(q;p{ .... p:n)(Elw"vEva)_E(E17-'-7Em7K)>
(2) if 2 < % < 1, we have

k,m, T
((=[1/p) " %P

)(El,...,Em;F):£(E1,...,Em;K).

5.3 Remark on Theorem (5.9

As a direct consequence of Theorem yields the following particular case whenever
p1 = --- = pm = p, which has a more friendly statement.

Corollary 5.15. Let m > k > 1,m < p < oo and let ny,...,n, > 1 be such that
ny+---+np =m. Then, for every continuous m—linear form T : {, x --- x £, = K, there
is a constant H(k,m,p, p,K) > 1 such that

=

( S yT(e;gl,...,e;;kw) < H(k.m,p.p ) |71

i1, in=1

with
p
p:p—m for m<p<2m and H(k:,m,p,p,K)gDEp
and
2kp K
p= m for - p>2m and H(k,m,p,p,K) < Cp,. (5.14)

Moreover, in both cases, the exponent p is optimal.

Remark 5.16. [t is very interesting to stress that the optimal exponent for the case
p > 2m s not the exponent of the k-linear case, as one may expect. It is a kind of
surprising combination of the cases of k-linear and m-linear forms, as it can be seen in
. In general the panorama is quite puzzling:

o [fm < p < 2m the optimal exponent depends only on m;
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o If p=2m, the optimal exponent does not depend on m or k.

o [f2m < p < 0o, the optimal exponent depends on m and k;

o [fp= o0, the optimal exponent depends only on k.

The following estimates summarizes the (optimal) exponents and respective best known
constants that can be derived from Corollary combined with estimates from [13] [63)
109] (below ~ denotes the Euler-Mascheroni constant):

2—log2—v ) (k—1) ( 2k—p+kp—2k> p—2k—kp+6k2—6k>+2k%

13]{3( 2 k2p—2kp ) <\/§) kp(k—2)
if 2m < p < 2m3 — 4m? + 2m,
1.3k =5 if 2m® — 4m? + 2m < p < oc;

Jr
if 2m < p < 2m3 — 4m? + 2m,

( 2 3 4
1— 2k—p+kp—2k p—2k—kp+6k—6k° 42k
L)y (2t ) O

1—

\ k= if 2m® —4m? +2m < p < 0.
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Chapter

Polynomial inequalities on the 7 /4-circle
sector

In this chapter we present results of the paper:

[10] G. Araijo, P. Jiménez-Rodriguez, G.A. Munoz-Fernandez, and J.B. Seoane-Sepilveda,
Polynomial inequalities on the 7 /4-circle sector, arXiv:1503.06607 [math.FA].

The Krein—Milman Theorem ensures that every convex body (non-empty, compact
set) in a Banach space is fully described by the set of its extreme points. We recall that if
C' is a convex body in a Banach space, a point e € C'is said to be extreme if z,y € C' and
Az + (I\)y = e, for some 0 < A < 1, entails x = y = e. Equivalently, e € C' is extreme
if and only if C'\ {e} is convex. It is well known that a convex function (for instance, a
polynomial norm) defined on a convex body attains its maximum at an extreme point of
their domain. From now on we will refer to this method as the Krein—Milman approach.

In this chapter we apply this method in order to obtain sharp polynomial inequalities
on the space P (2D (%)) of 2-variable, real 2-homogeneous polynomials endowed with the
supremum norm on the sector D (%) = {ew 10 € [O, ﬂ }

Let us describe now the four inequalities that will be studied in this chapter. Namely,
for a fixed (z,y) € D (%), we find the best (smallest) constant in the following inequalities:

e Bernstein type inequality for polynomials in P (2D (%)) For a fixed (z,y) €
D (%), we find the smallest constant ®(x,y) in the inequality

||VP(ZL’,y)||2 < (I)(x7y)||P||D(§)a

for all P € P (*D (%)), where || - ||> denotes the euclidean norm in R?

e Markov global estimate on the gradient of polynomials in P (2D (%)) For
all Pe P (2D (%)) and all (z,y) € D (%), we find the smallest constant M > 0 in
the inequality

IV P, o)l < MIP| ey,

e Polarization constant of the space P (2D (%)) We find the smallest constant
K > 0 in the inequality

||L||D(g) < KHPHD(%)a
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where P is an arbitrary polynomial in P (2D (%)) and L is the polar of P.

e Unconditional constant of the canonical basis of P (2D (%)) We find the
smallest constant C' > 0 in the inequality

H|P|HD( ) < CHPHD(%),

T
for all P € P (D (%)), where | P| is the modulus of P, i.e., if P(z,y) = az® + by* +
cxy, then |P|(z,y) = |a|z* + |bly* + |c|zy.

