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tors / Gustavo da Silva Araújo. - João Pessoa: [s.n.], 2016.

000f. : il.

Orientador: Daniel Marinho Pellegrino; Juan Benigno Seoane
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Prof. Dr. Membro 3
Universidade Federal da Paráıba
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Al prof. Luis Bernal González, su conocimiento, dedicación y pasión por la ciencia me
han inspirado en los momentos finales de este trabajo.
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Resumo

Este trabalho está dividido em três partes. Na primeira parte, investigamos
o comportamento das constantes das desigualdes polinomial e multilinear de
Hardy–Littlewood. Na segunda parte, apresentamos uma nova classe de op-
eradores multilineares somantes, a qual recupera as classes dos operadores
multilineares absolutamente e multiplo somantes. Além disso, mostramos
um resultado ótimo de espaçabilidade para o complementar de uma classe
de operadores multiplo somantes em `p e também generalizamos um resul-
tado relacionado a cotipo (de 2010) devido a G. Botelho, C. Michels, and D.
Pellegrino. Finalmente, provamos novos resultados de coincidência para as
classes de operadores multilineares absolutamente e multiplo somantes. Em
particular, mostramos que o famoso teorema de Defant–Voigt é ótimo. Na ter-
ceira parte, provamos várias desigualdades ótimas para o espaço P

(
2D
(
π
4

))
de polinômios 2-homogêneos em R2 dotados com a norma do supremo no se-
tor D

(
π
4

)
:=
{
eiθ : θ ∈

[
0, π

4

]}
. Além dos resultados principais, encontramos

desigualdades ótimas de Bernstein e Markov e calculamos as constantes in-
conditional e de polarização da base canônica do espaço P

(
2D
(
π
4

))
.

Palavras-chave: Constante incondicional, constante de polarization, desigualdade de Bern-
stein, desigualdade de Bohnenblust–Hille, desigualdade de Hardy–Littlewood, desigual-
dade de Markov, espaçabilidade, operadores multilineares somantes.
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Abstract

This work is divided into three parts. In the first part, we investigate the be-
haviour of the constants of the Hardy–Littlewood polynomial and multilinear
inequalities. In the second part, we present a new class of summing multilinear
operators, which recovers the class of absolutely and multiple summing opera-
tors. Moreover, we show an optimal spaceability result for a set of non-multiple
summing forms on `p and we also generalize a result related to cotype (from
2010) as highlighted by G. Botelho, C. Michels, and D. Pellegrino. Lastly, we
prove new coincidence results for the class of absolutely and multiple summing
multilinear operators. In particular, we show that the well-known Defant–
Voigt theorem is optimal. In the third part, a number of sharp inequalities
are proved for the space P

(
2D
(
π
4

))
of 2-homogeneous polynomials on R2,

endowed with the supremum norm on the sector D
(
π
4

)
:=
{
eiθ : θ ∈

[
0, π

4

]}
.

Among the main results we can find sharp Bernstein and Markov inequali-
ties and the calculation of the unconditional and polarization constants of the
canonical basis of the space P

(
2D
(
π
4

))
.

Key-words: Bernstein inequality, Bohnenblust–Hille inequality, Hardy–Littlewood in-
equality, Markov inequality, polarization constant, spaceability, summing multilinear op-
eratos, unconditional constant.
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Preliminaries and Notation

For any function f , whenever it makes sense we formally define f(∞) = limp→∞ f(p).
Throughout this, E,E1, E2, . . . , F shall denote Banach spaces over K, which shall stands
for the complex C or real R fields. L(E1, ..., Em;F ) stand for the Banach space of all
bounded m-linear operators from E1 × · · · × Em to F under the supremum norm and
when E1 = · · · = Em = E we denote L(E1, ..., Em;F ) by L(mE;F ). The topological dual
of E shall be denoted by E∗ and for any p ≥ 1 its conjugate is represented by p∗, i.e.,
1
p

+ 1
p∗

= 1. For p ∈ [1,∞], as usual, we consider the Banach spaces of weakly and strongly
p-summable sequences, respectively, as bellow:

`wp (E) :=

(xj)
∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
w,p

:= sup
ϕ∈BE∗

(
∞∑
j=1

|ϕ(xj)|p
)1/p

<∞


and

`p(E) :=

(xj)
∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
p

:=

(
∞∑
j=1

‖xj‖p
)1/p

<∞


(naturally, the sum

∑
should be replaced by the supremum if p = ∞). Besides, we set

X∞ := c0 and Xp := `p := `p(K). For a positive integer m, p stands for a multiple
exponent (p1, . . . , pm) ∈ [1,∞]m and∣∣∣∣ 1p

∣∣∣∣ :=
1

p1

+ · · ·+ 1

pm
.

The Khinchine inequality (see [62]) asserts that for any 0 < q <∞, there are positive
constants Aq, Bq such that regardless of the scalar sequence (aj)

∞
j=1 in `2 we have

Aq

(
∞∑
j=1

|aj|2
) 1

2

≤

(∫ 1

0

∣∣∣∣∣
∞∑
j=1

ajrj(t)

∣∣∣∣∣
q

dt

) 1
q

≤ Bq

(
∞∑
j=1

|aj|2
) 1

2

,

where rj are the Rademacher functions. More generally, from the above inequality to-
gether with the Minkowski inequality we know that (see [16], for instance, and the refer-

xix



ences therein)

Amq

(
∞∑

j1,...,jm=1

|aj1···jm|2
) 1

2

≤

(∫
I

∣∣∣∣∣
∞∑

j1,...,jm=1

aj1···jmrj1(t1) · · · rjm(tm)

∣∣∣∣∣
q

dt

) 1
q

≤ Bm
q

(
∞∑

j1,...,jm=1

|aj1···jm |2
) 1

2

,

(1)

where I = [0, 1]m and dt = dt1 · · · dtm, for all scalar sequences (aj1···jm)∞j1,...,jm=1 in `2.
The optimal constants Aq of the Khinchine inequality (these constants are due to U.

Haagerup [72]) are:

• Aq =
√

2

(
Γ
(

1+q
2

)
√
π

) 1
q

if q > q0
∼= 1.8474;

• Aq = 2
1
2
− 1
q if q < q0.

The definition of the number q0 above is the following: q0 ∈ (1, 2) is the unique real
number with

Γ

(
p0 + 1

2

)
=

√
π

2
.

For complex scalars, using Steinhaus variables instead of Rademacher functions it is well
known that a similar inequality holds, but with better constants (see [81, 124]). In this
case the optimal constant is

• Aq = Γ

(
q + 2

2

) 1
q

if q ∈ [1, 2].

The notation of the constant Aq shown above will be employed throughout thesis.
Using the argument introduced in [29, Theorem 4] we present a variant of result by

Boas, that first appeared in [5, Lemma 6.1], and that is proved in [1].

Kahane–Salem–Zygmund’s inequality. Let m,n ≥ 1, p1, ..., pm ∈ [1,+∞]m and, for
p ≥ 1, define

α(p) =


1

2
− 1

p
, if p ≥ 2;

0 , otherwise.

Then there exists a m-linear map A : `np1 × · · · × `
n
pm → K of the form

A (z1, . . . , zm) =
n∑

j1,...,jm=1

εj1...jmz
1
j1
· · · zdjm

with εj1···jm ∈ {−1, 1}, such that

‖A‖ ≤ Cm · n
1
2

+α(p1)+···+α(pm) (2)

where Cm = (m!)1− 1
min{p,2}

√
32m log(6m) and p = max{p1, . . . , pm}.

xx



The essence of the Kahane–Salem–Zygmund inequalities probably appeared for the
first time in [79], but our approach follows the lines of Boas’ paper [29]. Paraphrasing
Boas, the Kahane–Salem–Zygmund inequalities use probabilistic methods to construct
a homogeneous polynomial (or multilinear operator) with a relatively small supremum
norm but relatively large majorant function (we refer [1, Appendix B] for a more detailed
study of the Kahane–Salem–Zygmund inequalities).
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Introduction

Part I: On the Bohnenblust–Hille and Hardy–Littlewood

inequalities

To solve a problem posed by P.J. Daniell, Littlewood [84] proved in 1930 his famous
4/3-inequality, which asserts that(

∞∑
i,j=1

|T (ei, ej)|
4
3

) 3
4

≤
√

2 ‖U‖

for every continuous bilinear form T : c0 × c0 → K. One year later, and due to his
interest in solving a long standing problem on Dirichlet series, H.F. Bohnenblust and
E. Hille proved in Annals of Mathematics (see [32]) a generalization of Littlewood’s 4/3
inequality to m-linear forms: there exists a (optimal) constant Bmult

K,m ≥ 1 such that for all
continuous m-linear forms T : `n∞ × · · · × `n∞ → K, and all positive integers n,(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖ .

The problem was posed by H. Bohr and consisted in determining the width of the max-
imal strips on which a Dirichlet series can converge absolutely but non uniformly. More
precisely, for a Dirichlet series

∑
n

ann
−s, Bohr defined

σa = inf

{
r :
∑
n

ann
−s converges for Re(s) > r

}
,

σu = inf

{
r :
∑
n

ann
−s converges uniformly in Re (s) > r + ε for every ε > 0

}
,

and
S := sup {σa − σu} .

xxiii



Bohr’s question asked for the precise value of S. The answer came from H.F. Bohnenblust
and E. Hille (1931):

S = 1/2.

The main tool is the, by now, so-called Bohnenblust–Hille inequality. The precise growth
of the constants Bmult

K,m is important for applications and is nowadays a challenging prob-

lem in Mathematical Analysis. For real scalars, the estimates of Bmult
R,m are important in

Quantum Information Theory (see [92]). In the last years a series of papers related to the
Bohnenblust–Hille inequality have been published and several advances were achieved (see
[5, 52, 55, 58, 104, 112, 119] and the references therein). Only very recently, in [23, 104]
it was shown that the constants Bmult

K,m have a subpolynomial growth, which is quite sur-
prising because all previous estimates (from 1931 up to 2011) predicted an exponential
growth. For real scalars, in 2014 (see [65]) it was shown that the optimal constant for

m = 2 is
√

2 and in general Bmult
R,m ≥ 21− 1

m . In the case of complex scalars it is still an
open problem whether the optimal constants are strictly greater than 1.

Given α = (α1, . . . , αn) ∈ Nn, define |α| := α1+· · ·+αn and xα stands for the monomial
xα1

1 · · ·xαnn for x = (x1, . . . , xn) ∈ Kn. The polynomial Bohnenblust–Hille inequality (see
[5, 32] and the references therein) ensures that, given positive integers m ≥ 2 and n ≥ 1,
if P is a homogeneous polynomial of degree m on `n∞ given by

P (x1, ..., xn) =
∑
|α|=m

aαx
α,

then ∑
|α|=m

|aα|
2m
m+1

m+1
2m

≤ Bpol
K,m ‖P‖

for some constant Bpol
K,m ≥ 1 which does not depend on n (the exponent 2m

m+1
is optimal),

where ‖P‖ := supz∈B`n∞
|P (z)|. The search of precise estimates of the growth of the

constants Bpol
K,m is crucial for different applications and remains an important open problem

(see [23] and the references therein). For real scalars, it was shown in [45] that the
hypercontractivity of Bpol

R,m is optimal. For complex scalars the behavior of Bpol
K,m is still

unknown. Moreover, in the complex scalar case, having good estimates for Bpol
C,m is crucial

in applications in Complex Analysis and Analytic Number Theory (see [55]); for instance,
the subexponentiality of the constants of the polynomial version of the Bohnenblust–Hille
inequality (complex scalars case) was recenly used in [23] in order to obtain the asymptotic
growth of the Bohr radius of the n-dimensional polydisk. More precisely, according to
Boas and Khavinson [31], the Bohr radius Kn of the n-dimensional polydisk is the largest
positive number r such that all polynomials

∑
α aαz

α on Cn satisfy

sup
z∈rDn

∑
α

|aαzα| ≤ sup
z∈Dn

∣∣∣∣∣∑
α

aαz
α

∣∣∣∣∣ .
The Bohr radius K1 was estimated by H. Bohr, and it was later shown (independently) by
M. Riesz, I. Schur and F. Wiener that K1 = 1/3 (see [31, 33] and the references therein).
For n ≥ 2, exact values of Kn are unknown. In [23], the subexponentiality of the constants
of the complex polynomial version of the Bohnenblust–Hille inequality was proved and
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using this fact it was finally proved that

lim
n→∞

Kn√
logn
n

= 1,

solving a challenging problem that many researchers have been struggling for several years.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust–Hille
inequality for `p spaces. The bilinear case was proved by Hardy and Littlewood in 1934
(see [73]) and in 1981 it was extended to multilinear operators by Praciano-Pereira (see

[118]). More precisely, the classical Hardy–Littlewood inequality asserts that for
∣∣∣ 1
p

∣∣∣ ≤ 1
2

there exists a (optimal) constant Cmult
K,m,p ≥ 1 such that, for all positive integers n and all

continuous m-linear forms T : `np1 × · · · × `
n
pm → K,

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ .

When
∣∣∣ 1
p

∣∣∣ = 0 (or equivalently p1 = · · · = pm =∞) since 2m

m+1−2| 1p |
= 2m

m+1
, we recover the

classical Bohnenblust–Hille inequality (see [32]).

When replacing `n∞ by `np the extension of the polynomial Bohnenblust–Hille inequality
is called polynomial Hardy–Littlewood inequality. More precisely, given positive integers
m ≥ 2 and n ≥ 1, if P is a homogeneous polynomial of degree m on `np with 2m ≤ p ≤ ∞
given by P (x1, . . . , xn) =

∑
|α|=m aαx

α, then there is a constant Cpol
K,m,p ≥ 1 such that

∑
|α|=m

|aα|
2mp

mp+p−2m


mp+p−2m

2mp

≤ Cpol
K,m,p ‖P‖ ,

and Cpol
K,m,p does not depend on n, where ‖P‖ := supz∈B`np

|P (z)|.

When p = ∞ we recover the polynomial Bohnenblust–Hille inequality. Using the
generalized Kahane–Salem–Zygmund inequality (2) (see, for instance, [5]) we can verify
that the exponents in the above inequalities are optimal.

The precise estimates of the constants of the Hardy–Littlewood inequalities are un-
known and even its asymptotic growth is a mystery (as it happens with the Bohnenblust–
Hille inequality).

Very recently an extended version of the Hardy–Littlewood inequality was presented
in [5] (see also [63]). Let Xp := `p (for 1 ≤ p <∞) and also X∞ := c0.

Theorem 0.1 (Generalized Hardy–Littlewood inequality for 0 ≤
∣∣ 1
p

∣∣ ≤ 1
2

[5]). Let p :=

(p1, . . . , pm) ∈ [1,+∞]m such that
∣∣ 1
p

∣∣ ≤ 1
2
. Let also q := (q1, . . . , qm) ∈

[(
1−
∣∣ 1
p

∣∣)−1
, 2
]m

.
The following are equivalent:

xxv



(1) There is a (optimal) constant Cmult
K,m,p,q ≥ 1 such that

 ∞∑
j1=1

· · ·( ∞∑
jm=1

|T (ej1 , . . . , ejm)|qm
) qm−1

qm

· · ·


q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

for all continuous m-linear forms T : Xp1 × · · · ×Xpm → K.

(2) 1
q1

+ · · ·+ 1
qm
≤ m+1

2
−
∣∣∣ 1
p

∣∣∣.
For the case 1

2
≤
∣∣ 1
p

∣∣ < 1 there is also a version of the multilinear Hardy–Littlewood

inequality, which is an immediate consequence of Theorem 1.2 from [4] (see also [63]).

Theorem 0.2 (Hardy–Littlewood inequality for 1
2
≤
∣∣ 1
p

∣∣ < 1). Let m ≥ 1 and p =

(p1, . . . , pm) ∈ [1,∞]m be such that 1
2
≤
∣∣∣ 1
p

∣∣∣ < 1. Then there is a (optimal) constant

Dmult
K,m,p ≥ 1 such that

(
N∑

i1,...,im=1

|T (ei1 , . . . , eim)|
1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖

for every continuous m-linear operator T : `Np1 × · · · × `
N
pm → K. Moreover, the exponent(

1−
∣∣∣ 1
p

∣∣∣)−1

is optimal.

In this part of the work, we investigate the behavior of the constants Cmult
K,m,p,q, Dmult

K,m,p

(Chapter 1) and Cpol
K,m,p (Chapter 3). In Chapter 2 we answer, for 1 ≤ p ≤ m, the question

on how the Hardy–Littlewood multilinear inequalities behave if we replace the exponents
2mp/(mp + p − 2m) and p/(p − m) by a smaller value r (see Theorem 2.1). This case
(1 ≤ p ≤ m) was only explored for the case of Hilbert spaces (p = 2, see [37, Corollary
5.20] and [51]) and the case p =∞ was explored in [46].

Part II: Summability of multilinear operators

In 1950, A. Dvoretzky and C. A. Rogers [66] solved a long standing problem in Banach
Space Theory when they proved that in every infinite-dimensional Banach space there
exists an unconditionally convergent series which is not absolutely convergent. This result
is the answer to Problem 122 of the Scottish Book [88], addressed by S. Banach in [21,
page 40]). It was the starting point of the theory of absolutely summing operators.

A. Grothendieck, in [71], presented a different proof of the Dvoretzky-Rogers theorem
and his “Résumé de la théorie métrique des produits tensoriels topologiques” brought
many illuminating insights to the theory of absolutely summing operators.

The notion of absolutely p-summing linear operators is credited to A. Pietsch [117] and
the notion of (q, p)-summing operator is credited to B. Mitiagin and A. Pe lczyński [91].
In 1968 J. Lindenstrauss and A. Pe lczyński’s seminal paper [83], re-wrote Grothendieck’s
Résumé in a more comprehensive form, putting the subject in the spotlight. In 2003,
Matos [86] and, independently, Bombal, Pérez-Garćıa and Villanueva [34] introduced a
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more general notion of absolutely summing operators called multiple summing multilinear
operators, which has gained special attention, being considered by several authors as
the most important multilinear generalization of absolutely summing operators: let 1 ≤
p1, . . . , pm ≤ q < ∞. A bounded m-linear operator T : E1 × · · · × Em → F is multiple
(q; p1, . . . , pm)-summing if there exists Cm > 0 such that(

∞∑
j1,...,jm=1

∥∥∥T (x(1)
j1
, . . . , x

(m)
jm

)∥∥∥q) 1
q

≤ Cm

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

for every (x
(k)
j )∞j=1 ∈ `wpk(Ek), k = 1, . . . ,m. The class of all multiple (q; p1, . . . , pm)-

summing operators from E1×· · ·×Em to F will be denoted by Πm
mult(q;p1,...,pm)(E1, . . . , Em;F ).

The roots of the subject could probably be traced back to 1930, when Littlewood [84]
proved his famous 4/3-inequality to solve a problem posed by P.J. Daniell. One year later,
interested in solving a long standing problem on Dirichlet series, H.F. Bohnenblust and
E. Hille generalized Littlewood’s 4/3 inequality to m-linear forms. Using that L (c0;E)
is isometrically isomorphic to `w1 (E) (see [62]), the Bohnenblust–Hille inequality can be
interpreted as the beginning of the notion of multiple summing operators, because in the
modern terminology, the classical Bohnenblust–Hille inequality [32] ensures that, for all
m ≥ 2 and all Banach spaces E1, ..., Em,

L (E1, ..., Em;K) = Πm
mult( 2m

m+1
;1,...,1) (E1, ..., Em;K) .

In Chapter 4, we prove that, if 1 < s < p∗, the set (L (m`p;K)rΠm
mult( 2m

m+1
;s)

(m`p;K))∪
{0} contains a closed infinite-dimensional Banach space with the same dimension of
L(m`p;K). As a consequence, we observe, for instance, a new optimal component of
the Bohnenblust–Hille inequality: the terms 1 from the tuple

(
2m
m+1

; 1, ..., 1
)

is also op-
timal. Moreover, we generalize a result related to cotype (from 2010) credited to G.
Botelho, C. Michels, and D. Pellegrino, and we investigate the optimality of coincidence
results for multiple summing operators in c0 and in the framework of absolutely summing
multilinear operators. As a result, we observe that the Defant–Voigt theorem is optimal.
In Chapter 5 we present a new class of summing multilinear operators, which recovers the
class of absolutely (and multiple) summing operators.

Part III: Classical inequalities for polynomials on cir-

cle sectors

The study of low dimensional spaces of polynomials can be an interesting source of
examples and counterexamples related to more general questions. In this chapter, we
mind 2-variable, real 2-homogeneous polynomials endowed with the supremum norm on
the sector D

(
π
4

)
:=
{
eiθ : θ ∈

[
0, π

4

]}
. The space of such polynomials is represented by

P
(

2D
(
π
4

))
. This chapter can be seen as a continuation of [77] and [93]. Other publications

within the same direction of research are [69, 70, 94, 95, 96, 98].

In order to obtain sharp polynomial inequalities in P
(

2D
(
π
4

))
we will use the so called

Krein-Milman approach, which is based on the fact that norm attaining convex functions
attain their norm at an extreme point of their domain.
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Let us describe now the four inequalities that will be studied in this chapter. Sec-
tion 6.1 is devoted to obtain a Bernstein type inequality for polynomials in P

(
2D
(
π
4

))
.

Namely, for a fixed (x, y) ∈ D
(
π
4

)
, we find the best (smallest) constant Φ(x, y) in the

inequality
‖∇P (x, y)‖2 ≤ Φ(x, y)‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
, where ‖ · ‖2 denotes the Euclidean norm in R2. Similarly, we

also obtain a Markov global estimate on the gradient of polynomials in P
(

2D
(
π
4

))
, or in

other words, the smallest constant M > 0 in the inequality

‖∇P (x, y)‖2 ≤M‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
and (x, y) ∈ D

(
π
4

)
. It is necessary to mention that the study

of Bernstein and Markov type inequalities has a longstanding tradition. The interested
reader can find further information on this classical topic in [28, 74, 75, 82, 89, 90, 97,
100, 122, 123, 125, 127].

In Section 6.2 we find the smallest constant K > 0 in the inequality

‖L‖D(π4 ) ≤ K‖P‖D(π4 ),

where P is an arbitrary polynomial in P
(

2D
(
π
4

))
and L is the polar of P . Observe that

here ‖L‖D(π4 ) stands for the supremum norm of L over D
(
π
4

)2
. Hence, what we do is to

provide the polarization constant of the space P
(

2D
(
π
4

))
. The calculation of polarization

constants in various polynomial spaces is largely motivated by the extensive research on
the topic (for examples, you can observe at [64, 75, 85, 121]).

Finally, Section 6.3 focuses on obtaining the smallest constant C > 0 in the inequality

‖|P |‖D(π4 ) ≤ C‖P‖D(π4 ), (3)

for all P ∈ P
(

2D
(
π
4

))
, where |P | is the modulus of P , i.e., if P (x, y) = ax2 + by2 + cxy,

then |P |(x, y) = |a|x2 + |b|y2 + |c|xy. The constant C turns out to be the unconditional
constant of the canonical basis of P

(
2D
(
π
4

))
. It is interesting to note that (in 1914) H.

Bohr [33] studied this type of inequalities for infinite complex power series. The study of
Bohr radii is nowadays a fruitful field (see for instance [23, 29, 54, 56, 57, 59]). It can be
observed that the relationship between unconditional constants in polynomial spaces and
inequalities of the type (3) was already noticed in [56].
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Part I

On the Bohnenblust–Hille and
Hardy–Littlewood inequalities





Chapter 1
The multilinear Bohnenblust–Hille and
Hardy–Littlewood inequalities

In this chapter we present the results from the following research papers:

[12] G. Araújo, and D. Pellegrino, Lower bounds for the constants of the Hardy-Littlewood
inequalities, Linear Algebra Appl. 463 (2014), 10-15.

[13] G. Araújo, and D. Pellegrino, On the constants of the Bohnenblust-Hille and Hardy–
Littlewood inequalities, arXiv:1407.7120 [math.FA].

[16] G. Araújo, D. Pellegrino and D.D.P. Silva e Silva, On the upper bounds for the
constants of the Hardy-Littlewood inequality, J. Funct. Anal. 267 (2014), no. 6,
1878-1888.

Let K be R or C and m ≥ 2 be a positive integer. In 1931, F. Bohnenblust and E.
Hille (see [32]) proved in the Annals of Mathematics that there exists a (optimal) constant
Bmult

K,m ≥ 1 such that for all continuous m-linear forms T : `n∞ × · · · × `n∞ → K, and all
positive integers n, (

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖ . (1.1)

The precise growth of the constants Bmult
K,m is important for many applications (see,

e.g., [92]) and remains a big open problem. Only very recently, in [23, 104] it was shown
that the constants have a subpolynomial growth. For real scalars (2014, see [65]) it was

shown that the optimal constant for m = 2 is
√

2 and in general Bmult
R,m ≥ 21− 1

m . In the
case of complex scalars it is still an open problem whether the optimal constants are
strictly grater than 1; in the polynomial case, in 2013 D. Núñez-Alarcón proved that the
complex constants are strictly greater than 1 (see [101]). Even basic questions related to
the constants Bmult

K,m remain unsolved. For instance:

• Is the sequence of optimal constants
(
Bmult

K,m
)∞
m=1

increasing?