If P(z,y) = ax? + by* + cxy, we will often represent P as the point (a,b,c) in R3.
Hence, the norm of P (2D (%)) = {em 10 € [O, ﬂ } is in fact the norm in R3 given by

)= sup{|ax2+by2+cxy| :(z,y) € D (z)}

H(CL,b, C)HD( 4

NE]

1
forms on R” endowed with the supremum norm on D (%)

An explicit description of the norm || - || (%) and the extreme points of the unit ball
4

In Section the notation L° (2D (E)) will be useful to represent the symmetric bilinear

BD(E), denoted by ext (BD(£)>, will be required. Both are presented below (see [93,
4 4
Theorem 3.1] and [93, Theorem 4.4], respectively):

Lemma 6.1. If P(x,y) = ax® + by + cxy, then

oo~ e {lal S+ bel. dla b+ signe)/la =B} ifela b
D(%) max{|al, 3|a + b+ |} if c(a —b)

v

K

0
0

IN

)

Lemma 6.2. The extreme points of the unit ball of P(*D(%)) are given by

r
4

ext <BD( )) _ {iPt,iQs,i(l,l,O): 1<t<1 and1§s§5+4\/§},

where

Pri=(t A4+ t+4VT+1,-2—2 —4V/1+1),
Qs = (1,5, —2+/2(1 4 9)).

6.1 Bernstein and Markov-type inequalities for poly-
nomials on sectors

In this section we provide sharp estimates on the Euclidean length of the gradient VP

of a polynomial P in P (2D (%))

Theorem 6.3. For every (z,y) € D (%) and P € P (2D ( )) we have

s
4

9Pz < B )Pl (.
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where

P (,y)
(4 [(13 n 8\/§> 2+ (69 + 48\/5) v —2 <28 n 20&) :vy]

if0<y< 5 T or (4\/_—5)x§y§x,
=4 o 21
= 4@+ y?) z‘ff2 r<y<(V2-1)a,
Yy
312 — 2 3y%)*
s (1) (o)
\ _

Proof. In order to calculate ®(x,y) := sup{||VP(z,y)|2 : ||P||D(£) < 1}, by the Krein-
4
Milman approach, it is sufficient to calculate

sup{[|VP(z,y)ll2 : P € ext(Bp(x))}.
By symmetry, we may just study the polynomials of Lemma [6.2] with positive sign. Let us

start first with Py(z,y) = ta? + (4 +t+4V/1+8)y* =2 (1 +t+ 21+ t) ay, t € [-1,1].
Then,

VP(z,y) = (2ta:—2<1+t+2\/1—+t) y,2<4+t+4\/1——|—t)y—2<1+t+2\/1—+t>x>,
so that
IV Py(x,y)||2 =4tz + 4 (1—|—t+2\/1—+t>2y2 — 8t (1 +t+2\/1—+t> Ty
+4(4+t+4\/1—+t>2y2+4<1—|—t+2\/1——|-25)2x2
—8(4+t+4\/1—+t> <1+t+2\/1—+t)xy
Make now the change u = /1 4+t € [O, \/5}, so that

IVP,(z,9)]3 =8(x — y)*u* + 16 (:L'2 — dxy + 3y2) u?
+ 8 (2* — 10zy + 13y°) u? + 32 (3y® — xy) u + 4 (2 + 9y°) .

Since

0
%HVPu(x,y)H% =16 (2(z —y)?u® + (22 — 8zy + Ty*) u + 2y (3y — @) (u + 1),

it follows that the critical points of ||DP,(z,y)|? are u = jTyy,u = 2?(’3;5) and u = —1 if
x#yand u =4 and u = —1 if z = y. Since we need to consider 0 < u < \/5, we can

directly omit the case z = y.

Therefore, we can write

Sl VPl =320 o (= 2 ) (w25 )
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Let u; = nyy and uy = 2(— (Again, since we need to consider 0 < u < \/_ we can

omit the solution u = —1). Also, we have the extra conditions u; € [0,v/2] whenever
0<y< (\/5— 1) x and uy € [0, \/5] whenever %x <y< (4\/5— 5) 2. Considering all
these facts, we need to compare the quantities

Ci(z,y) = [VPu,(z,9)]5 = VP,
6—45—|—742—833+7 —4 +
_ 4 2oy + Tty xy4 x x1y° + ° 4?1y,
(z —y)
for 0 <y < (ﬂ—l)xamdtlz%,
Co(z,y) = [VPu,(z,9)|5 = VP,
~92% — 302y + 55aty? — 68x3y? + 55yt — 30xy° + 9y°
a 2(z —y)*

(322 — 2zy + 3y2)°
20z —y)*

for%:cgyg(élx/_— )xand@-%,

Cilr.y) = [ VPu—a [ = 4 (% +952).

and

Cilw,y) = IVPucalf =4 [ (134 8v2) ® + (60 + 48v3) y? — 2 (28 + 20v2) ay]

Let us focus now on Q, = <1, s, —24/2(1 + s)), 1 < s <5+ 4y/2. Then, we have

IVQs(x, )5 = 42 + 45°y* + 8(1 + 5) (2 + y*) — 8(1 + 5)/2(1 + s)2y.
Making the change v = \/2(1 + s) € [2, 2+ 2\/§] , we need to study the function
IVQu(z,9)|l3 = v* (y*0* — dayv + 42°) + 4 (a® + 7).

If z =y = 0 we have |[VQ,(z,y)||5 = 0, so we will assume both z # 0 and y # 0
The critical points of |[VQ,(x,y)||3 are v = sov= 2;“” and v = 0 (but 0 gé 2,2 + 2V2)]).
Observe that v; = % € [2, 2+ 2\/5] whenever f ly<y<i srand vy = [2 2+ 2ﬂ
whenever y > (\/§ - 1) x. Thus, we also need to compare the quantltles

4

X
Cs(2,y) = [VQu (. y)llz = VQs, (z, )5 = R (2 +v°),

2 2
for ‘flx<y< 1y and s; _a:;y22y7

Co(@,y) = IVQu (7, y)llz = [VQu (2, )l = 4 (2* +3*) ,
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C7(1,N)

a1, ) —_—

Il
0 01 02 03 Va—1 05 06 07 08 09 1

Figure 6.1: Graphs of the mappings C}(1, ), Cs(1,A), C7(1, A).

for (\/§ — 1) r<y<zand sy = szng, and also

Cr(2,y) = [[VQu=r[lz = 4 (2% + %) +16(2 — ),
and
Cs(w,y) = ”VQ54:5+4\/§H§
- (12 v 8\/5) [4332 n (12 n 8\/5) v - (8 v 8\/§> a:y} +4 (22 +¢?)
= 4[(13+8v2) 2> + (69 +48v2) 4 — 2 (28 +20v2) ]
Note that (the reader can take a look at Figures , and
Cy(x,y) ingyg%imor sx<y<u,
Cs(a,y) it o <y < o,

Colw,y) if do <y < (4V2-5),
< 3
Cg(x,y)_{al(z,y) if0<y<izor(4V2-5r<y<u,

Cs(z,y) = Cu(,y).

Ol(xuy)706(x7y) S 07(I7y) S {

Hence, for (z,y) € D (%)’

O(z,y) = sup{HVP(:r,y)lb P e ext (BD(@)}

Cy(z,y) ifOSyS%xor(AL\/_—@xSygx,
=< Cs(z,y) if %m <y< (\/5 — 1)z,
Co(z,y) if (\/5 — e <y< (4\/§ —5)x.

In order to illustrate the previous step, the reader can take a look at Figure 6.4}
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Figure 6.2: Graphs of the mappings Cy(1,\), C5(1,A), C7(1, A).

Figure 6.3: Graphs of the mappings Cs(1,\), C5(1, A), Cy(1, A).
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Figure 6.4: Graphs of the mappings Cs(1,\), Cy(1,A), C5(1, A).
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Corollary 6.4. If PP (D (%)), then
sup {||VP(x,y)||2 :(x,y) €D (g)} <4(13+ 8\/_)HP||D(%)

with equality for the polynomials Py(z,y) = + (:E2 + (5 4+4v2)y*> — 2(2 + 2\/§)xy)

6.2 Polarization constants for polynomials on sectors

In this section we find the exact value of the polarization constant of the space
P (2D (%)) In order to do that, we prove a Bernstein type inequality for polynomials
in P (*D (%)). Observe that if P € P (*D (%)) and (z,y) € D (%) then the differential

1
DP(x,y) of P at (x,y) can be viewed as a linear form. What we shall do is to find the

best estimate for HDP(CL‘,ZJ)HD(E) (the sup norm of DP(z,y) over the sector D (%)) in
4

terms of (z,y) and HP||D(£). First, we state a lemma that will be useful in the future:
4

Lemma 6.5. Let a,b € R. Then,

max{|a|,\/7§|a+b|} z’f§>1 07“§<07

Va? +b? otherwise.

Va2 +0 if0<t <1,

- ‘/7§|a+b| if(l—ﬂ)b<a<borb<a<(1—\/§)b,

|al if—(1+v2)a<b<0or0<b<—(1+v2)a

sup |acos® + bsinf| = {
0el0,5]

Theorem 6.6. For every (x,y) € D(5) and P € P(*D(%)) we have that
|DP(z,y)llpz) < V(z,y)||Plp), (6.1)

where

V2[(1+2v2) 2= (3+2v2)y] #0<y<23ta,

T s 28 <y < (VI 1),
Y 2<m—|—ry—_y> if(\/ﬁ—l)xgy<(2—\/§)a7,
V2)y — 2z if (2—-V2)z<y<uz

Moreover, inequality (6.1)) is optimal for each (x,y) € D(F).