• Is the sequence of optimal constants
(
Bmult

K,m
)∞
m=1

bounded?
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• Is Bmult
C,m = 1?

The best known estimates for the constants in (1.1), which are recently presented in
[23], are (Bmult

K,1 = 1 is obvious)

Bmult
K,m ≤

m∏
j=2

A−1
2j−2
j

,

where A 2j−2
j

are the respective constants of the Khnichine inequality, i.e.,

Bmult
C,m ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

,

Bmult
R,m ≤ 2

446381
55440

−m
2

m∏
j=14

Γ
(

3
2
− 1

j

)
√
π


j

2−2j

, for m ≥ 14,

Bmult
R,m ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13.

(1.2)

In a more friendly presentation the above formulas tell us that the growth of the constants
Bmult

K,m is subpolynomial (in fact, sublinear) since, from the above estimates it can be proved
that (see [23])

Bmult
C,m < m

1−γ
2 < m0.21139,

Bmult
R,m < 1.3 ·m 2−log 2−γ

2 < 1.3 ·m0.36482,

where γ denotes the Euler–Mascheroni constant. The above estimates are quite surprising
because all previous estimates (from 1931 up to 2011) predicted an exponential growth.
It was only in 2012, with [112] (motivated by [58]), when the perspective on the subject
changed entirely.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust–Hille
inequality to `p spaces. More precisely, the classical Hardy–Littlewood inequality asserts

that for
∣∣∣ 1
p

∣∣∣ ≤ 1
2

there exists a (optimal) constant Cmult
K,m,p ≥ 1 such that, for all positive

integers n and all continuous m-linear forms T : `np1 × · · · × `
n
pm → K,

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ . (1.3)

Using the generalized Kahane-Salem-Zygmund inequality (2) (see [5]) one can easily verify

that the exponents 2m

m+1−2| 1p |
are optimal. When

∣∣∣ 1
p

∣∣∣ = 0 (or equivalently p1 = · · · = pm =

∞) since 2m

m+1−2| 1p |
= 2m

m+1
, we recover the classical Bohnenblust–Hille inequality (see [32]).

The precise estimates of the constants of the Hardy–Littlewood inequalities are un-
known and even its asymptotic growth is a mystery (as it happens with the Bohnenblust–
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Hille inequality). The original estimates for Cmult
K,m,p (see [5]) were of the form

Cmult
K,m,p ≤

(√
2
)m−1

. (1.4)

Very recently an extended version of the Hardy–Littlewood inequality was presented
in [5] (see also [63]). Consider Xp := `p, for 1 ≤ p <∞, and also X∞ := c0.

Theorem 1.1 (Generalized Hardy–Littlewood inequality for 0 ≤
∣∣ 1
p

∣∣ ≤ 1
2

[5]). Let p :=

(p1, . . . , pm) ∈ [1,+∞]m such that
∣∣ 1
p

∣∣ ≤ 1
2
. Let also q := (q1, . . . , qm) ∈

[(
1−
∣∣ 1
p

∣∣)−1
, 2
]m

.
The following are equivalent:

(1) There is a (optimal) constant Cmult
K,m,p,q ≥ 1 such that

 ∞∑
j1=1

· · ·( ∞∑
jm=1

|T (ej1 , . . . , ejm)|qm
) qm−1

qm

· · ·


q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

for all continuous m-linear forms T : Xp1 × · · · ×Xpm → K.

(2) 1
q1

+ · · ·+ 1
qm
≤ m+1

2
−
∣∣∣ 1
p

∣∣∣.
Some particular cases of Cmult

K,m,p,q will be used throughout this chapter, therefore, we
will establish notations for the (optimal) constants in some special cases:

• If p1 = · · · = pm =∞ we recover the generalized Bohnenblust–Hille inequality and
we will denote Cmult

K,m,(∞,...,∞),q by Bmult
K,m,q. Moreover, if q1 = · · · = qm = 2m

m+1
we re-

cover the classical Bohnenblust–Hille inequality and we will denote Bmult
K,m,( 2m

m+1
,..., 2m

m+1)
by Bmult

K,m ;

• If q1 = · · · = qm = 2m

m+1−2| 1p |
we recover the classical Hardy–Littlewood inequality

and we will denote Cmult
K,m,p,( 2m

m+1−2|1/p| ,...,
2m

m+1−2|1/p|)
by Cmult

K,m,p. Moreover, if p1 = · · · =

pm = p we will denote Cmult
K,m,p by Cmult

K,m,p.

For the case 1
2
≤
∣∣ 1
p

∣∣ < 1 there is also a version of the multilinear Hardy–Littlewood

inequality, which is an immediate consequence of Theorem 1.2 from [4] (see also [63]).

Theorem 1.2 (Hardy–Littlewood inequality for 1
2
≤
∣∣ 1
p

∣∣ < 1). Let m ≥ 1 and p =

(p1, . . . , pm) ∈ [1,∞]m be such that 1
2
≤
∣∣∣ 1
p

∣∣∣ < 1. Then there is a (optimal) constant

Dmult
K,m,p ≥ 1 such that

(
N∑

i1,...,im=1

|T (ei1 , . . . , eim)|
1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖

for every continuous m-linear operator T : `Np1 × · · · × `
N
pm → K. Moreover, the exponent(

1−
∣∣∣ 1
p

∣∣∣)−1

is optimal.
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The best known upper bounds for the constants on the previous result are Dmult
R,m,p ≤(√

2
)m−1

and Dmult
C,m,p ≤ (2/

√
π)

m−1
(see [4, 63]).

We will only deal with this second case of the Hardy–Littlewood inequality (for 1
2
≤∣∣ 1

p

∣∣ < 1) in Chapter ??. Again we will establish notations for the (optimal) constants

Dmult
K,m,p in some special cases:

• When p1 = · · · = pm = p we denote Dmult
K,m,p by Dmult

K,m,p.

Our main contributions regarding the constants of the multilinear case of the Hardy–
Littlewood inequality can be summarized in the following result, which is a direct conse-
quence of the forthcoming sections 1.1 and 1.2.

Theorem 1.3. Let m ≥ 2 and let σR =
√

2 and σC = 2/
√
π. Then,

(1) Let q = (q1, ..., qm) ∈ [1, 2]m such that
∣∣∣ 1
q

∣∣∣ = m+1
2

and max qi <
2m2−4m+2
m2−m−1

, then

Bmult
K,m,q ≤

m∏
j=2

A−1
2j−2
j

.

(2) Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp for 2m < p ≤ ∞ and Cmult

R,m,2m > 1.

(3) (i) For
∣∣∣ 1
p

∣∣∣ ≤ 1
2
,

Cmult
K,m,p ≤ (σK)2(m−1)| 1p | (Bmult

K,m
)1−2| 1p | .

In particular,
(
Cmult

K,m,p
)∞
m=1

is sublinear if
∣∣∣ 1
p

∣∣∣ ≤ 1
m

.

(ii) For 2m3 − 4m2 + 2m < p ≤ ∞,

Cmult
K,m,p ≤

m∏
j=2

A−1
2j−2
j

.

(4) Let 2m < p ≤ ∞ and let q := (q1, ..., qm) ∈
[

p
p−m , 2

]m
such that

∣∣∣ 1
q

∣∣∣ = mp+p−2m
2p

. If

max qi <
2m2−4m+2
m2−m−1

, then

Cmult
K,m,p,q ≤

m∏
j=2

A−1
2j−2
j

.

Note that, for instance, if 2m3−4m2 +2m < p ≤ ∞, the formula of item (3)(ii) is not
dependent on p, contrary to what happens in item (3)(i), where we can see a dependence
on p but, paradoxically, it is worse than the formula from item (3)(ii). This suggests the
following problems:

• Are the optimal constants of the Bohnenblust–Hille and Hardy–Littlewood inequal-
ities the same?

• Are the optimal constants of the Hardy–Littlewood inequality independent of p (at
least for large p)?
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Several advances and improvements have been obtained by various authors in this
context. We can highlight and summarize these findings in the following remarks:

Remark 1.4. D. Pellegrino proved in [111] that

Bmult
R,m,(1,2,...,2) = (

√
2)m−1 (1.5)

and, for i ∈ {1, ...,m},

Bmult

R,m,
(

2(m−1)qi
(m+1)qi−2

,...,
2(m−1)qi
(m+1)qi−2

,qi,
2(m−1)qi
(m+1)qi−2

,...,
2(m−1)qi
(m+1)qi−2

) ≥ 2
2m−qim−4+3qi

2qi ,

with qi ∈ [1, 2] in the i-th position. In [44], when i = m, the above estimate it was
improved for J. Campos, W. Cavalcante, V.V. Fávaro, D. Núñez-Alarcón, D. Pellegrino
and D.M. Serrano-Rodŕıguez to

Bmult

R,m,( 2(m−1)qm
(m+1)qm−2

,...,
2(m−1)qm
(m+1)qm−2

,qm)
≥ 2

3qmm−2m−5qm+4
2qm(m−1) .

In particular, it was possible to conclude that

Bmult
R,3,(4/3,4/3,2) = Bmult

R,3,(4/3,8/5,8/5) = Bmult
R,3,(4/3,2,4/3) = 23/4.

D. Pellegrino and D.M. Serrano-Rodŕıguez proved in [113] the following (in some
sense) more general result: if m ≥ 2 is a positive integer, and q = (q1, ..., qm) ∈ [1, 2]m

are such that |1/q| = (m+ 1)/2, then, for j = 1, 2,

Bmult
R,m,q ≥ 2

(m−1)(1−qj)q̂j+
∑m
i 6=j q̂i

q1···qm ,

with q̂i = q1···qm
qi

, i = 1, ...,m. In particular, they proved that (1.5) also is true for the

exponent (2,1,2,...,2).

Remark 1.5. Very recently, D. Pellegrino presented1 new lower bounds for the real case
of the Hady–Littlewood inequalities, which improve the so far best known lower estimates
(item (2) of the previous theorem) and provide a closed formula even for the case p = 2m
(see [44]). Pellegrino’s approach is very interesting because even with a simple argu-
ment, he “finds an overlooked connection between the Clarkson’s inequalities and Hardy–
Littlewood’s constants which helps to find analytical lower estimates for these constants”.
More precisely, using Clarkson’s inequalities, D. Pellegrino proved that for m ≥ 2 and
p ≥ 2m, we have

Cmult
R,m,p ≥

2
2mp+2m−p−2m2

mp

supx∈[0,1]
((1+x)p∗+(1−x)p∗ )1/p

∗

(1+xp)1/p

.

Remark 1.6. If p = (p, ..., p) in Theorem 1.3 (3)(i) we have the following estimate for
Cmult

K,m,p with 2m ≤ p ≤ 2m3 − 4m2 + 2m:

Cmult
K,m,p ≤ (σK)

2m(m−1)
p (Bmult

K,m )
p−2m
p . (1.6)

1The original paper that D. Pellegrino presented the new lower bounds for the real case of the Hardy–
Littlewood inequalities has been withdrawn by the author (see [105]). This arXiv preprint is now incor-
porated to [44].
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Very recently, D. Pellegrino in [106] proved that, for m ≥ 3 and 2m ≤ p ≤ 2m3−4m2+2m,
we can improve (1.6) to

Cmult
K,m,p ≤ (Bmult

K,m )
(m−1)

(
2m−p+mp−2m2

m2p−2mp

)
(σK)

p−2m−mp+6m2−6m3+2m4

mp(m−2) .

When p = 2m3 − 4m2 + 2m this formula coincides with Theorem 1.3 (3)(ii) when p →
2m3 − 4m2 + 2m.

Remark 1.7. Let p0 ∈ (1, 2) be the unique real number satisfying

Γ

(
p0 + 1

2

)
=

√
π

2
.

D. Núñez-Alarcón and D. Pellegrino in [102] found the exact value of the constant in

the particular case K = R, m = 2, q =
(

p
p−1

, 2
)

and p = (p,∞) with p ≥ p0
p0−1

. More

precisely, they showed that

Cmult
R,2,(p,∞),( p

p−1
,2) = 2

1
2
− 1
p

whenever p ≥ p0
p0−1

. For 2 < p < p0, they found almost optimal constants, with better

precision than 4× 10−4.

Remark 1.8. D. Pellegrino proved in [109] that for m ≥ 2, p ≥ 2m and q := (q1, ..., qm) ∈[
p

p−m , 2
]m

such that
∣∣∣ 1
q

∣∣∣ = mp+p−2m
2p

and max qi ≥ 2m2−4m+2
m2−m−1

, we have

Cmult
K,m,p,q ≤ (σK)

(m−1)

(
1− (m+1)(2−max qi)(m−1)2

(m2−m−2)max qi

)(
m∏
j=2

A−1
2j−2
j

) (m+1)(2−max qi)(m−1)2

(m2−m−2)max qi

. (1.7)

The estimates (1.7) behaves continuously when compared with Theorem 1.3 (4)(i).

1.1 Lower and upper bounds for the constants of the

classical Hardy–Littlewood inequality

From [23, 104] we know that Bmult
K,m has a subpolynomial growth. On the other hand,

the best known upper bounds for the constants Cmult
K,m,p are

(√
2
)m−1

(see [4, 5, 63]). In

this section we show that
(√

2
)m−1

can be improved to

Cmult
C,m,p ≤

(
2√
π

) 2m(m−1)
p (

Bmult
C,m
) p−2m

p ,

Cmult
R,m,p ≤

(√
2
) 2m(m−1)

p (
Bmult

R,m,p
) p−2m

p .

(1.8)

These estimates are quite better than
(√

2
)m−1

because Bmult
K,m is sublinear. Moreover, our

estimates depend on p and m and catch more subtle information since now it is clear that
the estimates improve as p grows. As p goes to infinity we note that the above estimates
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tend to the best known estimates for Bmult
K,m (see (1.2)) and, for instance, if p ≥ m2 we

conclude that
(
Cmult

K,m,p
)∞
m=1

has a subpolynomial growth. One of our main result in this
section is the following:

Theorem 1.9. Let m ≥ 2 be a positive integer and
∣∣∣ 1
p

∣∣∣ ≤ 1
2
. Then, for all continuous

m-linear forms T : `np1 × · · · × `
n
pm → K and all positive integers n, we have

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ (1.9)

with

Cmult
R,m,p ≤

(√
2
)2(m−1)| 1p | (

Bmult
R,m
)1−2| 1p |

and

Cmult
C,m,p ≤

(
2√
π

)2(m−1)| 1p | (
Bmult

C,m
)1−2| 1p | .

In particular,
(
Cmult

K,m,p
)∞
m=1

has a subpolynomial growth if
∣∣∣ 1
p

∣∣∣ ≤ 1
m

.

Remark 1.10. If p1 = · · · = pm = p and 2m3 − 4m2 + 2m < p ≤ ∞, we already have
better information for Cmult

K,m,p when compared to the previous theorem (see Theorem 1.16).

Proof of Theorem 1.9. For the sake of simplicity we shall deal with the case p1 = · · · =
pm = p. The case p =∞ in (1.9) is precisely the Bohnenblust–Hille inequality, so we just
need to consider 2m ≤ p <∞. Let 2m−2

m
≤ s ≤ 2 and

λ0 =
2s

ms+ s− 2m+ 2
.

Since
m− 1

s
+

1

λ0

=
m+ 1

2
,

from the generalized Bohnenblust–Hille inequality (see [5]) we know that there is a con-
stant Bmult

K,m,(λ0,s,...,s) ≥ 1 such that for all m-linear forms T : `n∞ × · · · × `n∞ → K we have,
for all i = 1, ....,m, n∑

ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λ0


1
λ0

≤ Bmult
K,m,(λ0,s,...,s) ‖T‖ . (1.10)

Above,
n∑̂

ji=1

means the sum over all jk for all k 6= i. If we choose

s =
2mp

mp+ p− 2m
,
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we have
λ0 < s ≤ 2.

The multiple exponent
(λ0, s, s, ..., s)

can be obtained by interpolating the multiple exponents (1, 2..., 2) and
(

2m
m+1

, ..., 2m
m+1

)
with, respectively,

θ1 = 2

(
1

λ0

− 1

s

)
θ2 = m

(
2

s
− 1

)
,

in the sense of [5].

It is thus important to control the constants associated with the multiple exponents
(1, 2..., 2) and

(
2m
m+1

, ..., 2m
m+1

)
. The exponent

(
2m
m+1

, ..., 2m
m+1

)
is the classical exponent of the

Bohnenblust–Hille inequality and the estimate of the constant associated with (1, 2..., 2)
is well-known (we present the details for the sake of completeness). In fact, in general,
for the exponent

(
2k
k+1

, ..., 2k
k+1

, 2, ..., 2
)

(with 2k
k+1

repeated k times and 2 repeated m − k
times), using the multiple Khinchine inequality (1), we have, for all m-linear forms T :
`n∞ × · · · × `n∞ → K,( n∑

j1,...,jk=1

( n∑
jk+1,...,jm=1

|T (ej1 , ..., ejm)|2
) 1

2
2k
k+1
) k+1

2k

≤
( n∑
j1,...,jk=1

(
A
−(m−k)
2k
k+1

(∫
[0,1]m−k

∣∣∣ n∑
jk+1,...,jm=1

rjk+1
(tk+1) · · · rjm(tm)

× T (ej1 , ..., ejm)
∣∣∣ 2k
k+1
dtk+1 · · · dtm

) k+1
2k
) 2k
k+1
) k+1

2k

= A
−(m−k)
2k
k+1

( n∑
j1,...,jk=1

∫
[0,1]m−k

(
T
(
ej1 , ..., ejk ,

n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,

n∑
jm=1

rjm(tm)ejm

)∥∥∥ 2k
k+1
dtk+1 · · · dtm

) k+1
2k

= A
−(m−k)
2k
k+1

(∫
[0,1]m−k

n∑
j1,...,jk=1

(
T
(
ej1 , ..., ejk ,

n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,

n∑
jm=1

rjm(tm)ejm

)∣∣∣ 2k
k+1
dtk+1 · · · dtm

) k+1
2k

≤ A
−(m−k)
2k
k+1

sup
tk+1,...,tm∈[0,1]

Bmult
K,k

∥∥∥T( · , ..., · , n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,

n∑
jm=1

rjm(tm)ejm

)∥∥∥
= A

−(m−k)
2k
k+1

Bmult
K,k ‖T‖ .

So, choosing k = 1, since A1 =
(√

2
)−1

and Bmult
K,1 = 1 we conclude that the constant
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associated with the multiple exponent (1, 2, ..., 2) is
(√

2
)m−1

.

Therefore, the optimal constant associated with the multiple exponent

(λ0, s, ..., s)

is (for real scalars) less than or equal to

((√
2
)m−1

)2
(

1
λ0
− 1
s

) (
Bmult

R,m
)m( 2

s
−1)

i.e.,

Bmult
K,m,(λ0,s,...,s) ≤

(√
2
) 2m(m−1)

p (
Bmult

R,m
) p−2m

p . (1.11)

More precisely, (1.10) is valid with Bmult
K,m,(λ0,s,...,s) as above. For complex scalars we can

use the Khinchine inequality for Steinhaus variables and replace
√

2 by 2√
π

as in [103].

Let

λj =
λ0p

p− λ0j

for all j = 1, ....,m. Note that
λm = s

and that (
p

λj

)∗
=
λj+1

λj

for all j = 0, ...,m− 1.

Let us suppose that 1 ≤ k ≤ m and that n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

is true for all continuous m-linear forms T : `np × · · · × `np︸ ︷︷ ︸
k−1 times

×`n∞× · · · × `n∞ → K and for all

i = 1, ...,m. Let us prove that n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk


1
λk

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

for all continuous m-linear forms T : `np × · · · × `np︸ ︷︷ ︸
k times

×`n∞ × · · · × `n∞ → K and for all

i = 1, ...,m.

The initial case (the case k = 0) is precisely (1.10) with Bmult
K,m,(λ0,s,...,s) as in (1.11).

Consider
T ∈ L(`np , ..., `

n
p︸ ︷︷ ︸

k times

, `n∞, ..., `
n
∞;K)
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and for each x ∈ B`np define

T (x) : `np × · · · × `np︸ ︷︷ ︸
k−1 times

×`n∞ × · · · × `n∞ → K

(z(1), ..., z(m)) 7→ T (z(1), ..., z(k−1), xz(k), z(k+1), ..., z(m)),

with xz(k) = (xjz
(k)
j )nj=1. Observe that

‖T‖ = sup{‖T (x)‖ : x ∈ B`np}.

By applying the induction hypothesis to T (x), we obtain n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s |xjk |
s

 1
s
λk−1


1

λk−1

=

 n∑
ji=1

 n∑
ĵi=1

∣∣T (ej1 , ..., ejk−1
, xejk , ejk+1

, ..., ejm
)∣∣s 1

s
λk−1


1

λk−1

=

 n∑
ji=1

 n∑
ĵi=1

∣∣T (x) (ej1 , ..., ejm)
∣∣s 1

s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T

(x)‖

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

(1.12)

for all i = 1, ...,m.

We shall analyze two cases:

• i = k.

Since (
p

λj−1

)∗
=

λj
λj−1
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for all j = 1, ...,m, we conclude that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk


1
λk

=

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1

(
p

λk−1

)∗
1

λk−1

1(
p

λk−1

)∗

=

∥∥∥∥∥∥∥

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1


n

jk=1

∥∥∥∥∥∥∥
1

λk−1

(
p

λk−1

)∗

=

 sup
y∈B`n p

λk−1

n∑
jk=1

|yjk |

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1


1

λk−1

=

 sup
x∈B`np

n∑
jk=1

|xjk |λk−1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1


1

λk−1

= sup
x∈B`np

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s |xjk |
s

 1
s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

where the last inequality holds by (1.12).

• i 6= k.

Let us first suppose that k ∈ {1, ...,m− 1} . It is important to note that in this case
λk−1 < λk < s for all k ∈ {1, ...,m− 1}. Denoting, for i = 1, ....,m,

Si =

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
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we get

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk

=
n∑

ji=1

Sλki =
n∑

ji=1

Sλk−si Ssi

=
n∑

ji=1

n∑
ĵi=1

|T (ej1 , ..., ejm)|s

Ss−λki

=
n∑

jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|s

Ss−λki

=
n∑

jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|
s(s−λk)
s−λk−1

Ss−λki

|T (ej1 , ..., ejm)|
s(λk−λk−1)

s−λk−1 .

Therefore, using Hölder’s inequality twice we obtain

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk

≤
n∑

jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1

i


s−λk
s−λk−1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s


λk−λk−1
s−λk−1

≤

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1

i


λk
λk−1


λk−1
λk
· s−λk
s−λk−1

×

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk


1
λk
·
(λk−λk−1)s

s−λk−1

.

(1.13)

We know from the case i = k that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk


1
λk
·
(λk−λk−1)s

s−λk−1

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
) (λk−λk−1)s

s−λk−1 . (1.14)

Now we investigate the first factor in (1.13). From Hölder’s inequality and (1.12) it follows
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that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1

i


λk
λk−1


λk−1
λk

=

∥∥∥∥∥∥∥
∑

ĵk

|T (ej1 , ..., ejm)|s

S
s−λk−1

i

n

jk=1

∥∥∥∥∥∥∥(
p

λk−1

)∗

= sup
y∈B`n p

λk−1

n∑
jk=1

|yjk |
n∑

ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1

i

= sup
x∈B`np

n∑
jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1

i

|xjk |λk−1

= sup
x∈B`np

n∑
ji=1

n∑
ĵi=1

|T (ej1 , ..., ejm)|s−λk−1

S
s−λk−1

i

|T (ej1 , ..., ejm)|λk−1|xjk |λk−1

≤ sup
x∈B`np

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s

Ssi


s−λk−1

s
 n∑
ĵi=1

|T (ej1 , ..., ejm)|s|xjk |s
 1

s
λk−1

= sup
x∈B`np

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s|xjk |s
 1

s
λk−1

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk−1 .

(1.15)

Replacing (1.14) and (1.15) in (1.13) we finally conclude that

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk−1

s−λk
s−λk−1

(
Bmult

K,m,(λ0,s,...,s)‖T‖
) (λk−λk−1)s

s−λk−1

=
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk .

It remains to consider k = m. In this case λm = s and we have the more simple
situation since n∑

ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λm


1
λm

=

 n∑
jm=1

 n∑
ĵm=1

|T (ej1 , ..., ejm)|s
 1

s
λm


1
s

≤ Bmult
K,m,(λ0,s,...,s)‖T‖,

where the inequality is due to the case i = k. This concludes the proof.
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In order present a more concrete formula for the constants of the Hardy–Littlewood
inequality and to show that for p ≥ m2 these constants have a subpolynomial growth, we
need to recall the optimal constants of the Khinchin inequality (1) and the best known
constants of the Bohnenblust–Hille inequality.

The best known upper estimates for Bmult
R,m and Bmult

C,m can be found in [23]:

Bmult
K,m ≤

m∏
j=2

A−1
2j−2
j

.

Combining these results we have, for 2m < p <∞,

Cmult
R,m,p ≤

(
2

4m2−pm−2m
2p−4m

+ 446381
55440

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

) p−2m
p

for m ≥ 14,

Cmult
R,m,p ≤

(√
2
) 2m(m−1)

p

(
m∏
j=2

2
1

2j−2

) p−2m
p

for 2 ≤ m ≤ 13

and

Cmult
C,m,p ≤

(
2√
π

) 2m(m−1)
p

(
m∏
j=2

Γ

(
2− 1

j

) j
2−2j

) p−2m
p

. (1.16)

From [23] we know that

Bmult
C,m < m

1−γ
2 < m0.21139,

Bmult
R,m < 1.3 ·m 2−log 2−γ

2 < 1.3 ·m0.36482,

for all m’s, where γ is the famous Euler–Mascheroni constant. We, thus, conclude that,
if p ≥ m2 then

(
Cmult

K,m,p
)∞
m=1

has a subpolynomial growth. Similarly, in general we can

conclude that
(
Cmult

K,m,p
)∞
m=1

has a subpolynomial growth if
∣∣∣ 1
p

∣∣∣ ≤ 1
m

.

Now we will provide nontrivial lower bounds for Cmult
R,m,p. Nowadays the best lower

bounds for the constants of the real case of the Hardy–Littlewood inequalities can be
founded in [44] (see Remark 1.5), but the next result it was the first in this direction and
we will present the proof for the sake of completeness.

Theorem 1.11. The optimal constants of the Hardy–Littlewood inequalities satisfies

Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp > 1 for 2m < p ≤ ∞,

and
Cmult

R,m,2m > 1.

Proof. Following the lines of [65], it is possible to prove that Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp > 1

for 2m < p ≤ ∞, but note that when p = 2m we have 2
mp+2m−2m2−p

mp = 1 and thus we do
not have nontrivial information.

All that it left to prove is the case p = 2m. This first step follows the lines of [65].
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For 2m ≤ p ≤ ∞, consider T2,p : `2
p × `2

p → R given by (x(1), x(2)) 7→ x
(1)
1 x

(2)
1 + x

(1)
1 x

(2)
2 +

x
(1)
2 x

(2)
1 − x

(1)
2 x

(2)
2 and Tm,p : `2m−1

p × · · · × `2m−1

p → R given by (x(1), ..., x(m)) 7→ (x
(m)
1 +

x
(m)
2 )Tm−1,p(x

(1), ..., x(m)) + (x
(m)
1 − x

(m)
2 )Tm−1,p(B

2m−1
(x(1)), B2m−2

(x(2)), ..., B2(x(m−1))),

where x(k) = (x
(k)
j )2m−1

j=1 ∈ `2m−1

p , 1 ≤ k ≤ m, and B is the backward shift operator in

`2m−1

p . Observe that

|Tm,p(x(1), ..., x(m))| ≤ |x(m)
1 + x

(m)
2 ||Tm−1,p(x

(1), ..., x(m))|
+ |x(m)

1 − x(m)
2 ||Tm−1,p(B

2m−1

(x(1)), B2m−2

(x(2)), ..., B2(x(m−1)))|
≤ ‖Tm−1,p‖(|x(m)

1 + x
(m)
2 |+ |x

(m)
1 − x(m)

2 |)
= ‖Tm−1,p‖2 max{|x(m)

1 |, |x
(m)
2 |}

≤ 2‖Tm−1,p‖‖x(m)‖p.

Therefore,
‖Tm,p‖ ≤ 2m−2‖T2,p‖. (1.17)

Note that ‖T2,p‖ = sup{‖T (x(1))
2,p ‖ : ‖x(1)‖p = 1}, where T

(x(1))
2,p : `2

p → R is given by

x(2) 7→ T2,p

(
x(1), x(2)

)
. Thus we have the operator T

(x(1))
2,p (x(2)) = (x

(1)
1 + x

(1)
2 )x

(2)
1 + (x

(1)
1 −

x
(1)
2 )x

(2)
2 . Since (`p)

∗ = `p∗ , we obtain ‖T (x(1))
2,p ‖ = ‖(x(1)

1 + x
(1)
2 , x

(1)
1 − x

(1)
2 , 0, 0, ...)‖p∗ .

Therefore ‖T2,p‖ = sup{(|x(1)
1 + x

(1)
2 |p

∗
+ |x(1)

1 − x
(1)
2 |p

∗
)

1
p∗ : |x(1)

1 |p + |x(1)
2 |p = 1}. We can

verify that it is enough to maximize the above expression when x
(1)
1 , x

(1)
2 ≥ 0. Then

‖T2,p‖ = sup{((x+ (1− xp)
1
p )p
∗

+ |x− (1− xp)
1
p |p∗)

1
p∗ : x ∈ [0, 1]}

= max{sup{fp(x) : x ∈ [0, 2−
1
p ]}, sup{gp(x) : x ∈ [2−

1
p , 1]}}

where fp(x) := ((x+ (1− xp)
1
p )p
∗

+ ((1− xp)
1
p − x)p

∗
)

1
p∗ and gp(x) := ((x+ (1− xp)

1
p )p
∗

+

(x− (1− xp)
1
p )p
∗
)

1
p∗ . Examining the maps fp and gp we easily conclude that

‖T2,p‖ < 2 (1.18)

(for instance, the precise value of ‖T2,4‖ seems to be graphically
√

3 (see Figure 1.1)).

From (1.17) and (1.18) we would conclude that ‖Tm,p‖ < 2m−1. On the other hand,
from Theorem 1.3 we have

(4m−1)
mp+p−2m

2mp =

(
2m−1∑

j1,...,jm=1

|Tm,p(ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

< Cmult
R,m,p2

m−1.

and thus

Cmult
R,m,p >

(4m−1)
mp+p−2m

2mp

2m−1
= 2

mp+2m−2m2−p
mp = 1.
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Figure 1.1: Graphs of the functions f4 and g4, respectively.

1.2 On the constants of the generalized Bohnenblust-

Hille and Hardy–Littlewood inequalities

In this section, among other results, we show that for p > 2m3−4m2+2m the constant
Cmult

K,m,p has the exactly same upper bounds that we have now for the Bohnenblust–Hille
constants (1.2). More precisely we shall show that if p > 2m3 − 4m2 + 2m, then

Cmult
C,m,p ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

,

Cmult
R,m,p ≤ 2

446381
55440

−m
2

m∏
j=14

Γ
(

3
2
− 1

j

)
√
π


j

2−2j

, for m ≥ 14,

Cmult
R,m,p ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13.

(1.19)

It is not difficult to verify that (1.19) in fact improves (1.8). However the most interesting
point is that in (1.19), contrary to (1.8), we have no dependence on p in the formulas and,
besides, these new estimates are precisely the best known estimates for the constants of
the Bohnenblust–Hille inequality (see (1.2)).

To prove these new estimates we also improve the best known estimates for the gen-
eralized Bohnenblust–Hille inequality (see Section 1.2.1). The importance of this result
(generalized Bohnenblust–Hille inequality) trancends the intrinsic mathematical novelty
since, as it was recently shown (see [23]), this new approach is fundamental to improve
the estimates of the constants of the classical Bohnenblust–Hille inequality. In Section
1.2.2 we use these estimates to prove new estimates for the constants of the Hardy–
Littlewood inequality. In the final section (Section 1.2.3) the estimates of the previous
sections (sections 1.2.1 and 1.2.2) are used to obtain new constants for the generalized
Hardy–Littlewood inequality.
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1.2.1 Estimates for the constants of generalized Bohnenblust–
Hille inequality

The best known estimates for the constants Bmult
K,m,(q1,...,qm) are presented in [4]. More

precisely, for complex scalars and 1 ≤ q1 ≤ · · · ≤ qm ≤ 2, from [4] we know that, for
q = (q1, ..., qm),

Bmult
C,m,q ≤

(
m∏
j=1

Γ

(
2− 1

j

) j
2−2j

)2m( 1
qm
− 1

2)

×

∏m−1
k=1

(
Γ
(

3k+1
2k+2

)(−k−1
2k )(m−k)

k∏
j=1

Γ

(
2− 1

j

) j
2−2j

)2k

(
1
qk
− 1
qk+1

) .

(1.20)

In the present section we improve the above estimates for a certain family of (q1, ..., qm).
More precisely, if max qi <

2m2−4m+2
m2−m−1

, then

Bmult
C,m,(q1,...,qm) ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

.

A similar result holds for real scalars. These results have a crucial importance in the next
sections.

Lemma 1.12. Let m ≥ 2 and i ∈ {1, ...,m}. If qi ∈ [2m−2
m

, 2] and q = 2(m−1)qi
(m+1)qi−2

, then

Bmult
K,m,(q,...,q,qi,q,...,q) ≤

m∏
j=2

A−1
2j−2
j

,

with qi in the i-th position.

Proof. There is no loss of generality in supposing that i = 1. By [23, Proposition 3.1] we
have, for each k = 1, ...,m, n∑

ĵk=1

(
n∑

jk=1

|T (ej1 , ..., ejm)|2
) 1

2
2m−2
m


m

2m−2

≤ A−1
2m−2
m

Bmult
K,m−1 ‖T‖ ≤

m∏
j=2

A−1
2j−2
j

‖T‖

(see [16, Section 2] for details).
We define qk = (qk(1), ...,qk(m)) = ((2m−2)/m, ..., (2m−2)/m, 2, (2m−2)/m, ..., (2m−

2)/m), where the 2 is in the k-th coordinate and take θ1 = m − (2m − 2)/q1 and
θ2 = · · · = θm = 2/q1 − 1. Recalling that q1 ≥ 2m−2

m
we can see that θk ∈ [0, 1] for

all k = 1, ....,m. It can be easily checked that

θ1

q1 (1)
+ · · ·+ θm

qm (1)
=

1

q1

and
θ1

q1 (j)
+ · · ·+ θm

qm (j)
=

1

q
for j = 2, ...,m.

Then a straightforward application of the Minkowski inequality (using that 2m−2
m

< 2)
and of the generalized Hölder inequality ([24, 68]) completes the proof.
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Lemma 1.13. Let m ≥ 2 be a positive integer, let 2m < p ≤ ∞, let q1, ..., qm ∈
[

p
p−m , 2

]
.

If 1
q1

+ · · · + 1
qm

= mp+p−2m
2p

, then, for all s ∈ (max qi, 2], the vector
(
q−1

1 , ..., q−1
m

)
belongs

to the convex hull in Rm of {
m∑
k=1

a1kek, ...,
m∑
k=1

amkek

}
,

where ajk = s−1 if k 6= j and ajk = λ−1
m,s if k = j, and λm,s = 2ps

mps+ps+2p−2mp−2ms
.

Proof. We want to prove that for (q1, ..., qm) ∈
[

p
p−m , 2

]m
and s ∈ (max qi, 2] there are

0 < θj,s < 1, j = 1, ...,m, such that

m∑
j=1

θj,s = 1,

1

q1

=
θ1,s

λm,s
+
θ2,s

s
+ · · ·+ θm,s

s
,

...

1

qm
=
θ1,s

s
+ · · ·+ θm−1,s

s
+
θm,s
λm,s

.

Observe initially that from 1
q1

+ · · ·+ 1
qm

= mp+p−2m
2p

we have max qi ≥ 2mp
mp+p−2m

. Note

also that for all s ∈
[

2mp−2p
mp−2m

, 2
]

we have

mps+ ps+ 2p− 2mp− 2ms > 0 and
p

p−m
≤ λm,s ≤ 2. (1.21)

Since s > max qi ≥ 2mp
mp+p−2m

> 2mp−2p
mp−2m

(the last inequality is strict because we are not

considering the case p = 2m) it follows that λm,s is well defined for all s ∈ (max qi, 2].
Furthermore, for all s > 2mp

mp+p−2m
it is possible to prove that λm,s < s. In fact, s > 2mp

mp+p−2m

implies mps+ ps− 2ms > 2mp and thus adding 2p in both sides of this inequality we can
conclude that

2ps

mps+ ps+ 2p− 2mp− 2ms
<

2ps

2p
= s,

i.e.,
λm,s < s. (1.22)

For each j = 1, ...,m, consider θj,s =
λm,s(s−qj)
qj(s−λm,s) . Since

∑m
j=1

1
qj

= mp+p−2m
2p

we conclude

that
m∑
j=1

θj,s =
m∑
j=1

λm,s (s− qj)
qj (s− λm,s)

=
λm,s

s− λm,s

(
s

m∑
j=1

1

qj
−m

)
= 1.

Since by hypothesis s > max qi ≥ qj for all j = 1, ...,m, it follows that θj,s > 0 for all
j = 1, ...,m and thus 0 < θj,s <

∑m
j=1 θj,s = 1.
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Finally, note that

θj,s
λm,s

+
1− θj,s

s
=

λm,s(s−qj)
qj(s−λm,s)

λm,s
+

1− λm,s(s−qj)
qj(s−λm,s)

s
=

1

qj
.

Therefore
1

q1

=
θ1,s

λm,s
+
θ2,s

s
+ · · ·+ θm,s

s
,

...

1

qm
=
θ1,s

s
+ · · ·+ θm−1,s

s
+
θm,s
λm,s

,

and the proof is done.

Combining the two previous lemmas we have:

Theorem 1.14. Let m ≥ 2 be a positive integer and q1, ..., qm ∈ [1, 2]. If 1
q1

+ · · ·+ 1
qm

=
m+1

2
, and max qi <

2m2−4m+2
m2−m−1

, then

Bmult
K,m,(q1,...,qm) ≤

m∏
j=2

A−1
2j−2
j

,

where A 2j−2
j

are the respective constants of the Khinchine inequality.

Proof. Let s = 2m2−4m+2
m2−m−1

and q = 2m−2
m

. Since m−1
s

+ 1
q

= m+1
2

, from Lemma 1.12 the

Bohnenblust–Hille exponents (t1, ..., tm) = (s, ..., s, q) , ..., (q, s, ..., s) are associated to

Bmult
K,m,(t1,...,tm) ≤

m∏
j=2

A−1
2j−2
j

.

Since by hypothesis max qi <
2m2−4m+2
m2−m−1

= s, from the previous lemma (Lemma 1.13) with
p =∞, the exponent (q1, ..., qm) is the interpolation of(

2s

ms+ s+ 2− 2m
, s, ..., s

)
, ...,

(
s, ..., s,

2s

ms+ s+ 2− 2m

)
.

But note that
2s

ms+ s+ 2− 2m
=

2m− 2

m

and from Lemma 1.12 they are associated to the constants

Bmult
K,m,(q1,...,qm) ≤

m∏
j=2

A−1
2j−2
j

.

Corollary 1.15. Let m ≥ 2 be a positive integer and q1, ..., qm ∈ [1, 2]. If 1
q1

+ · · ·+ 1
qm

=
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m+1
2

, and max qi <
2m2−4m+2
m2−m−1

, then

Bmult
C,m,(q1,...,qm) ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

,

Bmult
R,m,(q1,...,qm) ≤ 2

446381
55440

−m
2

m∏
j=14

Γ
(

3
2
− 1

j

)
√
π


j

2−2j

, for m ≥ 14,

Bmult
R,m,(q1,...,qm) ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13.

The following table compares the estimate obtained for Bmult
C,m,(q1,...,qm) in [4] (see (1.20))

and the new and better estimate obtained in Theorem 1.14.

1 ≤ q1 ≤ · · · ≤ qm ≤ 2; Bmult
C,m,(q1,...,qm)

m ≥ 2 1
q1

+ · · ·+ 1
qm

= m+1
2

and Estimates of [4] Estimates of

max qi <
2m2−4m+2
m2−m−1

(see (1.20)) Theorem 1.14

4 q1 = · · · = q3 = 486
305
, q4 = 1.62 < 1.28964 < 1.28890

5 q1 = · · · = q4 = 668
401
, q5 = 1.67 < 1.34783 < 1.34745

6 q1 = · · · = q5 = 430
251
, q6 = 1.72 < 1.39885 < 1.39783

7 q1 = · · · = q6 = 1053
603

, q7 = 1.755 < 1.44344 < 1.44224

8 q1 = · · · = q7 = 1246
701

, q8 = 1.78 < 1.48273 < 1.48207

9 q1 = · · · = q8 = 14408
8005

, q9 = 1.801 < 1.51863 < 1.51827

10 q1 = · · · = q9 = 327618
180211

, q10 = 1.8201 < 1.55231 < 1.55151

20 q1 = · · · = q19 = 14478
7601

, q20 = 1.905 < 1.79162 < 1.79137

50 q1 = · · · = q49 = 240198
122501

, q50 = 1.9608 < 2.170671 < 2.170620

100 q1 = · · · = q99 = 1960398
990001

, q100 = 1.9802 < 2.511775 < 2.511760

1000 q1 = · · · = q999 = 665334666000666
333000000333667

, < 4.08463471 < 4.08463446

q1000 = 1.998002000002

1.2.2 Application 1: Improving the constants of the Hardy-
Littlewood inequality

The main result of this section shows that for 2m3 − 4m2 + 2m < p ≤ ∞ the optimal
constants satisfying the Hardy–Littlewood inequality for m-linear forms in `p spaces are
dominated by the best known estimates for the constants of the m-linear Bohnenblust–
Hille inequality; this result improves (for 2m3−4m2 +2m < p ≤ ∞) the best estimates we
have thus far (see (1.8)), and may suggest a more subtle connection between the optimal
constants of these inequalities.

Theorem 1.16. Let m ≥ 2 be a positive integer and 2m3 − 4m2 + 2m < p ≤ ∞. Then,
for all continuous m-linear forms T : `np × · · · × `np → K and all positive integers n, we
have (

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤

(
m∏
j=2

A−1
2j−2
j

)
‖T‖ . (1.23)
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Proof. The case p =∞ in (1.23) is precisely the Bohnenblust–Hille inequality, so we just
need to consider 2m3 − 4m2 + 2m < p <∞. Let 2m−2

m
≤ s ≤ 2 and

λ0,s =
2s

ms+ s+ 2− 2m
.

Note that
ms+ s+ 2− 2m > 0 and 1 ≤ λ0,s ≤ 2. (1.24)

Since
m− 1

s
+

1

λ0,s

=
m+ 1

2
,

from the generalized Bohnenblust–Hille inequality (see [5]) we know that there is a con-
stant Cm ≥ 1 such that for all m-linear forms T : `n∞ × · · · × `n∞ → K we have, for all
i = 1, ....,m,  n∑

ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λ0,s


1
λ0,s

≤ Cm ‖T‖ . (1.25)

Above,
n∑̂

ji=1

means the sum over all jk for all k 6= i. If we choose s = 2mp
mp+p−2m

(note

that this s belongs to the interval
[

2m−2
m

, 2
]
), we have s > 2m

m+1
(this inequality is strict

because we are considering the case p < ∞) and thus λ0,s < s. In fact, s > 2m
m+1

implies
ms+ s > 2m and thus adding 2 in both sides of this inequality we can conclude that

2s

ms+ s+ 2− 2m
<

2s

2
= s,

i.e.,
λ0,s < s. (1.26)

Since p > 2m3 − 4m2 + 2m we conclude that

s <
2m2 − 4m+ 2

m2 −m− 1
.

Thus, from Theorem 1.14, the optimal constant associated to the multiple exponent

(λ0,s, s, s, ..., s)

is less than or equal to

Cm =
m∏
j=2

A−1
2j−2
j

.

More precisely, (1.25) is valid with Cm as above. Now the proof follows the same lines,
mutatis mutandis, of the proof of Theorem 1.9 (see [16, Theorem 1.1]), which has its roots
in the work of Praciano-Pereira [118].

Remark 1.17. Note that it is simple to verify that these new estimates are better than
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the old ones. In fact, for complex scalars the inequality

m∏
j=2

A−1
2j−2
j

<

(
2√
π

) 2m(m−1)
p

(
m∏
j=2

A−1
2j−2
j

) p−2m
p

is a straightforward consequence of

m∏
j=2

A−1
2j−2
j

<

(
2√
π

)m−1

,

which is true for m ≥ 3. The case of real scalars is analogous.

The following table compares the estimates for Cmult
C,m,p obtained in Theorem 1.9 (see

(1.16) and [16]) and the estimate obtained in Theorem 1.16 for 2m3−4m2 +2m < p ≤ ∞.

Cmult
C,m,p

m ≥ 2 2m3 − 4m2 + 2m < p ≤ ∞ Estimates (1.16) (see Estimates of

[16] and Theorem 1.9) Theorem 1.16

p = 73 < 1.30433

4 p = 500 < 1.29114 < 1.28890

p = 1000 < 1.29002

p = 1621 < 1.56396

10 p = 3000 < 1.55822 < 1.55151

p = 5000 < 1.55553

p = 240101 < 2.175275

50 p = 500000 < 2.172854 < 2.170620

p = 1000000 < 2.171737

p = 1960201 < 2.514590

100 p = 5000000 < 2.512869 < 2.511760

p = 20000000 < 2.512037

p = 1996002001 < 4.08512258

1000 p = 6000000000 < 4.08479684 < 4.08463446

p = 50000000000 < 4.08465395

Recall that from the previous section that for p ≥ m2 the constants of the Hardy–
Littlewood inequality have a subpolynomial growth. The graph 1.2 illustrates what we
have thus far, combined with Theorem 1.16.

1.2.3 Application 2: Estimates for the constants of the general-
ized Hardy–Littlewood inequality

The best known estimates for the constants Cmult
K,m,p,q are

(√
2
)m−1

for real scalars and(
2√
π

)m−1

for complex scalars (see [5]). In the Theorem 1.9 (see [16, Theorem 1.1]) and

in the previous section (see (1.19)) better constants were obtained when q1 = ... = qm =
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Figure 1.2: Behaviour of Cmult
C,m,p.

2mp
mp+p−2m

. Now we extend the results from [16] to general multiple exponents. Of course

the interesting case is the border case, i.e., 1
q1

+ ...+ 1
qm

= mp+p−2m
2p

. The proof is slightly
more elaborated than the proof of Theorem 1.16 and also a bit more technical that the
proof of the main result of [16].

Theorem 1.18. Let m ≥ 2 be a positive integer, let 2m < p ≤ ∞ and let q :=

(q1, ..., qm) ∈
[

p
p−m , 2

]m
be such that 1

q1
+ ... + 1

qm
= mp+p−2m

2p
. If max qi <

2m2−4m+2
m2−m−1

,

then

Cmult
K,m,p,q ≤

m∏
j=2

A−1
2j−2
j

.

Proof. The arguments follow the general lines of [16], but are slightly different and
due the technicalities we present the details for the sake of clarity. Define for s ∈(

max qi,
2m2−4m+2
m2−m−1

)
,

λm,s =
2ps

mps+ ps+ 2p− 2mp− 2ms
. (1.27)

Observe that λm,s is well defined for all s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
. In fact, as we have in

(1.21) note that for all s ∈
[

2mp−2p
mp−2m

, 2
]

we have

mps+ ps+ 2p− 2mp− 2ms > 0 and
p

p−m
≤ λm,s ≤ 2.

Since s > max qi ≥ 2mp
mp+p−2m

> 2mp−2p
mp−2m

(the last inequality is strict because we are not

considering the case p = 2m) and 2m2−4m+2
m2−m−1

≤ 2 it follows that λm,s is well defined for all
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s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
.

Let us prove

Cmult
K,m,p,(λm,s,s,...,s) ≤

m∏
j=2

A−1
2j−2
j

(1.28)

for all s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
. In fact, for these values of s, consider

λ0,s =
2s

ms+ s+ 2− 2m
.

Observe that if p =∞ then λm,s = λ0,s. Since

m− 1

s
+

1

λ0,s

=
m+ 1

2
,

from the generalized Bohnenblust–Hille inequality (see [5]) we know that there is a con-
stant Cm ≥ 1 such that for all m-linear forms T : `n∞ × · · · × `n∞ → K we have, for all
i = 1, ....,m,

 n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λ0,s


1
λ0,s

≤ Cm ‖T‖ . (1.29)

Since
2m

m+ 1
≤ 2mp

mp+ p− 2m
≤ max qi < s <

2m2 − 4m+ 2

m2 −m− 1

it is not to difficult to prove that (see (1.26))

λ0,s < s <
2m2 − 4m+ 2

m2 −m− 1
.