Proof. In order to calculate W(z,y) := sup{||DP(z,y)llpz) : [ Plpz)) < 1}, by the
Krein-Milman approach, it suffices to calculate

sup{[|DP(z,y)|pz) : P € ext(Bp(z))}-

By symmetry, we may just study the polynomials of Lemma with positive sign. Let
us start first with

Py(z,y) = t2? + <4+t+4\/1+t> g — <2+2t+4\/1+t>xy
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So we may write

VPFP(z,y)
= (2t:p— (2—|—2t+4\/1—+t>y,2<4+t+4\/1—+t>y— <2+2t+4\/1—+t>w>,

from which

|DPy(z,y)|lpz) = sup

2 [tx— <1+t+2\/1—+t) y] cos 6
0<0<T
+2 [<4+t+4\/1——i—t>y— <1+t+2\/1—+t> x} sin@‘

=2z sup |fi(t,0)],
0<h<T

1a(t,0) = [t = (1 £+ 2VTF7) A] cos
v [(4+t+4\/1_+t>>\— <1+t+2\/1_+tﬂ sin ),

where A = £, 2 # 0 (the case = 0 is trivial, since the only point in D(
is (0,0), in which case P,(0,0) = HDPt(O,O)HD< )= 0).

jus
4

7) where z = 0

We need to calculate

y =2z sup |fi(t,0)|.
0<6<%
—1<t<1

sup1 | DPi(x,y)| b

—1<i< T
Let us define Oy = [~1,1] x [0, §]. We will analyze 5 cases.
(]‘) (t,@) S (_17 1) X (O’%)

We are interested just in critical points. Hence,

%(t,&) - KH

)2 (1 g oo (6.2
e "

%(t,&) = [(1+t+2\/1—+t>A—t} sin 0
+ [(4+t+4\/1——|—t>)\— <1—|—t—|—2\/1——|—t>]0080:0

Equation (6.3)) tells us that

(A+t+4VT+ ) A= (1+t+2V/1+1)

sinf = cosf. (6.4)

t—(1+t+2V1+E) A
If we now plug (6.4 in equation (6.2)), we obtain

(6.3)
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o= {[1- (e )] < [ 2 )= (1 )]
X(4—|—t+4\/1—+t)/\_(1+t+2\/1—+t)}c0s9.

t—(1+t+2V1+18) A

Using that 0 < 6 < %, we can conclude

0= l1— <1+—_11+t) A} + K1+—_12+t) A— (1+—_11+t>}
(A+t+4VT+t) A= (1+t+2V1+1)
t—(14+t+2V1+1)A

X

and thus

0= {1—(1+\/11_H)>\]-[t—(1+t+2\/1—ﬂ>>\]

(1 2= ) - (14

A
=1— (1+t+2\/1+t)A—tA+<1+t+2\/1+t>)\2—
V1I+t

2

Ve \/12_+t> (4+t+4\/1—+t)A2
—(1+\/12_+t) (1+t+2\/1—+t)A—(1+ )(4+t+4\/1—+t>A

+<1+\/%) (1+t+2\/1—+t)

=1 (1 =20+ 20 =20+ 1) + (=2A + 227 + 4N —2X —4A + 2) V1 + ¢

_|_

(1+t+2\/1—+t>+ (1+

1
vV1+t

t 1
+ AN 222 -2 — A +1) + A +8A =2  —4r+1

\/1+t( ) \/1+t( )
(AN H227 4N — A —4A + 142+ 802 —8))

= 2t(A — 1)* + 6VI T £(A — 1) <A—%) +3\/1t—+15(A_1) (A_%)
1

+\/1_+t(3>\—1)2+15()\—%) (A—%).

Working with this last expression, we get

0 = 2V1+tA—1)2+6(1+t)(\—1) </\— é) +3t(A = 1) (A— 1)

3
+(BA =12 +15VT + ¢ (A_ %) (A_ g)

)} : [<4+t+4\/1—+t)A— (1+t+2\/1—+tﬂ
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and hence, rearranging terms,

Vitt {15 ()\ - %) (A - §) +2t(A — 1)2}

5
1 1 3
=-9tA-—1) A== ) =15 A== ) (A—=]). 6.5
=0 (r-5) -1 (0-5) (-3) 6
If A =1, we obtain
V1+t+1=0

and so, in particular, we have A\ # 1. Equation (6.5)) has two solutions,

—1 42X + 3\ A2 42X —3

tl()\) = ()\ _ 1>2 and tQ()\) = 4()\—_1)2

Using equation ((6.2]), we may see

1
2 1)
(1 T \/1+t) A= (1 + \/1+t)

In particular, evaluating in ¢;(\) we obtain

tanf =

1+ 520 -1
tan 6, = <1_)\ 22 ) 5 =M
I+5)A-(1+5)
in which case we have
D1a(X) = [faltr, 00)] = | —VI+X| = VIR,
Regarding t5 (), we obtain
4(,\—1)2> _
tan 0y — (1 TV Gaci? Al
4(A—1)2 A0—1)2\
(1+2/Em) A - (1 Vo)

Since 0, € (O, %), we need to guarantee 0 < tanf, < 1, and for this we need 0 < A < %

Therefore
tan 0y = —5>\ -1
WMRE N3
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and in this case,

D12(V) 1= £a(t2.62)]
:‘[5/\2+2)\—3_(9)\2—6)\+1+3>\—1>)\} 3— 7T\
AN —1)2 AA—12 " A=1/)77a —p2a 1 10
OAZ — 6A + 1 +6>\—2))\_ <9>\2—6>\+1+3/\—1>]
Ah—12 T a-1 An—12 " a-1
" 1 —5A ‘
VTN — 52X\ + 10
| 78X —208)* + 196A2 — 80\ + 14
B ‘  4(A— 12742 — B2A + 10 ‘
B 30A% — 26\ + 7
a ‘ C 2V/TAN — B2 + 10‘
 30A2—26A+7
C VAN 520+ 10

+[(3+

(2)0=0,-1<t<1.