Since s < 2m2−4m+2
m2−m−1

we conclude by Theorem 1.14 that the optimal constant associated
to the multiple exponent

(λ0,s, s, s, ..., s)

is less than or equal to
m∏
j=2

A−1
2j−2
j

. (1.30)

More precisely, (1.29) is valid with Cm as above. Since λm,s = λ0,s if p = ∞, we have

(1.28) for all for all s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
and the proof is done for this case.

For 2m < p <∞, let

λj,s =
λ0,sp

p− λ0,sj

for all j = 1, ....,m. Note that

λm,s =
2ps

mps+ ps+ 2p− 2mp− 2ms
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and this notation is compatible with (1.27). Since s > max qi ≥ 2mp
mp+p−2m

≥ 2mp
mp+p−2j

for
all j = 1, ...,m we also observe that

λj,s < s (1.31)

for all j = 1, ....,m. Moreover, observe that(
p

λj,s

)∗
=
λj+1,s

λj,s

for all j = 0, ...,m − 1. From now on, part of the proof of (i) follows the same steps as
those of the proof of the main result in [16, 118], but we prefer to show here the details
for the sake of completeness (note that the final part of the proof of (i) requires a more
subtle argument than the one employed in [16]).

Let us suppose that 1 ≤ k ≤ m and that n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1,s


1

λk−1,s

≤ Cm‖T‖

is true for all continuous m-linear forms T : `np × · · · × `np︸ ︷︷ ︸
k−1 times

×`n∞× · · · × `n∞ → K and for all

i = 1, ...,m. Let us prove that n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s


1
λk,s

≤ Cm‖T‖

for all continuous m-linear forms T : `np × · · · × `np︸ ︷︷ ︸
k times

×`n∞ × · · · × `n∞ → K and for all

i = 1, ...,m.

The initial case (the case in which all p =∞) is precisely (1.29) with Cm as in (1.30).
Consider

T ∈ L(`np , ..., `
n
p︸ ︷︷ ︸

k times

, `n∞, ..., `
n
∞;R)

and for each x ∈ B`np define

T (x) : `np × · · · × `np︸ ︷︷ ︸
k−1 times

×`n∞ × · · · × `n∞ → R

(z(1), ..., z(m)) 7→ T (z(1), ..., z(k−1), xz(k), z(k+1), ..., z(m)),

with xz(k) = (xjz
(k)
j )nj=1. Observe that

‖T‖ = sup{‖T (x)‖ : x ∈ B`np}.
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By applying the induction hypothesis to T (x), we obtain n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s |xjk |
s

 1
s
λk−1,s


1

λk−1,s

=

 n∑
ji=1

 n∑
ĵi=1

∣∣T (ej1 , ..., ejk−1
, xejk , ejk+1

, ..., ejm
)∣∣s 1

s
λk−1,s


1

λk−1,s

=

 n∑
ji=1

 n∑
ĵi=1

∣∣T (x) (ej1 , ..., ejm)
∣∣s 1

s
λk−1,s


1

λk−1,s

≤ Cm‖T (x)‖
≤ Cm‖T‖

(1.32)

for all i = 1, ...,m.

We will analyze two cases:

• i = k.

Since (
p

λj−1,s

)∗
=

λj,s
λj−1
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for all j = 1, ...,m, we conclude that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s


1
λk,s

=

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1,s

(
p

λk−1,s

)∗
1

λk−1,s

1(
p

λk−1,s

)∗

=

∥∥∥∥∥∥∥

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1,s


n

jk=1

∥∥∥∥∥∥∥
1

λk−1,s

(
p

λk−1,s

)∗

=

 sup
y∈B`n p

λk−1,s

n∑
jk=1

|yjk |

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1,s


1

λk−1,s

=

 sup
x∈B`np

n∑
jk=1

|xjk |λk−1,s

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk−1,s


1

λk−1,s

= sup
x∈B`np

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s |xjk |
s

 1
s
λk−1,s


1

λk−1,s

≤ Cm‖T‖.

where the last inequality holds by (1.32).

• i 6= k.

It is clear that λk−1,s < λk,s for all 1 ≤ k ≤ m. Since λk,s < s for all 1 ≤ k ≤ m (see
(1.31)) we get

λk−1,s < λk,s < s for all 1 ≤ k ≤ m.

Denoting, for i = 1, ....,m,

Si =

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
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we get

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s

=
n∑

ji=1

S
λk,s
i =

n∑
ji=1

S
λk,s−s
i Ssi

=
n∑

ji=1

n∑
ĵi=1

|T (ej1 , ..., ejm)|s

S
s−λk,s
i

=
n∑

jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk,s
i

=
n∑

jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|
s(s−λk,s)
s−λk−1,s

S
s−λk,s
i

|T (ej1 , ..., ejm)|
s(λk,s−λk−1,s)

s−λk−1,s .

Therefore, using Hölder’s inequality (twice) we obtain

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s

≤
n∑

jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i


s−λk,s
s−λk−1,s

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s


λk,s−λk−1,s
s−λk−1,s

≤

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i


λk,s
λk−1,s


λk−1,s
λk,s

·
s−λk,s
s−λk−1,s

×

 n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s


1
λk,s
·
(λk,s−λk−1,s)s

s−λk−1,s

.

(1.33)

We know from the case i = k that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s


1
λk,s
·
(λk,s−λk−1,s)s

s−λk−1,s

≤ (Cm‖T‖)
(λk,s−λk−1,s)s

s−λk−1,s . (1.34)

Now we investigate the first factor in (1.33). From Hölder’s inequality and (1.32) it follows
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that n∑
jk=1

 n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i


λk,s
λk−1,s


λk−1,s
λk,s

=

∥∥∥∥∥∥∥
∑

ĵk

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i

n

jk=1

∥∥∥∥∥∥∥(
p

λk−1,s

)∗

= sup
y∈B`n p

λk−1,s

n∑
jk=1

|yjk |
n∑

ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i

= sup
x∈B`np

n∑
jk=1

n∑
ĵk=1

|T (ej1 , ..., ejm)|s

S
s−λk−1,s

i

|xjk |λk−1,s

= sup
x∈B`np

n∑
ji=1

n∑
ĵi=1

|T (ej1 , ..., ejm)|s−λk−1,s

S
s−λk−1,s

i

|T (ej1 , ..., ejm)|λk−1,s|xjk |λk−1,s

≤ sup
x∈B`np

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s

Ssi


s−λk−1,s

s
 n∑
ĵi=1

|T (ej1 , ..., ejm)|s|xjk |s
 1

s
λk−1,s

= sup
x∈B`np

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s|xjk |s
 1

s
λk−1,s

≤ (Cm‖T‖)λk−1,s .

(1.35)

Replacing (1.34) and (1.35) in (1.33) we conclude that

n∑
ji=1

 n∑
ĵi=1

|T (ej1 , ..., ejm)|s
 1

s
λk,s

≤ (Cm‖T‖)
λk−1,s

s−λk,s
s−λk−1,s (Cm‖T‖)

(λk,s−λk−1,s)s

s−λk−1,s

= (Cm‖T‖)λk,s

and finally the proof of (1.28) is done for all s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
.

Now the proof uses a different argument from those from [16], since a new inter-
polation procedure is now needed. From (1.31) we know that λm,s < s for all s ∈(

max qi,
2m2−4m+2
m2−m−1

)
. Therefore, using the Minkowski inequality as in [5], it is possible to

obtain from (1.28) that, for all fixed i ∈ {1, ...,m},

Cmult
K,m,p,(s,...,s,λm,s,s,...,s) ≤

m∏
j=2

A−1
2j−2
j

(1.36)

for all s ∈
(

max qi,
2m2−4m+2
m2−m−1

)
with λm,s in the i-th position. Finally, from Lemma 1.13
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we know that
(
q−1

1 , ..., q−1
m

)
belongs to the convex hull of{(

λ−1
m,s, s

−1, ..., s−1
)
, ...,

(
s−1, ..., s−1, λ−1

m,s

)}
for all s ∈

(
max qi,

2m2−4m+2
m2−m−1

)
with certain constants θ1,s, ..., θm,s and thus, from the

interpolative technique from [5], we get

Cmult
K,m,p,q ≤

(
Cmult

K,m,p,(λm,s,s,...,s)

)θ1,s
· · ·
(
Cmult

K,m,p,(s,...,s,λm,s)

)θm,s
≤

(
m∏
j=2

A−1
2j−2
j

)θ1,s+···+θm,s

=
m∏
j=2

A−1
2j−2
j

.

Corollary 1.19. Let m ≥ 2 be a positive integer and 2m < p ≤ ∞. Let also q :=

(q1, ..., qm) ∈
[

p
p−m , 2

]m
be such that 1

q1
+ · · ·+ 1

qm
= mp+p−2m

2p
. If max qi <

2m2−4m+2
m2−m−1

, then

Cmult
C,m,p,q ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

Cmult
R,m,p,q ≤

m∏
j=2

2
1

2j−2 if 2 ≤ m ≤ 13,

Cmult
R,m,p,q ≤ 2

446381
55440

−m
2

m∏
j=14

Γ
(

3
2
− 1

j

)
√
π


j

2−2j

if m ≥ 14.



Chapter 2
Optimal Hardy–Littlewood type inequalities
for m-linear forms on `p spaces with
1 ≤ p ≤ m

In this chapter we present results from the following:

[14] G. Araújo, and D. Pellegrino, Optimal Hardy–Littlewood type inequalities for m-
linear forms on `p spaces with 1 ≤ p ≤ m, Arch. Math. 105 (2015), 285–295.

In [37, Corollary 5.20] it is shown that in `n2 the Hardy–Littlewood multilinear in-
equalities has an extra power of n in its right hand side. Therefore, a natural question
is:

• For 1 ≤ p ≤ m, what power of n (depending on r,m, p) will appear in the right
hand side of the Hardy–Littlewood multilinear inequalities if we replace the optimal
exponents 2mp/(mp+ p− 2m) and p/(p−m) by a smaller value r?

This case (1 ≤ p ≤ m) was only explored for the case of Hilbert spaces (p = 2, see
[37, Corollary 5.20] and [51]) and the case p =∞ was explored in [46]. The results of this
chapter answer the remains cases of the above question (see Theorem 2.1) and extends
[37, Corollary 5.20] to 1 ≤ p ≤ m (see Theorem 2.1(a) and Proposition 2.4).

The main result of this chapter is the following:

Theorem 2.1. Let m ≥ 2 be a positive integer.

(a) If (r, p) ∈ ([1, 2]× [2, 2m))∪([1,∞)× [2m,∞]), then there is a constant Hmult
K,m,p,r > 0

(not depending on n) such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

max{ 2mr+2mp−mpr−pr
2pr

,0} ‖T‖

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover,
the exponent max {(2mr + 2mp−mpr − pr)/2pr, 0} is optimal.
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with 1 ≤ p ≤ m

(b) If (r, p) ∈ [2,∞)× (m, 2m], then there is a constant Hmult
K,m,r,p > 0 (not depending on

n) such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,r,pn

max{ p+mr−rppr
,0} ‖T‖

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover,
the exponent max {(p+mr − rp)/pr, 0} is optimal.

Remark 2.2. The first item of the above theorem recovers [37, Corollary 5.20(i)] (just
make p = 2) and [46, Proposition 5.1].

Proof of Theorem 2.1. Let 1 ≤ q ≤ r ≤ ∞ and E be a Banach space. We say that an
m-linear form S : E×· · ·×E → K is multiple (r; q)-summing if there is a constant C > 0
such that

∥∥∥(S(x
(1)
j1
, ..., x

(m)
jm

))nj1,...,jm=1

∥∥∥
`r
≤ C sup

ϕ∈BE∗

(
n∑
j=1

|ϕ(x
(1)
j )|q

) 1
q

· · · sup
ϕ∈BE∗

(
n∑
j=1

|ϕ(x
(m)
j )|q

) 1
q

for all positive integers n.

(a) Let us consider first (r, p) ∈ [1, 2]× [2, 2m). From now on T : `np × · · · × `np → K is
an m-linear form. Since

sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ(ej)| = nn−
1
p∗ = n

1
p

and since T is multiple (2m/(m+ 1); 1)-summing (we will see in the next chapter that
from the Bohnenblust–Hille inequality it is possible to prove that all continuous m-linear
forms are multiple (2m/(m+ 1); 1)-summing with constant Bmult

K,m ), we conclude that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖n

m
p . (2.1)

Therefore, if 1 ≤ r < 2m/(m+ 1), using the Hölder inequality and (2.1), we have(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m
(

n∑
j1,...,jm=1

|1|
2mr

2m−rm−r

) 2m−rm−r
2mr

=

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

(nm)
2m−rm−r

2mr

≤ Bmult
K,m ‖T‖n

m
p n

2m−rm−r
2r

= Bmult
K,m n

2mr+2mp−mpr−pr
2pr ‖T‖ .
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Now we consider the case 2m/(m+1) ≤ r ≤ 2. From the proof of [15, Theorem 3.2(i)]
we know that, for all 2m/(m + 1) ≤ r ≤ 2 and all Banach spaces E, every continuous
m-linear form S : E × · · · × E → K is multiple (r; 2mr/(mr + 2m− r))-summing with
constant Cmult

K,m, 2mr
r+mr−2m

. Therefore

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Cmult
K,m, 2mr

r+mr−2m

‖T‖

( sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ(ej)|
2mr

mr+2m−r

)mr+2m−r
2mr

m .
(2.2)

Since 1 ≤ 2mr/(mr + 2m− r) ≤ 2m/(2m− 1) = (2m)∗ < p∗, we have(
sup

ϕ∈B(`np )∗

n∑
j=1

|ϕ (ej)|
2mr

mr−r+2m

)mr−r+2m
2mr

= (n(n−
1
p∗ )

2mr
mr−r+2m )

mr−r+2m
2mr

= n
2mr+2mp−mpr−pr

2mpr (2.3)

and finally, from (2.2) and (2.3), we obtain(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Cmult
K,m, 2mr

r+mr−2m

n
2mr+2mp−mpr−pr

2pr ‖T‖ .

Now we prove the optimality of the exponents. Suppose that the theorem is valid for
an exponent s, i.e., (

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

s ‖T‖ .

Since p ≥ 2, from the generalized Kahane–Salem–Zygmund inequality (2) we have

n
m
r ≤ CmH

mult
K,m,p,rn

sn
m+1

2
−m
p

and thus, making n→∞, we obtain

s ≥ 2mr+2mp−mpr−pr
2pr

.

The case (r, p) ∈ [1, 2mp/(mp + p − 2m)] × [2m,∞] is analogous. In fact, from the
Hardy–Littlewood/Praciano-Pereira inequality we know that(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cmult
K,m,p ‖T‖ . (2.4)
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with 1 ≤ p ≤ m

Therefore, from Hölder’s inequality and (2.4), we have(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

(
n∑

j1,...,jm=1

|1|
2mpr

2mp+2mr−mpr−pr

) 2mp+2mr−mpr−pr
2mpr

≤ Cmult
K,m,p ‖T‖ (nm)

2mp+2mr−mpr−pr
2mpr

= Cmult
K,m,pn

2mp+2mr−mpr−pr
2pr ‖T‖ .

(2.5)
Since p ≥ 2m, the optimality of the exponent is obtained ipsis litteris as in the previous
case.

If (r, p) ∈ (2mp/(mp+ p− 2m),∞)× [2m,∞] we have

2mr+2mp−mpr−pr
2pr

< 0

and (
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cmult
K,m,p ‖T‖

= Cmult
K,m,p ‖T‖n

max{ 2mr+2mp−mpr−pr
2pr

,0}.

In this case the optimality of the exponent max {(2mr + 2mp−mpr − pr)/2pr, 0} is im-
mediate, since one can easily verify that no negative exponent of n is possible.

(b) Let us first consider (r, p) ∈ [2, p/(p−m)]× (m, 2m]. Define

q = mr
r−1

and note that q ≤ 2m and r = q/(q − m). Since q/(q − m) = r ≤ p/(p − m) we have
p ≤ q. Then m < p ≤ q ≤ 2m. Note that

q∗ = mr
mr+1−r .

Since m < q ≤ 2m, by the Hardy-Littlewood/Dimant-Sevilla-Peris inequality and us-
ing [63, Section 5] we know that every continuous m-linear form on any Banach space
E is multiple (q/(q −m); q∗)-summing with constant Dmult

K,m,q, i.e., multiple
(
r; mr

mr+1−r

)
-
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summing with constant Dmult
K,m, mr

r−1
. So for T : `np × · · · × `np → K we have (since q∗ ≤ p∗),

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Dmult
K,m, mr

r−1
‖T‖

( sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ (ej)|
mr

mr+1−r

)mr+1−r
mr

m

= Dmult
K,m, mr

r−1
‖T‖

[
(n(n−

1
p∗ )

mr
mr+1−r )

mr+1−r
mr

]m
= Dmult

K,m, mr
r−1
‖T‖n

p+mr−rp
pr .

Note that if we have tried to use above an argument similar to (2.5), via Hölder’s
inequality, we would obtain worse exponents. Now we prove the optimality following the
lines of [63]. Defining R : `np × · · · × `np → K by R(x(1), ..., x(m)) =

∑n
j=1 x

(1)
j · · · x

(1)
j , from

Hölder’s inequality we can easily verify that

‖R‖ ≤ n1−m
p .

So if the theorem holds for ns, plugging the m-linear form R into the inequality we have

n
1
r ≤ Hmult

K,m,p,rn
sn1−m

p

and thus, by making n→∞, we obtain

s ≥ p+mr−rp
pr

.

If (r, p) ∈ (p/(p−m),∞)× (m, 2m] we have

p+mr−rp
pr

< 0

and (
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
p

p−m

) p−m
p

≤ Dmult
K,m,p ‖T‖

= Dmult
K,m,p ‖T‖n

max{ p+mr−rppr
,0}

In this case the optimality of the exponent max {(p+mr − rp)/pr, 0} is immediate, since
one can easily verify that no negative exponent of n is possible.

Remark 2.3. Observing the proof of Theorem 2.1 we conclude that the optimal constant
Hmult

K,m,p,r satisfies:
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with 1 ≤ p ≤ m

Hmult
K,m,p,r ≤



Bmult
K,m if (r, p) ∈

[
1, 2m

m+1

]
× [2, 2m),

Cmult
K,m, 2mr

r+mr−2m

if (r, p) ∈
[

2m
m+1

, 2
]
× [2, 2m),

Cmult
K,m,p if (r, p) ∈ [1,∞)× [2m,∞],

Dmult
K,m, mr

r−1
if (r, p) ∈

[
2, p

p−m

]
× (m, 2m],

Dmult
K,m,p if (r, p) ∈

(
p

p−m ,∞
)
× (m, 2m].

Using results of the previous chapters, we have the following estimates for the constants
Hmult

K,m,p,r:

Hmult
K,m,p,r ≤



ηK,m if (r, p) ∈
[
1, 2m

m+1

]
× [2, 2m),

(σK)
(m−1)(mr+r−2m)

r (ηK,m)
2m−rm

r if (r, p) ∈
(

2m
m+1

, 2
]
× [2, 2m),

(σK)
2m(m−1)

p (ηK,m)
p−2m
p if (r, p) ∈ [1,∞)× [2m, 2m3 − 4m2 + 2m],

ηK,m if (r, p) ∈ [1,∞)× (2m3 − 4m2 + 2m,∞],

(
√

2)m−1 if (r, p) ∈ [2,∞)× (m, 2m],

where σR =
√

2 and σC = 2/
√
π and

ηC,m :=
m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

ηR,m :=
m∏
j=2

2
1

2j−2 for m ≤ 13,

ηR,m := 2
446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

for m ≥ 14.

Now we will obtain partial answers for the cases not covered by our main theorem,
i.e., the cases (r, p) ∈ [1, 2]× [1, 2) and (r, p) ∈ (2,∞)× [1,m].

Proposition 2.4. Let m ≥ 2 be a positive integer.

(a) If (r, p) ∈ [1, 2]× [1, 2), then there is a constant Hmult
K,m,p,r > 0 such that(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

2mr+2mp−mpr−pr
2pr ‖T‖ (2.6)

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover
the optimal exponent of n is not smaller than (2m− r)/2r.

(b) If (r, p) ∈ (2,∞)× [1,m], then there is a constant Hmult
K,m,p,r > 0 such that(

n∑
j1,.,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

 Hmult
K,m,p,rn

2m−p+ε
pr ‖T‖ if p > 2

Hmult
K,m,p,rn

2m−p
pr ‖T‖ if p = 2
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for all m-linear forms T : `np×· · ·×`np → K and all positive integers n and all ε > 0.
Moreover the optimal exponent of n is not smaller than (2mr+2mp−mpr−pr)/2pr
and not smaller than (2m− r)/2r if 2 ≤ p ≤ m.

Proof. (a) The proof of (2.6) is the same of the proof of Theorem 2.1(a). The estimate
for the bound of the optimal exponent also uses the generalized Kahane–Salem–Zygmund
inequality (2). Since p ≤ 2 we have

n
m
r ≤ CmH

mult
K,m,p,rn

sn
1
2

and thus, by making n→∞,
s ≥ 2m−r

2r
.

(b) Let δ = 0 if p = 2 and δ > 0 if p > 2. First note that every continuous m-
linear form on `p spaces is obviously multiple (∞; p∗ − δ)-summing and also multiple
(2; 2m/(2m− 1))-summing (this is a consequence of the Hardy–Littlewood inequality and
[63, Section 5]). Using [37, Proposition 4.3] we conclude that every continuous m-linear
form on `p spaces is multiple (r;mpr/(2m+mpr −mr − p+ ε))-summing for all ε > 0
(and ε = 0 if p = 2). Therefore, there exist Hmult

K,m,p,r > 0 such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,r

[
(n(n−

1
p∗ )

mpr
2m+mpr−mr−p+ε )

2m+mpr−mr−p+ε
mpr

]m
‖T‖

= Hmult
K,m,p,rn

2m+mpr−mr−p+ε
pr (n

1
p
−1)m ‖T‖

= Hmult
K,m,p,rn

2m−p+ε
pr ‖T‖ .

The bounds for the optimal exponents are obtained via the generalized Kahane–Salem–
Zygmund inequality (2) as in the previous cases.

Remark 2.5. Item (b) of the Proposition 2.4 with p = 2 recovers [37, Corollary 5.20(ii)].
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with 1 ≤ p ≤ m



Chapter 3
The polynomial Bohnenblust–Hille and
Hardy–Littlewood inequalities

In this chapter we present results of the paper:

[11] G. Araújo, and D. Pellegrino, Lower bounds for the complex polynomial Hardy-
Littlewood inequality, Linear Algebra Appl. 474 (2015), 184-191.

Given α = (α1, . . . , αn) ∈ Nn, define |α| := α1+· · ·+αn and xα stands for the monomial
xα1

1 · · ·xαnn for x = (x1, . . . , xn) ∈ Kn. The polynomial Bohnenblust–Hille inequality (see
[5, 32] and the references therein) ensures that, given positive integers m ≥ 2 and n ≥ 1,
if P is a homogeneous polynomial of degree m on `n∞ given by

P (x1, ..., xn) =
∑
|α|=m

aαx
α,

then ∑
|α|=m

|aα|
2m
m+1

m+1
2m

≤ Bpol
K,m ‖P‖ (3.1)

for some constant Bpol
K,m ≥ 1 which does not depend on n (the exponent 2m

m+1
is optimal),

where ‖P‖ := supz∈B`n∞
|P (z)|. The search of precise estimates of the growth of the

constants Bpol
K,m is fundamental for different applications and remains an important open

problem (see [23] and the references therein).

For real scalars it was shown in [45, Theorem 2.2] that

(1.17)m ≤ Bpol
R,m ≤ C(ε) (2 + ε)m ,

where C(ε) (2 + ε)m means that given ε > 0, there is a constant C (ε) > 0 such that
Bpol

C,m ≤ C(ε) (2 + ε)m for all m. In other words, this means that for real scalars the

hypercontractivity of Bpol
R,m is optimal.

For complex scalars the behavior of Bpol
K,m is still unknown. The best information we

have thus far about Bpol
C,m are due D. Núñez-Alarcón [101] (lower bounds) and F. Bayart,
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D. Pellegrino and J.B. Seoane-Sepúlveda [23] (upper bounds)

Bpol
C,m ≥



(
1 +

1

2m−1

) 1
4

for m even;(
1 +

1

2m−1

)m−1
4m

for m odd;

Bpol
C,m ≤ C(ε) (1 + ε)m .

The following diagram shows the evolution of the estimates ofBpol
K,m for complex scalars.

Authors Year Estimate

Bohnenblust and Hille
1931, [32]

(Ann.Math.)
Bpol

C,m ≤ m
m+1
2m

(√
2
)m−1

Defant, Frerick, Ortega-Cerdá,
Ounäıes, and Seip

2011, [55]
(Ann.Math.)

Bpol
C,m ≤

(
1 + 1

m−1

)m−1√
m
(√

2
)m−1

Bayart, Pellegrino,
and Seoane-Sepúlveda

2014, [23]
(Adv .Math.)

Bpol
C,m ≤ C(ε) (1 + ε)m

When replacing `n∞ by `np the extension of the polynomial Bohnenblust–Hille inequality

is called polynomial Hardy–Littlewood inequality and the optimal exponents are 2mp
mp+p−2m

for 2m ≤ p ≤ ∞. More precisely, given positive integers m ≥ 2 and n ≥ 1, as a conse-
quence of the multilinear Hardy–Littlewood inequality (see [4, 63]), if P is a homogeneous
polynomial of degree m on `np with 2m ≤ p ≤ ∞ given by P (x1, . . . , xn) =

∑
|α|=m aαx

α,

then there is a constant Cpol
K,m,p ≥ 1 such that

∑
|α|=m

|aα|
2mp

mp+p−2m


mp+p−2m

2mp

≤ Cpol
K,m,p ‖P‖ , (3.2)

and Cpol
K,m,p does not depend on n, where ‖P‖ := supz∈B`np

|P (z)|. Using the generalized

Kahane–Salem–Zygmund inequality (2) (see, for instance, [5]) we can verify that the
exponents 2mp

mp+p−2m
are optimal for 2m ≤ p ≤ ∞. When p = ∞, since 2mp

mp+p−2m
= 2m

m+1
,

we recover the polynomial Bohnenblust–Hille inequality.
As in the multilinear case, for m < p < 2m there is also a version of the polynomial

Hardy–Littlewood inequality (see [63]): given positive integers m ≥ 2 and n ≥ 1, if P is
a homogeneous polynomial of degree m on `np with m < p < 2m given by P (x1, . . . , xn) =∑
|α|=m aαx

α, then there is a (optimal) constant Dpol
K,m,p ≥ 1 (not depending on n) such

that ∑
|α|=m

|aα|
p

p−m


p−m
p

≤ Dpol
K,m,p ‖P‖ , (3.3)

and the exponents p
p−m are optimal.

In this chapter we look for upper and lower estimates for Cpol
K,m,p and Dpol

K,m,p. Our main
contributions regarding the constants of the polynomial Hardy–Littlewood inequality can
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be summarized in the following result (in this chapter we will only present the proof of
the items (1)(ii) and (3). For details of other results see [8]):

Theorem 3.1. Let m ≥ 2.

(1) Let 2m ≤ p ≤ ∞.

(i) If K = R, then Cpol
R,m,p ≥ 2

m2p+10m−p−6m2−4
4mp ≥

(
16
√

2
)m

;

(ii) If K = C, then

Cpol
C,m,p ≥

{
2
m
p for m even;

2
m−1
p for m odd.

(2) For 2m ≤ p ≤ ∞,

Cpol
K,m,p ≤ Cmult

K,m,p
mm

(m!)
mp+p−2m

2mp

,

(3) For m < p < 2m,

Dpol
C,m,p ≥

{
2
m
p for m even;

2
m−1
p for m odd.

(4) For m < p < 2m,

Dpol
K,m,p ≤ Dmult

K,m,p
mm

(m!)
p−m
p

,

Remark 3.2. Trying to find a certain pattern in the behavior of the constants of the
Bohnenblust–Hille and Hady–Littlewood inequalities, we define Bpol

K,m(n), Cpol
K,m,p(n) and

Dpol
K,m,p(n) as the best (meaning smallest) value of the constants appearing in (3.1), (3.2)

and (3.3), respectively, for n ∈ N fixed. A number of papers related to these particular
cases are being produced and we can summarize the main findings of these papers (see
[9, 46, 48, 49, 78]) as follows:

• Bpol
C,2(2) = 4

√
3
2
;

• Bpol
R,2(2) = (2t

4/3
0 + (2

√
t0 − t20)4/3)3/4, with t0 =

2
3
√

107+9
√

129+
3
√

856−72
√

129+16

36
;

• Bpol
R,3(2) ≥ 2.5525, Bpol

R,5(2) ≥ 6.83591, Bpol
R,6(2) ≥ 10.7809, Bpol

R,7(2) ≥ 19.96308,

Bpol
R,8(2) ≥ 33.36323, Bpol

R,10(2) ≥ 90.35556, Bpol
R,600(2) ≥ (1.65171)600, Bpol

R,602(2) ≥
(1.61725)602;

• For 4 ≤ p ≤ ∞,

Cpol
R,2,p(2) = max

α∈[0,1]

2

∣∣∣∣∣ 2αp − 1

α2 + (1− αp)
2
p

∣∣∣∣∣
4p

3p−4

+

(
2α (1− αp)

1
p
αp−2 + (1− αp)

p−2
p

α2 + (1− αp)
2
p

) 4p
3p−4


3p−4
4p

;
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• Cpol
R,2,4(2) = Dpol

R,2,4(2) =
√

2, Cpol
R,3,6(2) = Dpol

R,3,6(2) ≥ 2.236067, Cpol
R,5,10(2) = Dpol

R,5,10(2) ≥
6.236014, Cpol

R,6,12(2) = Dpol
R,6,12(2) ≥ 10.636287, Cpol

R,7,14(2) = Dpol
R,7,14(2) ≥ 18.095148,

Cpol
R,8,16(2) = Dpol

R,8,16(2) ≥ 31.727174, Cpol
R,10,20(2) = Dpol

R,10,20(2) ≥ 91.640152.

• For 2 < p ≤ 4, Dpol
R,2,p(2) = 22/p.

3.1 Lower bounds for the complex polynomial Hardy–

Littlewood inequality

In this section we provide nontrivial lower bounds for the constants of the complex
case of the polynomial Hardy–Littlewood inequality. More precisely we prove that, for
m ≥ 2 and 2m ≤ p <∞,

Cpol
C,m,p ≥ 2

m
p

for m even, and

Cpol
C,m,p ≥ 2

m−1
p

for m odd. For instance, √
2 ≤ Cpol

C,2,4 ≤ 3.1915.

Let m ≥ 2 be an even positive integer and let p ≥ 2m. Consider the 2-homogeneous
polynomials Q2 : `2

p → C and Q̃2 : `2
∞ → C both given by (z1, z2) 7→ z2

1 − z2
2 + cz1z2. We

know from [19, 45] that

‖Q̃2‖ =
(
4 + c2

) 1
2 .

If we follow the lines of [101] and we define the m-homogeneous polynomial Qm : `mp →
C by Qm(z1, ..., zm) = z3 . . . zmQ2(z1, z2) we obtain

‖Qm‖ ≤ 2−
m−2
p ‖Q2‖ ≤ 2−

m−2
p ‖Q̃2‖ = 2−

m−2
p
(
4 + c2

) 1
2 ,

where we use the obvious inequality

‖Q2‖ ≤ ‖Q̃2‖.

Therefore, for m ≥ 2 even and c ∈ R, from the polynomial Hardy–Littlewood inequality
it follows that

Cpol
C,m,p ≥

(
2 + |c|

2mp
mp+p−2m

)mp+p−2m
2mp

2−
m−2
p (4 + c2)

1
2

.

If

c >

(
2

2p+4−2m
p − 2

mp+p−2m
mp

1− 2−
2m−4
p

) 1
2

,

it is not too difficult to prove that

2−
m−2
p
(
4 + c2

) 1
2 <

((
2
mp+p−2m

2mp

)2

+ c2

) 1
2

,
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i.e.,

2−
m−2
p
(
4 + c2

) 1
2 <

∥∥∥(2
mp+p−2m

2mp , c
)∥∥∥

2
.

Since 2mp
mp+p−2m

≤ 2, we know that ` 2mp
mp+p−2m

⊂ `2 and ‖ · ‖2 ≤ ‖ · ‖ 2mp
mp+p−2m

. Therefore, for

all

c >

(
2

2p+4−2m
p − 2

mp+p−2m
mp

1− 2−
2m−4
p

) 1
2

,

we have

2−
m−2
p
(
4 + c2

) 1
2 <

∥∥∥(2
mp+p−2m

2mp , c
)∥∥∥

2

≤
∥∥∥(2

mp+p−2m
2mp , c

)∥∥∥
2mp

mp+p−2m

=
(

2 + c
2mp

mp+p−2m

)mp+p−2m
2mp

,

from which we conclude that

Cpol
C,m,p ≥

(
2 + c

2mp
mp+p−2m

)mp+p−2m
2mp

2−
m−2
p (4 + c2)

1
2

> 1.

If m ≥ 3 is odd, since ‖Qm‖ ≤ ‖Qm−1‖, then we have ‖Qm‖ ≤ 2−
m−3
p (4 + c2)

1
2 and

thus we can now proceed analogously to the even case and finally conclude that for

c >

(
2

2p+6−2m
p − 2

mp+p−2m
mp

1− 2−
2m−6
p

) 1
2

we have

Cpol
C,m,p ≥

(
2 + c

2mp
mp+p−2m

)mp+p−2m
2mp

2−
m−3
p (4 + c2)

1
2

> 1.

So we have:

Proposition 3.3. Let m ≥ 2 be a positive integer and let p ≥ 2m. Then, for every ε > 0,

Cpol
C,m,p ≥

2 +

((
2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

+ ε

) 2mp
mp+p−2m


mp+p−2m

2mp

2−
m−2
p

4 +

((
2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

+ ε

)2
 1

2

> 1 if m is even
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and

Cpol
C,m,p ≥

2 +

((
2
2p+6−2m

p −2
mp+p−2m

mp

1−2
− 2m−6

p

) 1
2

+ ε

) 2mp
mp+p−2m


mp+p−2m

2mp

2−
m−3
p

4 +

((
2
2p+6−2m

p −2
mp+p−2m

mp

1−2
− 2m−6

p

) 1
2

+ ε

)2
 1

2

> 1 if m is odd.

However, we have another approach to the problem, which is surprisingly simpler than
the above approach and still seems to give best (bigger) lower bounds for the constants
of the polynomial Hardy–Littlewood inequality (even for the case m < p < 2m).

Theorem 3.4. Let m ≥ 2 be a positive integer and let m < p ≤ ∞. Then 2
m
p if m is

even and 2
m−1
p if m is odd are lower bounds for the constants of the complex polynomial

Hardy–Littlewood inequality.

Proof. Let m ≥ 2 be a positive integer and let p ≥ 2m. Consider P2 : `2
p → C the

2-homogeneous polynomial given by z 7→ z1z2. Observe that

‖P2‖ = sup
|z1|p+|z2|p=1

|z1z2| = sup
|z|≤1

|z| (1− |z|p)
1
p = 2−

2
p .

More generally, if m ≥ 2 is even and Pm is the m-homogeneous polynomial given by
z 7→ z1 · · · zm, then

‖Pm‖ ≤ 2−
m
p .

Therefore, from the polynomial Hardy–Littlewood inequality we know that

Cpol
C,m,p ≥

∑
|α|=m

|aα|
2mp

mp+p−2m


mp+p−2m

2mp

‖Pm‖
≥ 1

2−
m
p

= 2
m
p .

If m ≥ 3 is odd, we define again the m-homogeneous polynomial Pm given by z 7→
z1 · · · zm and since ‖Pm‖ ≤ ‖Pm−1‖, then we have ‖Pm‖ ≤ 2−

m−1
p and thus

Cpol
C,m,p ≥

1

2−
m−1
p

= 2
m−1
p .

With the same arguments used for the case 2m ≤ p ≤ ∞, we obtain the similar
estimate (3) of Theorem 3.1 for the case m < p < 2m.

The estimates of Theorem 3.3 seems to become better when ε grows (this seems to be
a clear sign that we should avoid the terms z2

1 and z2
2 in our approach). Making ε → ∞

in Theorem 3.3 we obtain

Cpol
C,m,p ≥

 2
m−2
p for m even;

2
m−3
p for m odd,
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which are slightly worse than the estimates from Theorem 3.4.

3.2 The complex polynomial Hardy-Littlewood in-

equality: Upper estimates

In this section, let us use the following notation: S`np denotes the unit sphere on `np if
p <∞, and S`n∞ denotes the n-dimensional torus. More precisely: for p ∈ (0,∞)

S`np :=
{

z = (z1, ..., zn) ∈ Cn : ‖z‖`np = 1
}
,

and
S`n∞ := Tn = {z = (z1, ..., zn) ∈ Cn : |zi| = 1} .

Let µn the normalized Lebesgue measure on the respective set. The following lemma is
a particular instance (1 ≤ p = s ≤ 2 and q = 2) of the Khinchin-Steinhaus polynomial
inequalities (for polynomials homogeneous or not) and p ≤ q.

Lemma 3.5. Let 1 ≤ s ≤ 2. For every m-homogeneous polynomial P (z) =
∑
|α|=m aαz

α

on Cn with values in C, we have∑
|α|=m

|aα|2
 1

2

≤
(

2

s

)m
2
(∫

Tn
|P (z)|s dµn(z)

) 1
s

.

When n = 1 a result due to F.B. Weissler (see [126]) asserts that the optimal con-
stant for the general case is

√
2/s. In the n-dimensional case the best constant for

m-homogeneous polynomials is (
√

2/s)m (see also [22]).

For m ∈ [2,∞] let us define p0(m) as the infimum of the values of p ∈ [2m,∞] such
that for all 1 ≤ s ≤ 2p

p−2
there is a Ks,p > 0 such that

∑
|α|=m

|aα|
2p
p−2


p−2
2p

≤ Km
s,p

(∫
S`np

|P (z)|s dµn(z)

) 1
s

(3.4)

for all positive integers n and all m-homogeneous polynomials P : Cn → C. From Lemma
3.5 we know that this definition makes sense, since from this lemma we know that (3.4)
is valid for p = ∞. We conjecture that p0(m) ≤ m2. If it is true that p0(m) < ∞, it is
possible to prove the following new estimate for Cpol

C,m,p (see [8]).

Theorem 3.6. Let m ∈ [2,∞] and 1 ≤ k ≤ m − 1. If p0(m − k) < p ≤ ∞ (and p = ∞
if p0(m − k) = ∞) then, for every m-homogeneous polynomial P : `np → C, defined by
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P (z) =
∑
|α|=m aαz

α, we have

∑
|α|=m

|aα|
2mp

mp+p−2m


mp+p−2m

2mp

≤ Km−k
2kp

kp+p−2k
,p
· mm

(m− k)m−k
·
(

(m− k)!

m!

) p−2
2p
(

2√
π

) 2k(k−1)
p

·
(
Bmult

C,k
) p−2k

p ‖P‖,

where Bmult
C,k is the optimal constant of the multilinear Bohnenblust–Hille inequality asso-

ciated with k-linear forms.
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Summability of multilinear operators





Chapter 4
Maximal spaceability and optimal estimates
for summing multilinear operators

In this chapter we present results of the paper:

[15] G. Araújo, and D. Pellegrino, Optimal estimates for summing multilinear operators,
arXiv:1403.6064v2 [math.FA].

If 1 ≤ p ≤ q < ∞, we say that a continuous linear operator T : E → F is (q, p)-
summing if (T (xj))

∞
j=1 ∈ `q(F ) whenever (xj)

∞
j=1 ∈ `wp (E). The class of (q, p)-summing

linear operators from E to F will be represented by Π(q;p)(E,F ). An equivalent for-
mulation asserts that T : E → F is (q, p)-summing if there is a constant C ≥ 0 such
that (

∞∑
j=1

‖T (xj)‖q
)1/q

≤ C
∥∥(xj)

∞
j=1

∥∥
w,p

for all (xj)
∞
j=1 ∈ `wp (E). The above inequality can also be replaced by: there is a constant

C ≥ 0 such that (
n∑
j=1

‖T (xj)‖q
)1/q

≤ C
∥∥(xj)

n
j=1

∥∥
w,p

for all x1, . . . , xn ∈ E and all positive integers n. The infimum of all C that satisfy the
above inequalities defines a norm, denoted by π(q;p)(T ), and

(
Π(q;p) (E,F ) , π(q;p)

(
·)) is a

Banach space.
More generally, we can define:

Definition 4.1. For 1 ≤ p1, ..., pm < ∞ and 1
q
≤
∑m

j=1
1
pj

recall that a continuous m-

linear operator T : E1 × · · · × Em → F is absolutely (q; p1, ..., pm)-summing if there is a
C > 0 such that (

n∑
j=1

∥∥∥T (x
(1)
j , ..., x

(m)
j )

∥∥∥q) 1
q

≤ C

m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

for all positive integers n and all (x
(k)
j )nj=1 ∈ Ek, k = 1, ...,m.
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• We represent the class of all absolutely (q; p1, ..., pm)-summing multiple operators
from E1, ...., Em to F by Πm

as(q;p1,...,pm) (E1, ..., Em;F );

• When p1 = · · · = pm = p, we denote Πm
as(q;p,...,p)(E1, ..., Em;F ) by

Πm
as(q;p)(E1, ..., Em;F ).

The infimum over all C as above defines a norm on Πm
as(q;p1,...,pm) (E1, ..., Em;F ), which

we denote by πas(q;p1,...,pm) (T ) (or πas(q;p) (T ) if p1 = · · · = pm = p).
In 2003 Matos [86] and, independently, Bombal, Pérez-Garćıa and Villanueva [34]

introduced the notion of multiple summing multilinear operators.

Definition 4.2 (Multiple summing operators [34, 86]). Let 1 ≤ p1, . . . , pm ≤ q < ∞. A
bounded m-linear operator T : E1 × · · · × Em → F is multiple (q; p1, . . . , pm)-summing if
there exists Cm > 0 such that(

∞∑
j1,...,jm=1

∥∥∥T (x
(1)
j1
, . . . , x

(m)
jm

)∥∥∥∥∥
q

)
1
q ≤ Cm

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

(4.1)

for every (x
(k)
j )∞j=1 ∈ `wpk(Ek), k = 1, . . . ,m.

• The class of all multiple (q; p1, . . . , pm)-summing operators from E1 × · · · × Em to
F will be denoted by Πm

mult(q;p1,...,pm)(E1, . . . , Em;F ).

• When p1 = · · · = pm = p we write Πm
mult(q;p)(E1, ..., Em;F ) instead of

Πm
mult(q;p,...,p)(E1, ..., Em;F ).

The infimum over all Cm satisfying (4.1) defines a norm in Πm
mult(q;p1,...,pm)(E1, . . . , Em;F )

and is denoted by πmult(q;p1,...,pm)(T ) (or πmult(q;p)(T ) if p1 = · · · = pm = p).
Using that L (c0;E) is isometrically isomorphic to `w1 (E) (see [62]), Bohnenblust–

Hille’s inequality can be re-written as:

Theorem 4.3 (Bohnenblust–Hille re-written [115] (see also [37])). If m ≥ 2 is a positive
integer and T ∈ L(E1, . . . , Em;K), then(

∞∑
j1,...,jm=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

)
∣∣∣ 2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

(4.2)

for every (x
(k)
j )∞j=1 ∈ `w1 (Ek), k = 1, . . . ,m and j = 1, . . . , N , where Bmult

K,m is the optimal
constant of the classical Bohnenblust–Hille inequality.

Proof. Let T ∈ L (E1, . . . , Em;K) and let (x
(k)
j )∞j=1 ∈ `w1 (Ek), k = 1, . . . ,m. From [62,

Prop. 2.2.] we have the boundedness of the linear operator uk : c0 → Ek such that

uk (ej) = x
(k)
j and

‖uk‖ =
∥∥∥(x

(k)
j )∞j=1

∥∥∥
w,1

,
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for each k = 1, . . . ,m. Thus, S : c0 × · · · × c0 → K defined by

S(y1, . . . , ym) = T (u1 (y1) , . . . , um (ym))

is a bounded m-linear operator and ‖S‖ ≤ ‖T‖‖u1‖ · · · ‖um‖. Therefore,(
∞∑

j1,...,jm=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm

)∣∣∣ 2m
m+1

)m+1
2m

=

(
∞∑

j1,...,jm=1

|S (ej1 , . . . , ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖S‖ ≤ Bmult

K,m ‖T‖
m∏
k=1

‖uk‖ = Bmult
K,m ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

.

In this sense the Bohnenblust–Hille theorem, (1.1) can be seen as the beginning of the
notion of multiple summing operators, that is, in the modern terminology, the classical
Bohnenblust–Hille inequality [32] ensures that, for all m ≥ 2 and all Banach spaces
E1, ..., Em,

L (E1, ..., Em;K) = Πm
mult( 2m

m+1
;1) (E1, ..., Em;K) .

4.1 Maximal spaceability and multiple summability

In this section we are interested in estimating the size of the set of non multiple
summing (and non absolutely summing) multilinear operators. For this task we use the
notion of spaceability.

For a given Banach space E, a subset A ⊂ E is spaceable if A ∪ {0} contains a closed
infinite-dimensional subspace V of E (for details on spaceability and the related notion of
lineability we refer to [18, 26, 27, 47] and the references therein). When dimV = dimE,
A is called maximal spaceable. From now on c denotes the cardinality of the continuum.

Proposition 4.4. Let E1, ..., Em be separable Banach spaces. Then,

dimL(E1, ..., Em;K) = c.

Proof. From [36, Remark 2.5] we know that dimL(E1, ..., Em;K) ≥ c.

Since E1, ..., Em are separable, let ωj ⊆ Ej, j = 1, ...,m, be a countable, dense subset
of Ej and let γ be a basis of L(E1, ..., Em;K). Define

g : γ → Kω1×···×ωm

T 7→ T |ω1×···×ωm ,

with Kω1×···×ωm the set of all functions from ω1×· · ·×ωm to K. Observe that g injective.
Indeed, let S, T ∈ γ such that g(S) = g(T ), i.e.,

S|ω1×···×ωm = T |ω1×···×ωm .

Given x ∈ E1 × · · · × Em, since ω1 × · · · × ωm is dense on E1 × · · · × Em, there exist
(xn)∞n=1 ⊂ ω1 × · · · × ωm with limn→∞ xn = x. Since S and T are continuous, it follows
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that
S(x) = S( lim

n→∞
xn) = lim

n→∞
S(xn) = lim

n→∞
T (xn) = T ( lim

n→∞
xn) = T (x).

Thus S = T and hence g is injective, as required.
Therefore,

dimL(E1, ..., Em;K) = card(γ) ≤ card(Kω1×···×ωm) = card(KN) = c,

where KN is the set of all functions from N to K.

Corollary 4.5. dim(L(m`p;K)) = c.

Before we introduce the next result, it is important to note that:

Remark 4.6. Let 1 ≤ s ≤ r <∞ and let E1, ..., Em, F be Banach spaces with dimEj <∞
for all j = 1, ...,m. Then

L(E1, ..., Em;F ) = Πm
mult(r;s)(E1, ..., Em;F ).

In fact, since s ≤ r we have `s ⊆ `r and ‖ · ‖r ≤ ‖ · ‖s. Since Ej has finite dimension
for all j = 1, ...,m, it follows that `ws (Ej) = `s(Ej) for all j = 1, ...,m. Thus, consider

T ∈ L(E1, ..., Em;F ), n ∈ N and (x
(k)
jk

)njk=1 ∈ `ws (Ek), k = 1, ...,m, and observe that(
n∑

j1,...,jm=1

∥∥∥T (x(1)
j1
, ..., x

(m)
jm

)∥∥∥r) 1
r

=

∥∥∥∥(∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥)n

j1,...,jm=1

∥∥∥∥
r

≤
∥∥∥∥(∥∥∥T (x

(1)
j1
, ..., x

(m)
jm

)
∥∥∥)n

j1,...,jm=1

∥∥∥∥
s

=

(
n∑

j1,...,jm=1

∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥s) 1

s

≤ ‖T‖

(
n∑

j1,...,jm=1

∥∥∥x(1)
j1

∥∥∥s · · · ∥∥∥x(m)
jm

∥∥∥s) 1
s

= ‖T‖

(
n∑

j1=1

∥∥∥x(1)
j1

∥∥∥s · · · n∑
jm=1

∥∥∥x(m)
jm

∥∥∥s) 1
s

= ‖T‖
m∏
k=1

∥∥∥(x
(k)
jk

)njk=1

∥∥∥
s

= ‖T‖
m∏
k=1

∥∥∥(x
(k)
jk

)njk=1

∥∥∥
w,s
,

i.e., T ∈ Πm
mult(r;s)(E1, ..., Em;F ).

Theorem 4.7. Let m ≥ 1, p ∈ [2,∞) . If 1 ≤ s < p∗ and

r <
2ms

s+ 2m−ms

then
L (m`p;K) r Πm

mult(r;s) (m`p;K)

is maximal spaceable.

Proof. We consider the case of complex scalars. The case of real scalars is obtained
from the complex case via a standard complexification argument (see [37]). An extended
version of the Kahane–Salem–Zygmund inequality (see (2) and [5, Lemma 6.1]) asserts
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that, if m,n ≥ 1 and p ∈ [2,∞], there exists a m-linear map An : `np × · · · × `np → K of
the form

An(z(1), . . . , z(m)) =
n∑

j1,...,jm=1

±z(1)
j1
· · · z(m)

jm
(4.3)

such that
‖An‖ ≤ Cmn

m+1
2
−m
p

for certain constant Cm > 0.