We have
A0) =1 — (1+t+2\/1+t> A
Then,
f)\(_170> = _17
A1,0)=1—2 <1+\/§) A
and hence

120+ v2)N it <
\fx(170)|—{2(1+\/§))\_1 if Y21 <\ < 1.

Working now on (—1, 1), since

1
V(0 )=1—(1+ ) A,
R0 =1- (14
the critical point of fy(¢,0) is
)\2
(1-M?
Recall that we need to make sure that —1 < ¢t < 1. Therefore, in this case we also need
to ask

t =

V2
A< =2 -2
1+v2
Plugging the critical point of fy(¢,0) into f(¢,0), we obtain
A2 A2 A2 2\ A2
0= 1 A= 1
f*((A—1)2 ) 12 D12 1A Tao1
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2

and hence
—AQ 1,0 1
fA<()\—1)2_ ! ) R

e Assume first 0 < \ < @ Then,

A2 A2
sup \f,\(t,0)|:max{1,1—2<1+\/§>)\,1+1_)\}:1+1_)\_

—1<t<1

e Assume now % <\ < 2—+/2. Then,

A2 A2
sup \f,\(t,0)|—max{1,2<1+\/§>>‘_1’1+1—)\}_1+1—X

—1<t<1

e Assume finally 2 — v/2 < X\ < 1. Then,
sup |f,\(t,0)|:max{1,2<1+\/§>)\—1}:2<1+\/§>)\—1.

—1<t<1
Thus, in conclusion,

sup |fa(t,0)] =
—1<i<1

242V2)A—1 if2—-V2< A<,
{Dm()\) if0<\<2—+2,

{1+% if0<A<2-+2,

Dys(N) if2—-v2< A< 1.
(3)=Zand -1 <t <1,

We have

I <t,%) :g[t—(1+t+2\/1—+t>)\+<4+t+4\/1—+t>/\—(1+t+2\/1—+tﬂ
2 [(342vT77) A (14 2vT77)]

Again, we have
2

(1) = e,
™ V2
1(05) -3 [+28)- (1428

) zﬁ{ » oo }
2 |VIi+t VI+t]
and f{(t,Z) = 0 implies A = 1 (in which case f\(t,Z) = v/2 for every t).
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e Assume first 0 < A < i. Then,
_jgglu;<m%)yzéggnmx{(1+2vﬁ)—-(3+2vﬁ)A,1—3A}
:%?[Q+a¢®——@+a¢@A}

e Assume now % <A< 4vV2-5. Then,

sup |/ (t,z>|:£max{<1+2\/§> — <3+2\/§> A, 3)\—1}

—1<t<1 4 2
2 (1 +2v2) - (3+2v2) ] if L << B2
(30— 1) if 2V24 <\ < 44/2 - 5.

e Assume finally 42 -5 <\ < 1. Then,

wp\A(ag)pzxgmeQA—L(3+2%3A—<1+2%3}:——@A—1y

—1<t<1 2

oS

Hence, we can say that

SUp_j<i<1 |1 (6,5) ] = \/75[1"‘2\/_—(34—2\/5))\} ing)\<L$+1
- T if 225 <A <1,

Dya(N) if 22 <\ <1,

w

) t=-1,0<0<T

Applying lemma [6.5, we obtain

sup fa(=1,0) = {

0<6<T

(B)t=1,0<6<

We use again lemma witha =1-— (2 + 2\/5) Aand b= (5 + 4\/5) A— (2 + 2\/5)
Through standard calculations, we see that g < 0if and only if A € [O, ‘/52_1> U (6_3‘/5, 1]

N
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and g > 1 if and only if % <A< %. Therefore,

sup_[fx(1,0)]
0<0<%

max {[1— (2+2v2) A|, 2 |(3+2v2) A~ (1+2V2)[} if0< A< 242,
=0 -2+2v) ) + (G+4VDA— 2+2v2))° it EEZ <\ <828

max {[1 = (2+2v2) A[ 2|3 +2v2) A (1+2v2)|} i =22 <a<,

Since 0 < A < V2 — 1 implies [1— (2+2v2) A < 2|(3+2v2) A — (1+2V2)
follows that

it

sup |f(1,0)]

OSGSg
[ 2(3+2v2) A — (1+2V2)] if0 <A< 302

= VA8V2XA2 — 56A 4 69N% — 40V2A + 8v2 + 13 if T2 < \ < 6212
L |1 (2+2v2) )| if =22 <A <1
(21422 (3+2v2) ] if 0 <A< 32

= 0 VA8V2X2 — B6A + 69X2 — 40V2A + 8v2 + 13 if SV < ) < 6-2¢2
| 2+2v2) A -1 if 6=2v2 < \ < 1.