Let

β :=
p+ s− ps

ps
.

Observe that s < p∗ implies β > 0. From the previous remark (Remark 4.6) we have(
n∑

j1,...,jm=1

∣∣∣∣An(ej1jβ1 , ..., ejmjβm
)∣∣∣∣r
) 1

r

≤ πmult(r;s) (An)

∥∥∥∥∥
(
ej
jβ

)n
j=1

∥∥∥∥∥
m

w,s

i.e., (
n∑

j1,...,jm=1

∣∣∣∣ 1

jβ1 ...j
β
m

∣∣∣∣r
) 1

r

≤ πmult(r;s) (An)

∥∥∥∥∥
(
ej
jβ

)n
j=1

∥∥∥∥∥
m

w,s

. (4.4)

Let us investigate separately the both sides of (4.4). On the one hand,(
n∑

j1,...,jm=1

∣∣∣∣ 1

jβ1 ...j
β
m

∣∣∣∣r
) 1

r

=

(
n∑

j1=1

· · ·
n∑

jm=1

∣∣∣∣ 1

jβ1 ...j
β
m

∣∣∣∣r
) 1

r

=

(
n∑

j1=1

1

jrβ1

· · ·
n∑

jm=1

1

jrβm

) 1
r

=

(
n∑
j=1

1

jrβ

)m
r

.

(4.5)

On the other hand, for n ≥ 2, since
1
1
βs

+
1
p∗

s

= 1, we obtain

∥∥∥∥( ejjβ)n
j=1

∥∥∥∥
w,s

= sup
ϕ∈B

(`p)′

(
n∑
j=1

∣∣∣∣ϕ( ejjβ
)∣∣∣∣s
) 1

s

= sup
ϕ∈B`p∗

(
n∑
j=1

|ϕj|s
1

jβs

) 1
s

≤

( n∑
j=1

|ϕj|p
∗

) s
p∗
(

n∑
j=1

1

j

)βs
 1

s

≤

(
n∑
j=1

1

j

)β

=

(
1 +

n∑
j=2

inf

{
1

x
: x ∈ [j − 1, j]

})β

<

(
1 +

∫ n

1

1

x
dx

)β
= (1 + log n)β .

(4.6)
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Hence, replacing (4.5) and (4.6) in (4.4), we have(
n∑
j=1

1

jrβ

)m
r

< πmult(r;s) (An) (1 + log n)mβ

and consequently (since
n∑
j=1

1
jrβ
≥

n∑
j=1

1
nrβ

= n1−rβ)

(
n1−rβ)mr < πmult(r;s) (An) (1 + log n)mβ .

Since ‖An‖ ≤ Cmn
m+1

2
−m
p , we have

πmult(r;s) (An)

‖An‖
>

n
m
r
−( p+s−psps )m

(1 + log n)mβ Cmn
m+1

2
−m
p

=
n
m
r

+m
2
−m
s
− 1

2

Cm (1 + log n)rβ
.

Using that r < 2ms
s+2m−ms we get m

r
+ m

2
− m

s
− 1

2
> 0. Therefore, by making n → ∞, it

follows that

lim
n→∞

πmult(r;s) (An)

‖An‖
=∞. (4.7)

Using the above limit, let us prove that Πm
mult(r;s) (m`p;K) is not closed in L (m`p;K). In

fact, suppose (contrary to our claim) that Πm
mult(r;s) (m`p;K) is closed in L (m`p;K). Then(

Πm
mult(r;s) (m`p;K) , ‖ · ‖

)
is Banach space and since ‖ · ‖ ≤ πmult(r;s)(·) (see Proposition

5.3) we conclude that

id :
(
Πm

mult(r;s) (m`p;K) , πmult(r;s)(·)
)
→
(
Πm

mult(r;s) (m`p;K) , ‖ · ‖
)

is continuous. Thus by Open Mapping Theorem (see [43, Corollary 2.7]) we conclude
that id−1 is also continuous and thus there exists C > 0 such that πmult(r;s)(·) ≤ C‖ · ‖,
contrary to (4.7).

Therefore, from [67, Theorem 5.6 and its reformulation] (see also [80]) we conclude
that L (m`p;K) r Πm

mult(r;s) (m`p;K) is spaceable.

It remains to prove the maximal spaceability. From Corollary 4.5 we know that
dim (L(m`p;K)) = c. Thus, if

V ⊆ (L(m`p;K) r Πm
mult(r;s)(

m`p;K)) ∪ {0}

is a closed infinite-dimensional subspace of L(m`p;K), we have dim(V ) ≤ c. Since V is
a Banach space, we also have dim(V ) ≥ c (see [36, Remark 2.5]). Thus, by the Cantor-
Bernstein-Schroeder Theorem, it follows that dim(V ) = c and the proof is done.

Remark 4.8. Note that it was not necessary to suppose the Continuum Hypothesis. In
fact, for instance the proof given in [36, Remark 2.5] of the fact that the dimension of
every infinite-dimensional Banach space is, at least, c does not depends on the Continuum
Hypothesis.
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4.2 Some consequences

Here we show some consequences of the results of the previous section. For instance,
we observe a new optimality component of the Bohnenblust–Hille inequality: the term 1
from the pair

(
2m
m+1

; 1
)

is also optimal.
The following result is a simple consequence of Theorem 4.7.

Corollary 4.9. Let m ≥ 2 and r ∈
[

2m
m+1

, 2
]
. Then

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr + 2m− r

for all 2 ≤ p < 2mr
r+mr−2m

.

Proof. Since 2m
m+1

≤ r ≤ 2 < 2m, it follows that 1 ≤ 2mr
mr+2m−r and 2 < 2mr

r+mr−2m
. Note

that

s >
2mr

mr + 2m− r
implies

r <
2ms

s+ 2m−ms
.

Therefore, for 2 ≤ p < 2mr
r+mr−2m

, from Theorem 4.7 we know that

L (m`p;K) r Πm
mult(r;s) (m`p;K)

is spaceable for all 2mr
mr+2m−r < s < p∗ (note that p < 2mr

r+mr−2m
implies p∗ > 2mr

mr+2m−r ). In

particular, for 2 ≤ p < 2mr
r+mr−2m

,

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr + 2m− r
.

This corollary, together with our main result, ensure that, for r ∈
[

2m
m+1

, 2
]

and 2 ≤
p < 2mr

r+mr−2m
,

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
=

2mr

mr + 2m− r
.

When p = 2 the expression above recovers the optimality of [37, Theorem 5.14] in the
case of m-linear operators on `2 × · · · × `2.

In 2010 G. Botelho, C. Michels and D. Pellegrino [37] have shown that for m ≥ 1 and
Banach spaces E1, ..., Em of cotype 2,

L (E1, ..., Em;K) = Πm
mult(2; 2m

2m−1) (E1, ..., Em;K)

and for Banach spaces of cotype k > 2,

L (E1, ..., Em;K) = Πm
mult(2; km

km−1
−ε) (E1, ..., Em;K)

for all sufficiently small ε > 0.
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We now remark that it is not necessary to make any assumptions on the Banach spaces
E1, ..., Em and 2m

2m−1
holds in all cases. Given k > 2, in [110, page 194] it is said that it is

not known if s = km
km−1

is attained or not in

sup{s : L(E1, ..., Em;K) = Πm
mult(2;s)(E1, ..., Em;K) for all Ej of cotype k} ≥ km

km− 1
.

The fact that 2m
2m−1

can replace km
km−1

in all cases ensures that s = km
km−1

is not attained
and thus improves the estimate of [110, Corollary 3.1], which can be improved to

sup{s : L(E1,..., Em;K) = Πm
mult(2;s)(E1, ..., Em;K) for all Ej of cotype k}

∈
[

2m

2m− 1
,

2km

2km+ k − 2m

]
if k > 2 and m ≥ k is a positive integer.

More precisely we prove the following more general result. Let us remark that part (i)
of the theorem above can be also inferred from [4, 63], although it is not explicitly written
in the aforementioned papers:

Theorem 4.10. Let m ≥ 2 and let r ∈
[

2m
m+1

,∞
)
. Then the optimal s such that

L (E1, ..., Em;K) = Πm
mult(r;s) (E1, ..., Em;K) .

for all Banach spaces E1, ..., Em is:

(i) 2mr
mr+2m−r if r ∈

[
2m
m+1

, 2
]
;

(ii) mr
mr+1−r if r ∈ (2,∞).

Proof. (i) For q ≥ 1, let Xq = `q and let us define X∞ = c0. Let

q :=
2mr

r +mr − 2m
.

Since r ∈
[

2m
m+1

, 2
]

we have that q ∈ [2m,∞]. Since

m

q
≤ 1

2
and r =

2m

m+ 1− 2m
q

,

from the multilinear Hardy–Littlewood inequality (see, for example, [5, 73, 118]) there is
a constant C ≥ 1 such that(

∞∑
j1,....,jm=1

|A (ej1 , ..., ejm)|r
) 1

r

≤ C ‖A‖

for all continuous m-linear operators A : Xq × · · · ×Xq → K. Let T ∈ L (E1, ..., Em;K)

and (x
(k)
j )∞j=1 ∈ `wq∗(Ek), k = 1, ...,m. Now we use a standard argument (see [4]) to lift

the result from Xq to arbitrary Banach spaces. From [62, Proposition 2.2] we know that
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exist a continuous linear operator uk : Xq → Ek so that uk(ejk) = x
(k)
jk

and

‖uk‖ =
∥∥∥(x

(k)
j )∞j=1

∥∥∥
w,q∗

for all k = 1, ...,m. Therefore, S : Xq × · · · × Xq → K defined by S(y1, ..., ym) =
T (u1(y1), ..., um(ym)) is m-linear, continuous and

‖S‖ ≤ ‖T‖
m∏
k=1

‖uk‖ =
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,q∗

.

Hence (
∞∑

j1,...,jm=1

∣∣∣T (x(1)
j1
, ..., x

(m)
jm

)∣∣∣r) 1
r

≤ C‖T‖
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,q∗

,

and, since q∗ = 2mr
mr+2m−r , the last inequality proves that, for all m ≥ 2 and r ∈

[
2m
m+1

, 2
]
,

L (E1, ..., Em;K) = Πm
mult(r; 2mr

mr+2m−r )
(E1, ..., Em;K) .

Now let us prove the optimality. From what we have just proved, for r ∈
[

2m
m+1

, 2
]
, we

have

Um,r

:= sup
{
s : L(E1, ..., Em;K) = Πm

mult(r;s)(E1, ..., Em;K) for all Banach spaces Ej
}

≥ 2mr

mr + 2m− r
.

From Corollary 4.9 we have, for 2 ≤ p < 2mr
r+mr−2m

,

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr + 2m− r
.

Therefore,

Um,r ≤ sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr + 2m− r
.

and we conclude that Um,r = 2mr
mr+2m−r .

(ii) Given r > 2 consider m < p < 2m such that r = p
p−m . In this case, p = mr

r−1
and

p∗ = mr
mr+1−r . From [63] we know that

Πm
mult( p

p−m ;p∗)(E1, ..., Em;K) = L(E1, ..., Em;K) (4.8)

for all Banach spaces E1, ..., Em, i.e.,

Πm
mult(r; mr

mr+1−r )(E1, ..., Em;K) = L(E1, ..., Em;K)
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for all Banach spaces E1, ..., Em. Also, for Ej = `p for all j we know that

Πm
mult( p

p−m ;p∗)(`p, ..., `p;K) = L(`p, ..., `p;K) (4.9)

is optimal, i.e., p
p−m cannot be improved. If s > p∗ let q∗ = s and then q < p (we can

always suppose s close to p∗ and thus m < q < 2m). From (4.8) we have

Πm
mult( q

q−m ;q∗)(E1, ..., Em;K) = L(E1, ..., Em;K)

and from (4.9) in the case of `q instead of `p, we have

Πm
mult( q

q−m ;q∗)(`q, ..., `q;K) = L(`q, ..., `q;K)

and q
q−m is optimal. Since q

q−m > p
p−m we conclude that

Πm
mult( p

p−m ;q∗)(`q, ..., `q;K) 6= L(`q, ..., `q;K),

i.e.,
Πm

mult( p
p−m ;s)(`q, ..., `q;K) 6= L(`q, ..., `q;K).

The following graph (Figure 4.1) illustrates for which (r, s) ∈ [1,∞)× [1, r] we have

L (E1, ..., Em;K) = Πm
mult(r;s) (E1, ..., Em;K) .
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Figure 4.1: Areas of coincidence for Πm
mult(r;s) (E1, ..., Em;K), (r, s) ∈ [1,∞)× [1, r].

The table below details the results of coincidence and non coincidence in the “bound-
aries” of Figure 4.1. We can clearly see that the only case that remains open is the case
(r; s) with r > 2 and 2m

2m−1
< s ≤ mr

mr+1−r .
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r ≥ 1 s = r non coincidence

1 ≤ r < 2m
m+1

s = 1 non coincidence
2m
m+1
≤ r ≤ 2 s = 2mr

mr+2m−r coincidence

r ≥ 2m
m+1

s = 1 coincidence

r > 2 s = mr
mr+1−r coincidence

4.3 Multiple (r; s)-summing forms in c0 and `∞ spaces

From standard localization procedures, coincidence results for c0 and `∞ are the same;
so we will restrict our attention to c0. It is well known that Πm

mult(r;s) (mc0;K) = L (mc0;K)

whenever r ≥ s ≥ 2 (see [37]). When s = 1, as a consequence of the Bohnenblust–Hille
inequality, we also know that the equality holds if and only if s ≥ 2m

m+1
. The next result

encompasses essentially all possible cases:

Proposition 4.11. If s ∈ [1,∞) then

inf
{
r : Πm

mult(r;s) (mc0;K) = L (mc0;K)
}

=


2m

m+ 1
if 1 ≤ s ≤ 2m

m+ 1
,

s if s ≥ 2m

m+ 1
.

Proof. The case r ≥ s ≥ 2 is straight forward (see [37, Corollary 4.10]). The Bohnenblust–
Hille inequality assures that when s = 1 the best choice for r is 2m

m+1
. So, it is obvious

that for 1 ≤ s ≤ 2m
m+1

the best value for r is not smaller than 2m
m+1

. More precisely,

Πm
mult(r;s) (mc0;K) 6= L (mc0;K)

whenever (r, s) ∈
[
1, 2m

m+1

)
×
[
1, 2m

m+1

]
and r ≥ s. For linear operators a deep result due

to Maurey and Pisier (see [62]) alerts us that the notions of absolutely (r; 1)-summing
operators and (r; s)-summing operators coincide when s < r. An adaptation of this result
to multiple summing operators (see [116, Theorem 3.16] or [37, Lemma 5.2]) combined
with the coincidence result for (r; s) =

(
2m
m+1

; 1
)

tells us that we also have coincidences for(
2m
m+1

; s
)

for all 1 < s < 2m
m+1

. The remaining case (r; s) with 2m
m+1

< s < 2 follows from an

interpolation procedure in the lines of [37]. More precisely, given 2m
m+1

< r < 2 and 0 <

δ < r(2−θ)−2
2−θ , where θ = mr+r−2m

r
, consider ε = 2m

m+1
− 2(1−θ)(r−δ)

2−θ(r−δ) . Since 1 < 2m
m+1
−ε < 2m

m+1
,

we know that L(mc0;K) = Πm
mult( 2m

m+1
; 2m
m+1

−ε)
(mc0;K). Since L(mc0;K) = Πm

mult(2;2)(
mc0;K)

and
1

r
=
θ

2
+

1− θ
2m
m+1

and
1

r − δ
=
θ

2
+

1− θ
2m
m+1
− ε

,

by interpolation we conclude L(mc0;K) = Πm
mult(r;r−δ)(

mc0;K).

The following graph (Figure 4.2) illustrates for which (r, s) ∈ [1,∞)× [1, r] we have

L (mc0;K) = Πm
mult(r;s) (mc0;K) .
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Figure 4.2: Areas of coincidence for Πm
mult(r;s) (mc0;K), (r, s) ∈ [1,∞)× [1, r].

The table below details the results of coincidence and non coincidence in the “bound-
aries” of Figure 4.2.

1 ≤ r < 2m
m+1

s = 1 non coincidence

r = 2m
m+1

1 ≤ s < 2m
m+1

coincidence

r ≥ 2m
m+1

s = 1 coincidence

1 ≤ r < 2m
m+1

s = r non coincidence
2m
m+1
≤ r < 2 s = r unknown

r ≥ 2 s = r coincidence

We can see that the only case that remains open is the case (r; s) with 2m
m+1
≤ r < 2

and s = r.

4.4 Absolutely summing multilinear operators

In this section we investigate the optimality of coincidence results within the framework
of absolutely summing multilinear operators and, as consequence, we observe that the
Defant–Voigt theorem (first stated and proved in [7, Theorem 3.10]; see also, e.g., [20,
Theorem 3], for complex scalars, or [39, Corollary 3.2]) is optimal.

Theorem 4.12 (Defant–Voigt). For all Banach spaces E1, ..., Em,

Πm
as(1;1)(E1, ..., Em;K) = L(E1, ..., Em;K)

Combining the Defant–Voigt Theorem and a canonical inclusion theorem (see [42, 87])
we conclude that, for r, s ≥ 1 and s ≤ mr

mr+1−r , we have

Πm
as(r;s)(E1, ..., Em;K) = L(E1, ..., Em;K)
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for all E1, ...., Em.

From [128, Proposition 1] it is possible to prove that for r > 1 and r
mr+1−r ≤ t < r,

Πm
as(t; mr

mr+1−r )(E1, ..., Em;K) 6= L(E1, ..., Em;K)

for some choices of E1, ..., Em. In fact (repeating an argument used in the proof of Theorem
4.10), given r > 1, consider p > m such that p

p−m = r and observe that in this case
mr

mr+1−r = p∗ and thus we just need to prove that for all p∗

m
≤ t < p

p−m ,

Πm
as(t;p∗)(E1, ..., Em;K) 6= L(E1, ..., Em;K).

From [128, Proposition 1] we know that if p > m and p∗

m
≤ t < p

p−m , then there is a
continuous m-linear form φ such that

φ /∈ Πm
as(t;p∗)(E1, ..., Em;K),

i.e.,
Πm

as(t;p∗)(E1, ..., Em;K) 6= L(E1, ..., Em;K).

All these pieces of information provide Figure 4.3, which illustrates for which (r, s) ∈
[1,∞)× [1,mr] we have

L (E1, ..., Em;K) = Πm
as(r;s) (E1, ..., Em;K) .
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Figure 4.3: Areas of coincidence for Πm
as(r;s) (E1, ..., Em;K), (r, s) ∈ [1,∞)× [1,mr].

The table below details the results of coincidence and non coincidence in the “bound-
aries” of Figure 4.3. The only possible open situation is the case (r; s) with s = 1 and
r < 1, which we answer in the next lines.
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1
m
≤ r < 1 s = 1 not known

r > 1
m

s = mr non coincidence

r ≥ 1 s = 1 coincidence

r ≥ 1 s = mr
mr+1−r coincidence

Proposition 4.13. The Defant–Voigt Theorem is optimal. More precisely if m ≥ 1 is a
positive integer,

inf

{
r :
L(E1, ..., Em;K) = Πm

as(r;1)(E1, ..., Em;K) for all

infinite-dimentional Banach spaces Ej

}
= 1.

Proof. The equality holds for r = 1; this is the so called Defant–Voigt theorem. It remains
to prove that the equality does not hold for r < 1. This is simple; we just need to choose
Ej = c0 for all j and suppose that

L(E1, ..., Em;K) = Πas(r;1)(E1, ..., Em;K). (4.10)

For all positive integers n, consider the m-linear forms

Tn : c0 × · · · × c0 → K

defined by

Tn(x(1), ..., x(m)) =
n∑
j=1

x
(1)
j · · ·x

(m)
j .

Then it is plain that ‖Tn‖ = n, and from (4.10) there is a C ≥ 1 such that(
n∑
j=1

|Tn(ej, ..., ej)|r
) 1

r

≤ C ‖Tn‖
m∏
k=1

sup
ϕ∈BE∗

k

n∑
j=1

|ϕ(ej)| = Cn,

i.e., n1/r ≤ Cn and thus r ≥ 1.

This simple proposition ensures that the zone defined by r < 1 and s = 1 in the Figure
4.3 is a non coincidence zone,i.e., the Defant–Voigt theorem is optimal. Therefore, we can
make a new table for the results of coincidence and non coincidence in the “boundaries”
of Figure 4.3:

1
m
≤ r < 1 s = 1 non coincidence

r ≥ 1
m

s = mr non coincidence

r ≥ 1 s = 1 coincidence

r ≥ 1 s = mr
mr+1−r coincidence



Chapter 5
A unified theory and consequences

In this chapter we present results of the paper:

[2] N. Albuquerque, G. Araújo, D. Núñez-Alarcón, D. Pellegrino, and P. Rueda, Summa-
bility of multilinear operators: a unified theory and consequences, arXiv:1409.6769
[math.FA].

5.1 Multiple summing operators with multiple expo-

nents

For p := (p1, . . . , pm) ∈ [1,+∞)m, we shall consider the space

`p(E) := `p1 (`p2 (. . . (`pm(E)) . . . )) ,

namely, a vector matrix (xi1...im)∞i1,...,im=1 ∈ `p(E) if, and only if,

∥∥∥(xi1...im)∞i1,...,im=1

∥∥∥
`p(E)

:=

 ∞∑
i1=1

. . .( ∞∑
im=1

‖xi1...im‖
pm
E

) pm−1
pm

. . .


p1
p1


1
p1

< +∞.

When E = K, we simply write `p. The following definition seems natural:

Definition 5.1. Let p,q ∈ [1,+∞)m. A multilinear operator T : E1 × · · · × Em → F is
multiple (q1, . . . , qm; p1, . . . , pm)-summing if there exist a constant C > 0 such that ∞∑

j1=1

· · ·( ∞∑
jm=1

∥∥∥T (x(1)
j1
, . . . , x

(m)
jm

)∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ C

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

for all (x
(k)
j )∞j=1 ∈ `wpk (Ek). We represent the class of all multiple (q1, . . . , qm; p1, . . . , pm)-

summing operators by Πm
mult(q1,...,qm;p1,...,pm) (E1, . . . , Em;F ).

Of course, when q1 = · · · = qm = q, then

Πm
mult(q1,...,qm;p1,...,pm) (E1, . . . , Em;F ) = Πm

mult(q;p1,...,pm) (E1, . . . , Em;F ) .
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As it happens with absolutely and multiple summing operators, the following result
characterizes the multiple (q1, . . . , qm; p1, . . . , pm)-summing operators.

Proposition 5.2. Let T : E1 × · · · × Em → F be a continuous multilinear operator and
p,q ∈ [1,+∞)m. The following are equivalent:

(1) T is multiple (q1, . . . , qm; p1, . . . , pm)-summing;

(2)
(
T (x

(1)
j1
, . . . , x

(m)
jm

)
)∞
j1,...,jm=1

∈ `q (F ) whenever (x
(k)
j )∞j=1 ∈ `wpk (Ek).

(3) There exist a constant C > 0 such that n∑
j1=1

· · ·( n∑
jm=1

∥∥∥T (x(1)
j1
, . . . , x

(m)
jm

)∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ C
m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

for all positive integer n and all (x
(k)
j )nj=1 ∈ `wpk (Ek).

Proof. By definition, it follows that (1) ⇒ (2). Let us prove now that (2) ⇒ (1). Sup-
posing (2), we can define the m-linear operator

T̂ : `wp1 (E1)× · · · × `wpm (Em) → `q(F )(
(x

(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)
7→

(
T (x

(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

.
(5.1)

Observe that T̂ is a continuous m-linear operator. In fact, let ((x
(k)
j,s )∞j=1)∞s=1 ⊂ `wpk (Ek),

k = 1, ...,m, such that
(x

(k)
j,s )∞j=1 → (x

(k)
j )∞j=1 in `wpk (Ek) (5.2)

and
T̂
(

(x
(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
→ (yj1,...,jm)∞j1,...,jm=1 in `q(F ). (5.3)

From (5.2) we have that for every k ∈ {1, ...,m}, given ε > 0, there exist N ∈ N which
verify

s ≥ N ⇒ sup
ϕ∈BE∗

k

(
∞∑
j=1

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣pk) 1

pk

< ε.

So

s ≥ N ⇒
∞∑
j=1

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣pk < εpk for all ϕ ∈ BE∗k

and all k ∈ {1, ...,m}

and thus ∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣ < ε for all ϕ ∈ BE∗k

and all {j, k} ∈ N× {1, ...,m}.

Then, from the Hahn–Banach theorem we conclude that

s ≥ N ⇒
∥∥∥x(k)

j,s − x
(k)
j

∥∥∥
Ek

= sup
ϕ∈BE∗

k

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣ ≤ ε for all {j, k} ∈ N× {1, ...,m},
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i.e., x
(k)
j,s → x

(k)
j in Ek for all j ∈ N and all k ∈ {1, ...,m}. Since T is a continuous

multilinear operator, it follows that

T
(
x

(1)
j1,s
, ..., x

(m)
jm,s

)
→ T

(
x

(1)
j1
, ..., x

(m)
jm

)
in F for all fixed j1, ..., jk ∈ N.

From (5.3), given ε > 0, there exist M ∈ N such that

s ≥M ⇒
∥∥∥T̂ ((x

(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
− (yj1,...,jm)∞j1,...,jm=1

∥∥∥
`q(F )

< ε,

from which we can obtain that, for s ≥M ,∥∥∥T (x(1)
j1,s
, ..., x

(m)
jm,s

)
− yj1,...,jm

∥∥∥
F
< ε for all fixed j1, ..., jk ∈ N.

We deduce from the uniqueness of the limit that T
(
x

(1)
j1
, ..., x

(m)
jm

)
= yj1,...,jm for every

j1, ..., jk ∈ N. Thus

T̂
(

(x
(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
=
(
T
(
x

(1)
j1,s
, ..., x

(m)
jm,s

))∞
j1,...,jm=1

= (yj1,...,jm)∞j1,...,jm=1,

and then, from the closed graph theorem, we obtain that T̂ is a continuous m-linear
operator.

Thus, there is C > 0 such that∥∥∥∥(T (x(1)
j1
, ..., x

(m)
jm

))∞
j1,...,jm=1

∥∥∥∥
`q(F )

=
∥∥∥T̂ ((x

(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1

)∥∥∥
`q(F )

≤ C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

.

(1) ⇒ (3). Fix n ∈ N and let (x
(1)
j )nj=1 ∈ E1, ..., (x

(m)
j )nj=1 ∈ Em. Then (x

(k)
j )∞j=1 =

(x
(k)
1 , x

(k)
2 , ..., x

(k)
n , 0, 0, ...) ∈ `wpk (Ek) for every k ∈ {1, ...,m}. Thus, using (1), we get∥∥∥∥(T (x(1)

j1
, ..., x

(m)
jm

))n
j1,...,jm=1

∥∥∥∥
`q(F

=

∥∥∥∥(T (x(1)
j1
, ..., x

(m)
jm

))∞
j1,...,jm=1

∥∥∥∥
`q(F

≤ C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

= C
∥∥∥(x

(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

.
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(3) ⇒ (1). Consider (x
(1)
j )∞j=1 ∈ `wp1 (E1) , ..., (x

(m)
j )∞j=1 ∈ `wpm (Em). Therefore∥∥∥∥(T (x

(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F

= sup
n

∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)nj1,...,jm=1

∥∥∥
`q(F

≤ C sup
n

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

= C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

.

It is not to difficult to prove that Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ) is a subspace

of L(E1, . . . , Em;F ) and the infimum of the constants satisfying the above definition
(Definition 5.1), i.e.,

inf

C ≥ 0 ;

∥∥∥∥(T (x
(1)
j1
, . . . , x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

≤ C
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

,

for all (x
(k)
j )∞j=1 ∈ `wpk (Ek)


defines a norm in Πm

mult(q1,...,qm;p1,...,pm) (E1, . . . , Em;F ), which will be denoted by

πmult(q1,...,qm;p1,...,pm)(T ).

Proposition 5.3. Let p,q ∈ [1,+∞)m. If T ∈ Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ), then

‖T‖L(E1,...,Em;F ) ≤ πmult(q1,...,qm;p1,...,pm)(T ).

Proof. Consider xj ∈ BEj , j = 1, ...,m, and define (x
(j)
i )∞i=1 := (xj, 0, ...). It is clear that

(x
(j)
i )∞i=1 ∈ `wpj(Ej) for every j = 1, ...,m. Therefore, for T ∈ Πm

(q1,...,qm;p1,...,pm)(E1, ..., Em;F ),

‖T (x1, ..., xm)‖F

=

 ∞∑
j1=1

· · ·( ∞∑
jm=1

∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ πmult(q1,...,qm;p1,...,pm)(T )
m∏
j=1

∥∥∥(x
(j)
i )∞i=1

∥∥∥
w,pj

= πmult(q1,...,qm;p1,...,pm)(T )
m∏
j=1

sup
ϕ∈BE∗

j

(
∞∑
i=1

∣∣∣ϕ(x
(j)
i )
∣∣∣pj) 1

pj

= πmult(q1,...,qm;p1,...,pm)(T )
m∏
j=1

sup
ϕ∈BE∗

j

|ϕ(xj)|

= πmult(q1,...,qm;p1,...,pm)(T )
m∏
j=1

‖xj‖Ej = πmult(q1,...,qm;p1,...,pm)(T ).
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By means of taking the supremum, the result follows.

Given T ∈ Πm
(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ), we have defined in (5.1) the continuous

m-linear operator T̂ . Furthermore, let us prove now that

‖T̂‖ = πmult(q1,...,qm;p1,...,pm)(T ). (5.4)

In fact, first note that ∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

=
∥∥∥T̂ ((x

(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)∥∥∥
`q(F )

≤ ‖T̂‖
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

,

that is, πmult(q1,...,qm;p1,...,pm)(T ) ≤ ‖T̂‖. On the other hand, we have

‖T̂‖ = sup
(x

(k)
j )∞j=1∈B`wpk (Ek)

∥∥∥T̂ ((x
(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)∥∥∥
= sup

(x
(k)
j )∞j=1∈B`wpk (Ek)

∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

≤ sup
(x

(k)
j )∞j=1∈B`wpk (Ek)

πmult(q1,...,qm;p1,...,pm)(T )
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

= πmult(q1,...,qm;p1,...,pm)(T ),

which proves (5.4).
We can naturally define the continuous operator

θ̂ : Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ) → L

(
`wp1(E1), . . . , `wpm(Em); `q(F )

)
T 7→ T̂ ,

which, due to equation (5.4), is an isometry. These facts allow us to prove the following:

Theorem 5.4. Let p,q ∈ [1,+∞)m. Then(
Πm

mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ), πmult(q1,...,qm;p1,...,pm)(·)
)

is a Banach space.

Proof. Let (Tj)
∞
j=1 be a Cauchy sequence in Πm

(q1,...,qm;p1,...,pm)(E1, ..., Em;F ). Since ‖ · ‖ ≤
π(q1,...,qm;p1,...,pm) (·) (Proposition 5.3), it follows that (Tj)

∞
j=1 is also a Cauchy sequence in

L(E1, ..., Em;F ). Thus, consider T ∈ L(E1, ..., Em;F ) such that

Tj → T in L(E1, ..., Em;F ).
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Let us prove that T ∈ Πm
(q1,...,qm;p1,...,pm)(E1, ..., Em;F ). In fact, let (x

(k)
j )∞j=1 ⊂ `wpk(Ek), k =

1, ...,m. It is enough to prove that (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1 ∈ `q(F ). Since θ̂ is an isome-

try, (T̂j)
∞
j=1 is a Cauchy sequence in L(`wp1(E1), ..., `wpm(Em); `q(F )), which is a Banach space

because `q(F ) is a Banach space. Thus, there exist S ∈ L(`wp1(E1), ..., `wpm(Em); `q(F ))
such that

T̂j → S in L(`wp1(E1), ..., `wpm(Em); `q(F )).

Therefere, if we consider Pk1,...,km : `q(F )→ F the continuous linear operator given by

(yj1···jm)∞j1,...,jm=1 7→ yk1···km ,

and ε > 0 a positive real number, there exist a positive integer N such that∥∥∥Pk1,...,km (S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)
)

− Pk1,...,km
(
S((x

(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)∥∥∥

F

+
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)
)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

=
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)

− S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)∥∥∥

F

+
∥∥∥Pk1,...,km ((Tj(x

(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1

)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤ ‖Pk1,...,km‖
∥∥∥T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)

− S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
∥∥∥
`q(F )

+
∥∥∥Tj(x(1)

k1
, ..., x

(m)
km

)− T (x
(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤ C‖Pk1,...,km‖‖T̂j − S‖+ C‖Tj − T‖
< ε

for every j ≥ N . Then

Pk1,...,km(S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)) = T (x
(1)
k1
, ..., x

(m)
km

)

for all k1, ..., km ∈ N, and consequently

S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1) = (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1. (5.5)

This proves that (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1 ∈ `q(F ), as required.

By definition we have

T̂ ((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1) = (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1.

Replacing the above expression in (5.5) we conclude that T̂ = S. Thus, given ε > 0, it
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follows from (5.4) that for sufficiently large j

πmult(q1,...,qm;p1,...,pm)(Tj − T ) = ‖T̂j − T‖ = ‖T̂j − T̂‖ = ‖T̂j − S‖ < ε,

that is,
Tj → T in Πm

(q1,...,qm;p1,...,pm)(E1, ..., Em;F ),

and this proves that (Πm
(q1,...,qm;p1,...,pm)(E1, ..., Em;F ), πmult(q1,...,qm;p1,...,pm)(·)) is a Banach

space.

Using that
`q \ `p 6= ∅ (5.6)

if 1 ≤ p < q ≤ ∞, let us prove the following result:

Proposition 5.5. If qj < pj for some j ∈ {1, . . . ,m}, then

Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;F ) = {0}.

Proof. Since qj < pj, we know from (5.6) that there is a sequence (αi)
∞
i=1 ∈ `pj \ `qj . Let

xj ∈ Ej \ {0}. Then for all ϕ ∈ E ′j we have

∞∑
i=1

|ϕ (αixj)|pj ≤
∞∑
i=1

‖ϕ‖pj |αi|pj ‖xj‖pj = ‖ϕ‖pj‖xj‖pj
∞∑
i=1

|αi|pj <∞,

i.e., (αixj)
∞
i=1 ∈ `wpj(Ej). Let us suppose, by contradiction, that there exist

T ∈ Πm
(q1,...,qm;p1,...,pm)(E1, ..., Em;F ) \ {0}.

Then, we can take xk ∈ Ek \ {0}, k ∈ {1, ...,m} \ {j}, such that T (x1, ..., xm) 6= 0. For

each k ∈ {1, ...,m} \ {j} let us consider (x
(k)
i )∞i=1 = (xk, 0, ...). Since (x

(k)
i )∞i=1 ∈ `wpk(Ek)

for every k ∈ {1, ...,m} \ {j} and (αixj)
∞
i=1 ∈ `wpj(Ej), the Proposition 5.2 ensures that∥∥∥∥(T (x

(1)
i1
, ..., x

(j−1)
ij−1

, αijxj, x
(j+1)
ij+1

, ..., x
(m)
im

)
)∞
i1,...,im=1

∥∥∥∥
`q(F )

≤ C

 m∏
k=1
k 6=j

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,pk

 ‖(αixj)∞i=1‖w,pj .

However, ∥∥∥∥(T (x
(1)
i1
, ..., x

(j−1)
ij−1

, αijxj, x
(j+1)
ij+1

, ..., x
(m)
im

)
)∞
i1,...,im=1

∥∥∥∥
`q(F )

=

 ∞∑
ij=1

∥∥T (x1, ..., xj−1, αijxj, xj+1, ..., xm
)∥∥qj 1

qj

= ‖T (x1, ..., xm)‖

(
∞∑
i=1

|αi|qj
) 1

qj

,
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from where we can conclude

‖T (x1, ..., xm)‖

(
∞∑
i=1

|αi|qj
) 1

qj

≤ C

 m∏
k=1
k 6=j

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,pk

 ‖(αixj)∞i=1‖w,pj .

Therefore,
∑∞

i=1

∣∣αij ∣∣qj <∞, which is a contradiction since (αi)
∞
i=1 ∈ `pj \ `qj .

Using the generalized Bohnenblust–Hille inequality (Theorem 1.1) together with the
fact that L(c0, E) and `w1 (E) are isometrically isomorphic (see [62, Proposition 2.2]), it is
possible to prove the following result (recall the notation of the constants Bmult

K,m,(q1,...,qm) in

Theorem 1.1). The proof is similar to the proof of Theorem 4.3 and we omit it.

Proposition 5.6. If q1, . . . , qm ∈ [1, 2] are such that

1

q1

+ · · ·+ 1

qm
≤ m+ 1

2
,

then  ∞∑
j1=1

· · ·( ∞∑
jm=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm

)∣∣∣qm)
qm−1
qm

· · ·


q1
q2


1
q1

≤ Bmult
K,m,(q1,...,qm) ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

,

for all m-linear forms T : E1 × · · · × Em → K and all sequences (x
(k)
j )∞j=1 ∈ `w1 (Ek),

k = 1, . . . ,m.

In other words, if q1, . . . , qm ∈ [1, 2] are such that 1
q1

+ · · · + 1
qm
≤ m+1

2
we have the

following coincidence result:

Πm
mult(q1,...,qm;1,...,1) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .

With the same idea than in the proof of Proposition 5.6 (but now using L(c0, E) =
`w1 (E) and L(`p, E) = `wp∗(E)), we can re-write the Theorems 1.1 and 1.2 (recall the
notation for the constants on each result):

Proposition 5.7. Let m ≥ 1, p := (p1, . . . , pm) ∈ [1,∞]m.

(1) Let 0 ≤
∣∣∣ 1
p

∣∣∣ ≤ 1
2

and q := (q1, . . . , qm) ∈
[(

1−
∣∣∣ 1
p

∣∣∣)−1

, 2

]m
such that

1

q1

+ · · ·+ 1

qm
≤ m+ 1

2
−
∣∣∣∣ 1p
∣∣∣∣ .
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Then, for all continuous m-linear forms T : E1 × · · · × Em → K, ∞∑
i1=1

· · ·( ∞∑
im=1

∣∣∣T (x(1)
i1
, . . . , x

(m)
im

)∣∣∣qm)
qm−1
qm

· · ·


q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

m∏
k=1

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,p∗k

,

regardless of the sequences (x
(k)
i )∞i=1 ∈ `wp∗k (Ek) , k = 1, . . . ,m.

(2) If 1
2
≤
∣∣∣ 1
p

∣∣∣ < 1, then, for all continuous m-linear forms T : E1 × · · · × Em → K,

(
N∑

i1,...,im=1

∣∣∣T (x(1)
i1
, . . . , x

(m)
im

)∣∣∣ 1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖

m∏
k=1

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,p∗k

regardless of the sequences (x
(k)
i )∞i=1 ∈ `wp∗k (Ek) , k = 1, . . . ,m.

In other words, the previous result says that if p := (p1, . . . , pm) ∈ [1,∞]m and

(q1, . . . , qm) ∈
[(

1−
∣∣∣ 1
p

∣∣∣)−1

, 2

]m
are such that

0 ≤
∣∣∣∣ 1p
∣∣∣∣ ≤ 1

2
and

1

q1

+ · · ·+ 1

qm
≤ m+ 1

2
−
∣∣∣∣ 1p
∣∣∣∣ ,

then
Πm

mult(q1,...,qm;p∗1,...,p
∗
m) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .

Also, if
1

2
≤
∣∣∣∣ 1p
∣∣∣∣ < 1,

then
Πm

mult((1−|1/p|)−1;p∗1,...,p
∗
m) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .

The following proposition illustrates how, within this framework, coincidence results
for m-linear forms can be extended to m+ 1-linear forms.

Proposition 5.8. Let p,q ∈ [1,+∞)m. If

Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;K) = L(E1, . . . , Em;K),

then

Πm+1
mult(q1,...,qm,2;p1,...,pm,1)(E1, . . . , Em, Em+1;K) = L(E1, . . . , Em, Em+1;K).

Proof. Let us first prove that, for all continuous (m+ 1)-linear forms T : E1× · · ·×Em×
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c0 → K, there exist a constant C > 0 such that n∑
j1=1

· · ·
 n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2


qm
2

· · ·


q1
q2


1
q1

≤ CA−1
qm ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

, (5.7)

where Aqm is the constant of the Khintchine inequality (1). In fact, from Khintchine’s
inequality, we have

Aqm

 n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2
 1

2

≤

∫ 1

0

∣∣∣∣∣∣
n∑

jm+1=1

rjm+1(t)T
(
x

(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣∣∣∣
qm

dt


1
qm

=

∫ 1

0

∣∣∣∣∣∣T
x(1)

j1
, . . . , x

(m)
jm
,

n∑
jm+1=1

rjm+1(t)ejm+1

∣∣∣∣∣∣
qm

dt


1
qm

.

Thus,( n∑
j1=1

(
· · ·
( n∑
jm+1=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm
, ejm+1)

∣∣∣2) qm2 · · ·) q1q2 ) 1
q1

≤ A−1
qm

( n∑
j1=1

(
· · ·
( n∑
jm=1

∫ 1

0

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm
,

n∑
jm+1=1

rjm+1(t)ejm+1)
∣∣∣qmdt) qm−1

qm · · ·
) q1
q2

) 1
q1

= A−1
qm

( n∑
j1=1

(
· · ·
(∫ 1

0

n∑
jm=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm
,

n∑
jm+1=1

rjm+1(t)ejm+1)
∣∣∣qmdt) qm−1

qm · · ·
) q1
q2

) 1
q1

≤ A−1
qm sup

t∈[0,1]

( n∑
j1=1

(
· · ·
( n∑
jm=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm
,

n∑
jm+1=1

rjm+1(t)ejm+1)
∣∣∣qm) qm−1

qm · · ·
) q1
q2

) 1
q1

≤ A−1
qm sup

t∈[0,1]

πmult(q1,...,qm;p1,...,pm)

(
T (·, . . . , ·,

n∑
jm+1=1

rjm+1(t)ejm+1)
) m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk
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Since ‖ · ‖ ≤ πmult(q1,...,qm;p1,...,pm)(·) (see Proposition 5.3) and since, by hypothesis

L(E1, . . . , Em;K) = Πm
mult(q1,...,qm;p1,...,pm)(E1, . . . , Em;K),

the open mapping theorem ensures that the norms πmult(q1,...,qm;p1,...,pm)(·) and ‖ · ‖ are
equivalents. Therefore, there exists a constant C > 0 such that n∑

j1=1

· · ·
 n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2


qm
2

· · ·


q1
q2


1
q1

≤ CA−1
qm sup

t∈[0,1]

∥∥∥∥∥∥T
·, . . . , ·, n∑

jm+1=1

rjm+1(t)ejm+1

∥∥∥∥∥∥
m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

≤ CA−1
qm‖T‖ sup

t∈[0,1]

∥∥∥∥∥∥
n∑

jm+1=1

rjm+1(t)ejm+1

∥∥∥∥∥∥
m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

≤ CA−1
qm‖T‖

m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

.

Let T ∈ L(E1, . . . , Em, Em+1;K), (x
(k)
j )nj=1 ∈ `wpk(Ek), k = 1, . . . ,m, and (x

(m+1)
j )nj=1 ∈

`w1 (Em+1). From [62, Proposition 2.2] we have the boundedness of the linear operator

u : c0 → Em+1 such that ej 7→ u (ej) = x
(m+1)
j and ‖u‖ =

∥∥∥(x
(m+1)
j )nj=1

∥∥∥
1,w

. Then,

S : E1 × · · · × Em × c0 → K defined by S(y1, . . . , ym+1) = T (y1, . . . , ym, u(ym+1)) is a
continuous (m+ 1)-linear form and ‖S‖ ≤ ‖T‖‖u‖. Therefore, from (5.7), n∑

j1=1

· · ·
 n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, x

(m+1)
jm+1

)∣∣∣2


qm
2

· · ·


q1
q2


1
q1

=

 n∑
j1=1

· · ·( n∑
jm+1=1

∣∣∣S (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2) qm
2

· · ·


q1
q2


1
q1

≤ CA−1
qm ‖T‖ ‖u‖

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

= CA−1
qm ‖T‖

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

∥∥∥(x
(m+1)
j )nj=1

∥∥∥
w,1

,

i.e., T ∈ Πm+1
mult(q1,...,qm,2;p1,...,pm,1)(E1, . . . , Em+1;K).
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5.2 Partially multiple summing operators: the uni-

fying concept

Let 1 ≤ m ∈ N and 1 ≤ p1, ..., pm ≤ ∞. For p := (p1, . . . , pm) ∈ [1,+∞]m, recall

that
∣∣∣ 1
p

∣∣∣ := 1
p1

+ · · · + 1
pm

, Xp := `p, for 1 ≤ p < ∞, and X∞ := c0. In addition to

Bohnenblus–Hille and Hardy–Littlewood inequalities (see (1.1) and Theorems 1.1 and 1.2,
respectively), the following results on summability of m-linear forms T : Xp1×· · ·×Xpm →
K are well known.

• Zalduendo ([128], 1993): Let
∣∣∣ 1
p

∣∣∣ < 1. For every continuous m-linear form T :

Xp1 × · · · ×Xpm → K,(
∞∑
i=1

|T (ei, ..., ei)|
1

1−| 1p |
)1−| 1p |

≤ ‖T‖, (5.8)

and the exponent 1/(1− |1/p|) is optimal.

• Aron and Globevnik ([17], 1989): For every continuous m-linear form T : c0× · · · ×
c0 → K,

∞∑
i=1

|T (ei, . . . , ei)| ≤ ‖T‖ , (5.9)

and the exponent 1 is optimal.

The main purpose of [2] is to present a unified version of the Bohnenblust–Hille and
the Hardy–Littlewood inequalities with partial sums (i.e., it was shown what happens
when some of the indices of the sums i1, . . . , im are repeated) which also encompasses
Zalduendo’s and Aron–Globevnik’s inequalities. A tensorial perspective1 was the key in
this matter, establishing an intrinsic relationship between the exponents and constants
involved and the number of indices taken on the sums.

From now on, if n1, . . . , nk ≥ 1 are such that n1 + · · · + nk = m, then
(
en1
i1
, . . . , enkik

)
will mean (ei1 ,

n1 times. . . , ei1 , . . . , eik ,
nk times. . . , eik). The main result of [2] is:

Theorem 5.9. Let 1 ≤ k ≤ m and n1, . . . , nk ≥ 1 be positive integers such that n1 + · · ·+
nk = m and assume that

p :=
(
p

(1)
1 , n1 times. . . , p(1)

n1
, . . . , p

(k)
1 , nk times. . . , p(k)

nk

)
∈ [1,∞]m

is such that 0 ≤
∣∣∣ 1
p

∣∣∣ < 1. Let ri given by 1
ri

= 1

p
(i)
1

+ · · ·+ 1

p
(i)
ni

, i = 1, . . . , k.

(1) If 0 ≤
∣∣∣ 1
p

∣∣∣ ≤ 1
2

and q := (q1, . . . , qk) ∈
[(

1−
∣∣∣ 1
p

∣∣∣)−1

, 2

]k
then, for every continuous

1The idea of introducing in this context this tensorial perspective was of the Profa. Maria Pilar Rueda
Segado.
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m–linear form T :
(
×1≤i≤n1Xp

(1)
i

)
× · · · ×

(
×1≤i≤nkXp

(k)
i

)
→ K,

 ∞∑
i1=1

. . .( ∞∑
ik=1

∣∣T (en1
i1
, . . . , enkik

)∣∣qk) qk−1
qk

. . .


q1
q2


1
q1

≤ Cmult
K,k,(r1,...,rk),q ‖T‖ (5.10)

if and only if
∣∣∣ 1
q

∣∣∣ ≤ k+1
2
−
∣∣∣ 1
p

∣∣∣. In other words, the exponents are optimal.

(2) If 1
2
≤
∣∣∣ 1
p

∣∣∣ < 1 then, for every continuous m–linear form T :
(
×1≤i≤n1Xp

(1)
i

)
× · · ·×(

×1≤i≤nkXp
(k)
i

)
→ K,

(
∞∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enkik

)∣∣ 1

1−| 1p |
)1−| 1p |

≤ Dmult
K,k,(r1,...,rk) ‖T‖ . (5.11)

Moreover, the exponent in (5.11) is optimal

Let us establish the following notation: for Banach spaces E1, . . . , Em and an element
x ∈ Ej, for some j ∈ {1, . . . ,m}, the symbol xj · ej represents the vector xj · ej ∈
E1 × · · · × Em such that its j-th coordinate is xj ∈ Ej, and 0 otherwise. This theorem
motivated us to give the following unifying notion of absolutely summing multilinear
operators (the essence of the notion of partially multiple summing operators (below) was
first sketched in [107, Definition 2.2.1] but it has not been explored since):

Definition 5.10. Let E1, . . . , Em, F be Banach spaces, m, k be positive integers with 1 ≤
k ≤ m, and (p,q) := (p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k. Let also I = {I1, . . . , Ik} a
family of non-void disjoints subsets of {1, . . . ,m} such that ∪ki=1Ii = {1, . . . ,m}, that is,
I is a partition of {1, . . . ,m}. A multilinear operator T : E1×· · ·×Em → F is I-partially
multiple (q; p)-summing if there exists a constant C > 0 such that ∞∑

i1=1

· · ·
 ∞∑
ik=1

∥∥∥∥∥T
(

k∑
n=1

∑
j∈In

x
(j)
in
· ej

)∥∥∥∥∥
qk

F


qk−1
qk

· · ·


q1
q2


1
q1

≤ C
m∏
j=1

∥∥∥(x
(j)
i )∞i=1

∥∥∥
w,pj

for all (x
(j)
i )∞i=1 ∈ `wpj (Ej) , j = 1, . . . ,m. We represent the class of all I-partially multiple

(q; p)-summing operators by Πk,m,I
(q;p) (E1, . . . , Em;F ). The infimum taken over all possible

constants C > 0 satisfying the previous inequality defines a norm in Πk,m,I
(q;p) (E1, . . . , Em;F ),

which is denoted by π(q;p).