Dsi(N) 0 <\ < 32
= D572()\) if % S A< 6_3\/5
Dss(\) if 22 <\ <1

Since (see Figures [6.5 and

Dyi(N) if0<A<2—v/2,
Dyai(N) < _

Dys(N) if2—-v2< A<,
D12(X) < Dsy(X) for 0 < A < 1,

we can rule out case (1). Since

S

D31(A\) = Ds1(A\) for 0 <\ < 32

— 23 )

ngg()\) = D472(/\) for 1+3\/§ S A S 1,

we can directly rule out case (3). Since (see Figures and

Dyi(A) if0< A <2—+2,
Dop(N) if2- V2 <A< B2

Dia(N) < Dy for 12 < A <1,

D471()\> =1 < {
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35

25

15—

05— | —~

Figure 6.5: Graphs of the mappings D; 1(A), D21(A) and Dao(N).

we can rule out case (4). Finally, since (see Figure

D5’2(>\) S D271(A) for % S A< %,
Ds3(\) = Das(N) for 2 —v/2 <A< 1,

we can rule out the expressions Ds2(A) and Ds 3(A) of case (5).
Thus, putting all the above cases together, we may reach the conclusion
sup [ fx(t,0)]
(t,0)eCy
(
D51()\) if0 <\ < CE3VAVAVITHOVRHE

14

= (A i (2-3v2)V/4 +7+5f+6<>\<2 V2,
22()\) 1f2—\/_<>\<1

\/75[(1+2\/§)—(3+2\/§))\} if 0 <\ < BE3VIVIVIETEOVELS

14

= 1_}_% if(23f)\/24f+7+5f+6§)\<2—\/§,
| 2+2v2) A -1 if2—v2<A<1,

and hence

sup [|IDF(z,y)llp) =22 sup |£(t0)

—1< (t,0)eC1
\/5[(1+2\/§)x—(3+2\/§)y] lfo<y< Co8VAIVAVEITIOVELS )

= 2<x+zy_2> ¢ 2-3v2)va +7+5f+6 §y<(2—\/§)x,
4(1+v2)y -2z lf( —ﬂ)xéyéx,

assuming in every moment x # 0 (in order to illustrate the previous step, the reader can
take a look at Figure .
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Figure 6.6: Graphs of the mappings D; o(A\) and Ds1 ().

0.55 27\/5 0.65 07 0.75 ]+\/§ 0.85 0.9 0.95 1

Figure 6.7: Graphs of the mappings Ds () and Dy a(N).

Figure 6.8: Graphs of the mappings Dy () and Dj ().
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o 2-3V2) \/—7+ V2+6 H ! I
% 0.1 o‘.z 0‘3 3+4f o.‘s 2:\/5 u‘.7 u‘.a o‘.g 1
Figure 6.9: Graphs of the mappings Dy 1(\), Da2(A) and D51 (A).
Let us deal now with the polynomials
Qs(x,y) =2 + sy —2¢/2(1 +s)ry, 1<s<5+ 4v/2.
Then,
VQ,(z,y) = (295 2201 1 s)y, 25y — 24/2(1 + s)x> ,
1DQs(z,y)|[pz) = sup |2z [(1 —v2(1+ 8))\> cosf + (s)\ —2(1+ s)) sin@] ’ ,
0<0<T
and thus
sup || DQs(z,y)lpz) =22 sup |ga(s,0)],
1<s<54+4v/2 (s,0)€Ca
with
= <1 —/2(1+ s))\> cosf + <s)\ —v2(1+ 3)) sin 0
and Cy = [1,5 4 4v/2] x [0, 7]. Again, we have several cases:
(6) (s,0) € (1,5+4v/2) x (0, ).
Let us first calculate the critical points of g, over Cj.
Bg,\ -\
—=(80,6p) = ———=—==cosbp+ | A — sin 6,
95 (0 60) 21+ s0) ( 1—1—30)) ’
0
890/\ (80,00) = (so/\ V2(1 + s > cos by — (1 —V2(1+ s )\) sin 6y,
so, if Dgx(so,0p) = 0, using the first expression, we obtain tanf, = 2(1:‘ = and,
S0)A—

. .  soA—y/2(1%s0)
using the second one, we obtain tan , = PR, TTE Jattoon

80)\—\/2(1+80) o A
1—2(1+s9)A V201 +s0)A—1

Hence, we may say
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and thus
2 —\?
S VI

Then, tanf, = A and also, if we want to guarantee that 1 < sq < 5 + 4v/2, we need

V2-1< A<l
1

In that case, sin 6y = ﬁ and cosfy = iEsel and then

~1 —\2
_ — ./ 2
g>\(80,90)— \/1+)\2+\/1+)\2 - 1+/\ s

SO

Dg(X) == |gr(s0,60)| = V1 + A2

(7)s=1,0<0< 7.

Apply lemma [6.5| with a =1 — 2\ and b = A — 2. Using 0 < A < 1, observe that we
always have b < 0 and b < a. Also, a < (1 — \/5) b if and only if A > #
Putting everything together, we can say

sup [gx(1,0)]
0<6<T

-2\ i0< A< 22
2142 if =2 <A<,

Dy 0 <A< =22
| Dra(h) i ER2 <A<

(8) s=5+4v2,0<0< 2.

Apply again lemma , this time to a = 1 — 2 (1 + \/5) Aand b = (5 + 4\/5) A —

2 (1 + \/5) As usual, we notice that a < 0 if and only if A > ‘/52_1, b < 0 if and only

if A < % and a < b if and only if A > %ﬁ. All together, we can say that, for
3+4v2 -\ - 6=2V2
23 7

, we have

sup |ga(5 +4v2,0)| = Va2 + 12 = \/13 4+8v2 — (56 n 40\/5) A+ (69 n 48\/5) A2,

0<6<T

Also, notice that, for any A € [0, 1], we are going to have b < — (1 + \/5) a and a <
(1 — \/5) b. Hence,

sup [gx(5+4v/2,0)|

0<0<7%
2 (142v2) — (3+2v2) )] if 0 <A< B2

= 3 /13 +8v2 — (56 + 40v/2) A+ (69 +48v2) A2 if B2 < ) < &2,
2(1+v2)A-1 if 22 < )\ <1,

Dg1(N) if 0 <\ < 3£2
=: ¢ Dgp(N) if 22 < ) < 22
Dga(\) if 22 <) <1,
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(9)0=0,1<s<5+4V2.

We have

)\(870) =1- V 2(1 + S))‘a
gr(1,0) =1 —2),
(5 +4v2,0) =1-2(1+v2) A

A

1(5,0) = ————— #0 for A #0.

9:(s,0) (1 +5) # #
Then,

sup  |ga(s,0)] = max {|1 —2)|, |1 —=2(1+ \/§)A|}
1<s<54+4v/2

2 Y

2(1+vV2) A1 if 252 <A<,
__{Dgyl(/\) if0< A< 222

_{1—2>\ 0 <)< 222

2 I

D972()\) if 2= f < A <1

(10) 0 =7,1<s<5+4V2.

We have
o (5.5) = L1401 VAT T (14 ).
Then
gx (1, Z) = —\/75(1 +A),
9 (5+4\/§E> =§ [<3+2\/§>A— (1+2\/§>],
(1+N)?

)\ (So’ %) = 0 if and only if sy = —1

2)\2
and since we need to ensure that 1 < so < 5+ 4v/2, we need Lg_l < A < 1. In that case,

m V2(1 +3)%)
ax (80,1) = _T'
Hence,
awp o (s3)] = L(1+2V3) — (3+2v3) A i0< A< 221
el g 12 <A<,

D1071(/\) if 0 < A< 2\[#7
Digp(N) if 222 <A< 1L
Since (the reader can take a look at Figure |6.10)

D) < Dgo(N) if V2 —1 <A< 622
6 ~
Dga(\) if 22 <\ < 1,
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we can rule out case (6). Since (see Figures and [6.12))

D71(X) < Dyg1(A) for 0 <A < @
Drs()) < Diga(N) if # <A< 2\/2—17
72(A) <
Dipa(A) if 2‘[# <A<,

we can rule out case (7). Since

2v2 —1
Dg1(N) = Dipa(N) for 0 < A < \/_T

we can rule out the expression Dg () of case (8). Since

DQ,I()\) = D771(/\) for 0 < A< #7
Dgg()\) = D&g()\) for w S A S ]_,

we can directly rule out case (9). Furthermore, since (see Figure [6.13))

D&Q()\) < D1072<)\) for %ﬁ < A< w,

Dg3(\) < Diga(N) for w <A< (4v2-5)V/ 4x7/§+7+8—5\/§’

we can conclude that
sup [ga(s, 0)]
(570)602
[ Dipa(N) if0< A< el
=9 Dio2(N) if qu <A< (4\/5_5)\/4\7/54-74-8—5\/57

\ D&g()\) if (4\/5—5)\/4\7/§+7+8—5ﬁ < A <1.

(21422 (3+2V2)\] if 0< A< 221

_ V2(14+32%) if 2V2-1 <y (4v2-5)1/4vV2+74+8-52
4N 7 — 7 ’
[ 2(1+v2)A—1 if (WV2ZOVIAVEITIEOVE ) <

and hence

sup |1 DQs(,y)|lp(z)

1<s<54+4v/2
V2[(1+2v2)z— (3+42v2)y] if0<y< 22-1y
Y Y 7L,
_ V2(z2 43y . — (4v/2-5)4/4v/2+T7+8—5v2
— % 1f M#x S Y < = x,
4 (1 + \/5) Yy —2x if (4v2-5)y 4‘7/§+7+8_5\/§x <y<uzx.
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Figure 6.10: Graphs of the mappings Dg()), Dg2(A) and Dgs().

Figure 6.12: Graphs of the mappings D7 2(\), D1o1(A) and Diga(A).
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Figure 6.11: Graphs of the mappings D7 1(A) and Dyg1(A).
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25 Dy 3(M) g

oL |

1.5 \ -
I
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1 (AV2-5)VAV2+ T+8 - 5V2
[

o I I I L I A I I I
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Figure 6.13: Graphs of the mappings Dg (), Ds3(A) and Do a()).

Finally, if we compare the results obtained with P, and (), since % > 1+ %
whenever \ < /2 — 1, we obtain
V2[(1+2v2) 2= (3+2v2)y] if0<y< 2,
by o) 22 if 225 <y < (V3 1)z,
2 (o + L) it (V2-1)z<y<(2-v2)u,
4(1+\/§)y—2x if(2—\/§)x§y§x.

]

We can see that ®(z,y) < 4+ /2, for all (z,y) € D (Z). Furthermore, the maximum
is attained by the polynomials

Pi(z,y) = + (5 v 4\@) Y2 — (4 + 4@) 2y = Qs 405, 1).

Corollary 6.7. Let P € P (2D (%)) and assume L € L? (2D (%)) 1s the polar of P. Then

1Ll b2y < (2 + g) 1Pl (z)-

a3

Moreover, equality is achieved for
Pi(2,y) = Qsyays(r,y) = 2* + (5 + 4\/§> Yy — <4 + 4\/§> zy.

Hence, the polarization constant of the polynomaial space P (2D (%)) 15 2+ ‘/75

6.3 Unconditional constants for polynomials on sec-
tors

Here, we obtain a sharp estimate on the norm of the modulus of a polynomial in

P (2D (%)) in terms of it norm. That sharp estimate turns out to be the unconditional

constant of the canonical basis of P (2D (%))
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Theorem 6.8. The unconditional constant of the canonical basis of P (2D (%)) is 5+4v/2.
In other words, the inequality

I1Pllog) < 6+ 4VDIPl o5y,

for all P € P (2D (%)) Furthermore, the previous tnequality s sharp and equality is

attained for the polynomials

£ (2, ) = £Qsaa(@y) = F 7 + (54 4V2)y* — (44 4V2)ay]

Proof. We just need to calculate

sup {|||P|||D<%) . P eext (BD(§)>} .

In order to calculate the above supremum we use the extreme polynomials described in
Lemma [6.2] If we consider first the polynomials P;, then

|Py| = <|t!,4—|—t+4\/1+t,2+2t+4\/1—|—t).

Now, using Lemma [6.1| we have

1
sup H\PAHDQ): sup max{yt\,§(\t!+4+t+4\/1+t+2+2t+4\/1+t>}
—1<t<1

—1<t<1
1
= sup o (m +6+3t+8\/1+t) =54 4V2.
—1<t<1

Notice that the above supremum is attained at £ = 1. On the other hand, if we consider
the polynomials Q,, we have |Q,| = <1, $,24/2(1 + 3)) Now, using Lemmaﬂ we have

sup  [[|@slllp(zy = sup max{l,%<1+s+2\/m>}

1<s<54+4v/2 1<s<54+4v/2
1
= sup —<1+3+2\/2(1+3)>:5+4\/§.
1<s<5+4v/2 2
Observe that the last supremum is now attained at s = 5 + 4v/2. O

6.4 Conclusions

Comparing the results obtained in [70] and [94] for polynomials on the simplex A, in
[69] for polynomials on the unit square 0, in [77] for polynomials on the sector D (%) and
the results obtained in the previous sections, we have the following:
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P(A) [ P(*D(5)) | P(*D(F)) | PCO)

Markov constants 2410 25 4(13 + 8\/5) V13
Polarization constants 3 2 2+ ? %
Unconditional Constants 2 3 5+ 4v/2 5

Furthermore, all the constants appearing in the previous table are sharp. Actually, the
extreme polynomials where the constants are attained are the following:

1. +(2% + y? — 6zy) for the simplex.

2. +(z* 4+ y* — 4zy) for the sector D (%).

3. £ (22 4+ (54 4v2)y? — (4 + 4v/2)zy) for the sector D (Z).
4. +(2* + y* — 3zy) for the unit square.

Compare the previous table with similar results that hold for 2-homogeneous polyno-
mials on the Banach spaces (2, (3 and (% :

PEA) | PG | PRE)
Markov constants 4 2 2V/2
2 1 2

V2 | 1+V2

Polarization constants

H
+
S

Unconditional Constants

)

Observe that the Markov constants of the spaces P(*(?) and P(*(%)) can be calculated
taking into consideration the description of the geometry of those spaces given in [50].
Also, the Markov constant of P(?¢3) is twice its polarization constant, or in other words,
2.

On the other hand, the constants appearing in the second line of the previous table are
well-known results (see for instance [121]).

Finally, the unconditional constants corresponding to the third line of the previous table
were calculated in Theorem 3.5, Theorem 3.19 and Theorem 3.6 of [70].
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