As usual, Πk,m,I
(q;p) (E1, . . . , Em;F ) is a subspace of L(E1, . . . , Em;F ). Moreover, note

that when

• k = 1, we recover the class of absolutely (q; p1, . . . , pm)-summing operators, with
q := q1;
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• k = m and q1 = · · · = qm =: q, we recover the class of multiple (q; p1, . . . , pm)-
summing operators;

• k = m, we recover the class of multiple (q1, . . . , qm; p1, . . . , pm)-summing operators,
as we defined in the section 5.1.

The basis of this theory can be developed in the same lines as those from the previous
section, as we will be presenting in what follows. From now on, m, k are positive integers
with 1 ≤ k ≤ m, (p,q) := (p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k and I = {I1, . . . , Ik} is a
partition of {1, . . . ,m}.

Proposition 5.11. Let T : E1×· · ·×Em → F be a continuous multilinear operator. The
following assertions are equivalent:

(1) T is I-partially multiple (q; p)-summing;

(2)
(
T
(∑k

n=1

∑
j∈In x

(j)
in
· ej
))∞

i1,...,ik=1
∈ `q (F ) whenever (x

(j)
i )∞i=1 ∈ `wpj (Ej), for j =

1, . . . ,m.

Proposition 5.12. If T ∈ Πk,m,I
(q;p) (E1, . . . , Em;F ), then

‖T‖L(E1,...,Em;F ) ≤ π(q;p)(T ).

Given T ∈ Πk,m,I
(q;p) (E1, . . . , Em;F ) we may define the m-linear operator

T̂ : `wp1 (E1)× · · · × `wpm (Em) → `q(F )(
(x

(1)
i )∞i=1, . . . , (x

(m)
i )∞i=1

)
7→

(
T
(∑k

n=1

∑
j∈In x

(j)
in
· ej
))∞

i1,...,ik=1
.

(5.12)

By using both, the closed graph and the Hahn–Banach theorems, it is possible to prove
that T̂ is a continuous m-linear operator. Furthermore, we can prove that

‖T̂‖ = π(q;p)(T ), (5.13)

therefore, naturally we define the isometric operator

θ̂ : Πk,m,I
(q;p) (E1, . . . , Em;F ) → L

(
`wp1(E1), . . . , `wpm(Em); `q(F )

)
T 7→ T̂ .

These facts lead us to the following result.

Theorem 5.13.
(

Πk,m,I
(q;p) (E1, . . . , Em;F ), π(q;p)(·)

)
is a Banach space.

Also,

Proposition 5.14. If there exists n ∈ {1, . . . , k} such that 1
qn
>
∑

j∈In
1
pj

, then

Πk,m,I
(q;p) (E1, . . . , Em;F ) = {0}.

As in Proposition 5.6, it is possible to prove the following result (now using the
Bohnenblust–Hille inequality with partial sums, i.e., Theorem 5.9 with p = (∞, ...,∞)):



Chapter 5. Remark on Theorem 5.9 79

If q = (q1, . . . , qk) ∈ [1, 2]k is such that 1
q1

+ · · ·+ 1
qk
≤ k+1

2
, then

Πk,m,I
(q;1,m times... ,1)

(E1, . . . , Em;F ) = L (E1, . . . , Em;K) .

With the same idea of Proposition 5.7, we can re-written Theorem 5.9 in general: Let
1 ≤ k ≤ m and n1, . . . , nk ≥ 1 be positive integers such that n1 + · · · + nk = m and let
p := (p1, . . . , pm) ∈ [1,∞]m. Then,

(1) if 0 ≤
∣∣∣ 1
p

∣∣∣ ≤ 1
2

and q := (q1, . . . , qk) ∈
[(

1−
∣∣∣ 1
p

∣∣∣)−1

, 2

]k
is such that 1

q1
+ · · ·+ 1

qk
≤

k+1
2
−
∣∣∣ 1
p

∣∣∣, we have

Πk,m,I
(q;p∗1,...,p

∗
m)

(E1, . . . , Em;F ) = L (E1, . . . , Em;K) ;

(2) if 1
2
≤
∣∣∣ 1
p

∣∣∣ < 1, we have

Πk,m,I
((1−|1/p|)−1;p∗1,...,p

∗
m)

(E1, . . . , Em;F ) = L (E1, . . . , Em;K) .

5.3 Remark on Theorem 5.9

As a direct consequence of Theorem 5.9 yields the following particular case whenever
p1 = · · · = pm = p, which has a more friendly statement.

Corollary 5.15. Let m ≥ k ≥ 1, m < p ≤ ∞ and let n1, . . . , nk ≥ 1 be such that
n1 + · · ·+nk = m. Then, for every continuous m–linear form T : `p×· · ·× `p → K, there
is a constant H(k,m, p, ρ,K) ≥ 1 such that(

∞∑
i1,...,ik=1

∣∣T (en1
i1
, . . . , enkik

)∣∣ρ) 1
ρ

≤ H(k,m, p, ρ,K) ‖T‖ ,

with
ρ =

p

p−m
for m < p ≤ 2m and H(k,m, p, ρ,K) ≤ DK

k,p

and

ρ =
2kp

kp+ p− 2m
for p ≥ 2m and H(k,m, p, ρ,K) ≤ CK

k,p. (5.14)

Moreover, in both cases, the exponent ρ is optimal.

Remark 5.16. It is very interesting to stress that the optimal exponent for the case
p > 2m is not the exponent of the k-linear case, as one may expect. It is a kind of
surprising combination of the cases of k-linear and m-linear forms, as it can be seen in
(5.14). In general the panorama is quite puzzling:

• If m < p < 2m the optimal exponent depends only on m;
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• If p = 2m, the optimal exponent does not depend on m or k.

• If 2m < p <∞, the optimal exponent depends on m and k;

• If p =∞, the optimal exponent depends only on k.

The following estimates summarizes the (optimal) exponents and respective best known
constants that can be derived from Corollary 5.15 combined with estimates from [13, 63,
109] (below γ denotes the Euler-Mascheroni constant):

H(k,m, p,
p

p−m
,R) ≤ (

√
2)k−1;

H(k,m, p,
p

p−m
,C) ≤

(
2√
π

)k−1

;

H(k,m, p,
2kp

kp+ p− 2m
,R) ≤


1.3k

( 2−log 2−γ
2 )(k−1)

(
2k−p+kp−2k2

k2p−2kp

) (√
2
) p−2k−kp+6k2−6k3+2k4

kp(k−2)

if 2m ≤ p ≤ 2m3 − 4m2 + 2m,

1.3k
2−log 2−γ

2 if 2m3 − 4m2 + 2m < p ≤ ∞;

H(k,m, p,
2kp

kp+ p− 2m
,C) ≤


k
( 1−γ

2 )(k−1)

(
2k−p+kp−2k2

k2p−2kp

) (
2√
π

) p−2k−kp+6k−6k3+2k4

kp(k−2)

if 2m ≤ p ≤ 2m3 − 4m2 + 2m,

k
1−γ
2 if 2m3 − 4m2 + 2m < p ≤ ∞.
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Classical inequalities for polynomials
on circle sectors





Chapter 6
Polynomial inequalities on the π/4-circle
sector

In this chapter we present results of the paper:

[10] G. Araújo, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, and J.B. Seoane-Sepúlveda,
Polynomial inequalities on the π/4-circle sector, arXiv:1503.06607 [math.FA].

The Krein–Milman Theorem ensures that every convex body (non-empty, compact
set) in a Banach space is fully described by the set of its extreme points. We recall that if
C is a convex body in a Banach space, a point e ∈ C is said to be extreme if x, y ∈ C and
λx + (1λ)y = e, for some 0 < λ < 1, entails x = y = e. Equivalently, e ∈ C is extreme
if and only if C \ {e} is convex. It is well known that a convex function (for instance, a
polynomial norm) defined on a convex body attains its maximum at an extreme point of
their domain. From now on we will refer to this method as the Krein–Milman approach.

In this chapter we apply this method in order to obtain sharp polynomial inequalities
on the space P

(
2D
(
π
4

))
of 2-variable, real 2-homogeneous polynomials endowed with the

supremum norm on the sector D
(
π
4

)
:=
{
eiθ : θ ∈

[
0, π

4

]}
.

Let us describe now the four inequalities that will be studied in this chapter. Namely,
for a fixed (x, y) ∈ D

(
π
4

)
, we find the best (smallest) constant in the following inequalities:

• Bernstein type inequality for polynomials in P
(

2D
(
π
4

))
. For a fixed (x, y) ∈

D
(
π
4

)
, we find the smallest constant Φ(x, y) in the inequality

‖∇P (x, y)‖2 ≤ Φ(x, y)‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
, where ‖ · ‖2 denotes the euclidean norm in R2

• Markov global estimate on the gradient of polynomials in P
(

2D
(
π
4

))
. For

all P ∈ P
(

2D
(
π
4

))
and all (x, y) ∈ D

(
π
4

)
, we find the smallest constant M > 0 in

the inequality
‖∇P (x, y)‖2 ≤M‖P‖D(π4 ).

• Polarization constant of the space P
(

2D
(
π
4

))
. We find the smallest constant

K > 0 in the inequality
‖L‖D(π4 ) ≤ K‖P‖D(π4 ),
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where P is an arbitrary polynomial in P
(

2D
(
π
4

))
and L is the polar of P .

• Unconditional constant of the canonical basis of P
(

2D
(
π
4

))
. We find the

smallest constant C > 0 in the inequality

‖|P |‖D(π4 ) ≤ C‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
, where |P | is the modulus of P , i.e., if P (x, y) = ax2 + by2 +

cxy, then |P |(x, y) = |a|x2 + |b|y2 + |c|xy.

If P (x, y) = ax2 + by2 + cxy, we will often represent P as the point (a, b, c) in R3.
Hence, the norm of P

(
2D
(
π
4

))
:=
{
eiθ : θ ∈

[
0, π

4

]}
is in fact the norm in R3 given by

‖(a, b, c)‖D(π4 ) = sup
{
|ax2 + by2 + cxy| : (x, y) ∈ D

(π
4

)}
.

In Section 6.2, the notation Ls
(

2D
(
π
4

))
will be useful to represent the symmetric bilinear

forms on R2 endowed with the supremum norm on D
(
π
4

)
.

An explicit description of the norm ‖ · ‖D(π4 ) and the extreme points of the unit ball

BD(π4 ), denoted by ext
(
BD(π4 )

)
, will be required. Both are presented below (see [93,

Theorem 3.1] and [93, Theorem 4.4], respectively):

Lemma 6.1. If P (x, y) = ax2 + by2 + cxy, then

‖P‖D(π4 ) =

{
max

{
|a|, 1

2
|a+ b+ c|, 1

2
|a+ b+ sign(c)

√
(a− b)2 + c2|

}
if c(a− b) ≥ 0,

max{|a|, 1
2
|a+ b+ c|} if c(a− b) ≤ 0,

Lemma 6.2. The extreme points of the unit ball of P(2D(π
4
)) are given by

ext
(
BD(π4 )

)
=
{
±Pt,±Qs,±(1, 1, 0) : −1 ≤ t ≤ 1 and 1 ≤ s ≤ 5 + 4

√
2
}
,

where

Pt : = (t, 4 + t+ 4
√

1 + t,−2− 2t− 4
√

1 + t),

Qs : = (1, s,−2
√

2(1 + s)).

6.1 Bernstein and Markov-type inequalities for poly-

nomials on sectors

In this section we provide sharp estimates on the Euclidean length of the gradient ∇P
of a polynomial P in P

(
2D
(
π
4

))
.

Theorem 6.3. For every (x, y) ∈ D
(
π
4

)
and P ∈ P

(
2D
(
π
4

))
we have

‖∇P‖2 ≤ Φ(x, y)‖P‖D(π4 ),
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where

Φ(x, y)

=



4
[(

13 + 8
√

2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy
]

if 0 ≤ y ≤
√

2− 1

2
x or

(
4
√

2− 5
)
x ≤ y ≤ x,

x4

y2
+ 4(x2 + y2) if

√
2− 1

2
x ≤ y ≤

(√
2− 1

)
x,

(3x2 − 2xy + 3y2)
2

2(x− y)2
if
(√

2− 1
)
x ≤ y ≤

(
4
√

2− 5
)
x.

Proof. In order to calculate Φ(x, y) := sup{‖∇P (x, y)‖2 : ‖P‖D(π4 ) ≤ 1}, by the Krein-

Milman approach, it is sufficient to calculate

sup{‖∇P (x, y)‖2 : P ∈ ext(BD(π4 ))}.

By symmetry, we may just study the polynomials of Lemma 6.2 with positive sign. Let us
start first with Pt(x, y) = tx2 +

(
4 + t+ 4

√
1 + t

)
y2 − 2

(
1 + t+ 2

√
1 + t

)
xy, t ∈ [−1, 1].

Then,

∇Pt(x, y) =
(

2tx− 2
(

1 + t+ 2
√

1 + t
)
y, 2

(
4 + t+ 4

√
1 + t

)
y − 2

(
1 + t+ 2

√
1 + t

)
x
)
,

so that

‖∇Pt(x, y)‖2
2 =4t2x2 + 4

(
1 + t+ 2

√
1 + t

)2

y2 − 8t
(

1 + t+ 2
√

1 + t
)
xy

+ 4
(

4 + t+ 4
√

1 + t
)2

y2 + 4
(

1 + t+ 2
√

1 + t
)2

x2

− 8
(

4 + t+ 4
√

1 + t
)(

1 + t+ 2
√

1 + t
)
xy

Make now the change u =
√

1 + t ∈
[
0,
√

2
]
, so that

‖∇Pu(x, y)‖2
2 =8(x− y)2u4 + 16

(
x2 − 4xy + 3y2

)
u3

+ 8
(
x2 − 10xy + 13y2

)
u2 + 32

(
3y2 − xy

)
u+ 4

(
x2 + 9y2

)
.

Since

∂

∂u
‖∇Pu(x, y)‖2

2 = 16
(
2 (x− y)2 u2 +

(
x2 − 8xy + 7y2

)
u+ 2y (3y − x)

)
(u+ 1) ,

it follows that the critical points of ‖DPu(x, y)‖2
2 are u = 2y

x−y , u = 3y−x
2(x−y)

and u = −1 if

x 6= y and u = 4 and u = −1 if x = y. Since we need to consider 0 ≤ u ≤
√

2, we can
directly omit the case x = y.

Therefore, we can write

∂

∂u
‖∇Pu(x, y)‖2

2 = 32(x− y)2

(
u− 2y

x− y

)(
u− 3y − x

2(x− y)

)
(u+ 1).
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Let u1 = 2y
x−y and u2 = 3y−x

2(x−y)
(Again, since we need to consider 0 ≤ u ≤

√
2, we can

omit the solution u = −1). Also, we have the extra conditions u1 ∈ [0,
√

2] whenever
0 ≤ y ≤

(√
2− 1

)
x and u2 ∈ [0,

√
2] whenever 1

3
x ≤ y ≤

(
4
√

2− 5
)
x. Considering all

these facts, we need to compare the quantities

C1(x, y) := ‖∇Pu1(x, y)‖2
2 = ‖∇Pt1‖2

2

= 4
x6 − 4x5y + 7x4y2 − 8x3y3 + 7x2y4 − 4xy5 + y6

(x− y)4
= 4

(
x2 + y2

)
,

for 0 ≤ y ≤
(√

2− 1
)
x and t1 = 3y2+2xy−x2

(x−y)2
,

C2(x, y) := ‖∇Pu2(x, y)‖2
2 = ‖∇Pt2‖2

2

=
9x6 − 30x5y + 55x4y2 − 68x3y3 + 55x2y4 − 30xy5 + 9y6

2(x− y)4

=
(3x2 − 2xy + 3y2)

2

2(x− y)2
,

for 1
3
x ≤ y ≤

(
4
√

2− 5
)
x and t2 = 5y2+2xy−3x2

4(x−y)2
,

C3(x, y) := ‖∇Pt3=−1‖2
2 = 4

(
x2 + 9y2

)
,

and

C4(x, y) := ‖∇Pt4=1‖2
2 = 4

[(
13 + 8

√
2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy
]
.

Let us focus now on Qs =
(

1, s,−2
√

2(1 + s)
)

, 1 ≤ s ≤ 5 + 4
√

2. Then, we have

‖∇Qs(x, y)‖2
2 = 4x2 + 4s2y2 + 8(1 + s)(x2 + y2)− 8(1 + s)

√
2(1 + s)xy.

Making the change v =
√

2(1 + s) ∈
[
2, 2 + 2

√
2
]
, we need to study the function

‖∇Qv(x, y)‖2
2 = v2

(
y2v2 − 4xyv + 4x2

)
+ 4

(
x2 + y2

)
.

If x = y = 0 we have ‖∇Qv(x, y)‖2
2 = 0, so we will assume both x 6= 0 and y 6= 0.

The critical points of ‖∇Qv(x, y)‖2
2 are v = x

y
, v = 2x

y
and v = 0 (but 0 /∈ [2, 2 + 2

√
2]).

Observe that v1 = x
y
∈
[
2, 2 + 2

√
2
]

whenever
√

2−1
2
x ≤ y ≤ 1

2
x and v2 = 2x

y
∈
[
2, 2 + 2

√
2
]

whenever y ≥
(√

2− 1
)
x. Thus, we also need to compare the quantities

C5(x, y) := ‖∇Qv1(x, y)‖2
2 = ‖∇Qs1(x, y)‖2

2 =
x4

y2
+ 4

(
x2 + y2

)
,

for
√

2−1
2
x ≤ y ≤ 1

2
x and s1 = x2−2y2

2y2
,

C6(x, y) := ‖∇Qv2(x, y)‖2
2 = ‖∇Qs2(x, y)‖2

2 = 4
(
x2 + y2

)
,
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Figure 6.1: Graphs of the mappings C1(1, λ), C6(1, λ), C7(1, λ).

for
(√

2− 1
)
x ≤ y ≤ x and s2 = 2x2−y2

y2
, and also

C7(x, y) := ‖∇Qs3=1‖2
2 = 4

(
x2 + y2

)
+ 16(x− y)2,

and

C8(x, y) := ‖∇Qs4=5+4
√

2‖2
2

=
(

12 + 8
√

2
) [

4x2 +
(

12 + 8
√

2
)
y2 −

(
8 + 8

√
2
)
xy
]

+ 4
(
x2 + y2

)
= 4

[(
13 + 8

√
2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy
]
.

Note that (the reader can take a look at Figures 6.1, 6.2 and 6.3)

C1(x, y), C6(x, y) ≤ C7(x, y) ≤

{
C4(x, y) if 0 ≤ y ≤ 2−

√
2

2
x or 1

2
x ≤ y ≤ x,

C5(x, y) if
√

2−1
2
x ≤ y ≤ 1

2
x,

C3(x, y) ≤
{
C2(x, y) if 1

3
x ≤ y ≤

(
4
√

2− 5
)
x,

C4(x, y) if 0 ≤ y ≤ 1
3
x or (4

√
2− 5)x ≤ y ≤ x,

C8(x, y) = C4(x, y).

Hence, for (x, y) ∈ D
(
π
4

)
,

Φ(x, y) = sup
{
‖∇P (x, y)‖2 : P ∈ ext

(
BD(π4 )

)}
=


C4(x, y) if 0 ≤ y ≤

√
2−1
2
x or (4

√
2− 5)x ≤ y ≤ x,

C5(x, y) if
√

2−1
2
x ≤ y ≤ (

√
2− 1)x,

C2(x, y) if (
√

2− 1)x ≤ y ≤ (4
√

2− 5)x.

In order to illustrate the previous step, the reader can take a look at Figure 6.4.
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Figure 6.2: Graphs of the mappings C4(1, λ), C5(1, λ), C7(1, λ).
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Figure 6.3: Graphs of the mappings C2(1, λ), C3(1, λ), C4(1, λ).
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Figure 6.4: Graphs of the mappings C2(1, λ), C4(1, λ), C5(1, λ).
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Corollary 6.4. If P ∈ P
(
D
(
π
4

))
, then

sup
{
‖∇P (x, y)‖2 : (x, y) ∈ D

(π
4

)}
≤ 4(13 + 8

√
2)‖P‖D(π4 ),

with equality for the polynomials P1(x, y) = ±
(
x2 + (5 + 4

√
2)y2 − 2(2 + 2

√
2)xy

)
.

6.2 Polarization constants for polynomials on sectors

In this section we find the exact value of the polarization constant of the space
P
(

2D
(
π
4

))
. In order to do that, we prove a Bernstein type inequality for polynomials

in P
(

2D
(
π
4

))
. Observe that if P ∈ P

(
2D
(
π
4

))
and (x, y) ∈ D

(
π
4

)
then the differential

DP (x, y) of P at (x, y) can be viewed as a linear form. What we shall do is to find the
best estimate for ‖DP (x, y)‖D(π4 ) (the sup norm of DP (x, y) over the sector D

(
π
4

)
) in

terms of (x, y) and ‖P‖D(π4 ). First, we state a lemma that will be useful in the future:

Lemma 6.5. Let a, b ∈ R. Then,

sup
θ∈[0,π4 ]

|a cos θ + b sin θ| =

{
max

{
|a|,

√
2

2
|a+ b|

}
if b

a
> 1 or b

a
< 0,

√
a2 + b2 otherwise.

=


√
a2 + b2 if 0 < b

a
< 1,

√
2

2
|a+ b| if

(
1−
√

2
)
b < a < b or b < a <

(
1−
√

2
)
b,

|a| if −
(
1 +
√

2
)
a < b < 0 or 0 < b < −

(
1 +
√

2
)
a.

Theorem 6.6. For every (x, y) ∈ D(π
4
) and P ∈ P(2D(π

4
)) we have that

‖DP (x, y)‖D(π
4

) ≤ Ψ(x, y)‖P‖D(π
4

), (6.1)

where

Ψ(x, y) =



√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7

x,√
2(x2+3y2)

2y
if 2
√

2−1
7

x ≤ y < (
√

2− 1)x,

2
(
x+ y2

x−y

)
if (
√

2− 1)x ≤ y <
(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x

Moreover, inequality (6.1) is optimal for each (x, y) ∈ D(π
4
).

Proof. In order to calculate Ψ(x, y) := sup{‖DP (x, y)‖D(π
4

) : ‖P‖D(π
4

)) ≤ 1}, by the
Krein-Milman approach, it suffices to calculate

sup{‖DP (x, y)‖D(π
4

) : P ∈ ext(BD(π
4

))}.

By symmetry, we may just study the polynomials of Lemma 6.2 with positive sign. Let
us start first with

Pt(x, y) = tx2 +
(

4 + t+ 4
√

1 + t
)
y2 −

(
2 + 2t+ 4

√
1 + t

)
xy.
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So we may write

∇Pt(x, y)

=
(

2tx−
(

2 + 2t+ 4
√

1 + t
)
y, 2

(
4 + t+ 4

√
1 + t

)
y −

(
2 + 2t+ 4

√
1 + t

)
x
)
,

from which

‖DPt(x, y)‖D(π
4

) = sup
0≤θ≤π

4

∣∣∣2 [tx− (1 + t+ 2
√

1 + t
)
y
]

cos θ

+ 2
[(

4 + t+ 4
√

1 + t
)
y −

(
1 + t+ 2

√
1 + t

)
x
]

sin θ
∣∣∣

= 2x sup
0≤θ≤π

4

|fλ(t, θ)|,

for
fλ(t, θ) =

[
t−
(

1 + t+ 2
√

1 + t
)
λ
]

cos θ

+
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]
sin θ,

where λ = y
x
, x 6= 0 (the case x = 0 is trivial, since the only point in D(π

4
) where x = 0

is (0, 0), in which case Pt(0, 0) = ‖DPt(0, 0)‖D(π4 ) = 0).

We need to calculate

sup
−1≤t≤1

‖DPt(x, y)‖D(π
4

) = 2x sup
0≤θ≤π

4
−1≤t≤1

|fλ(t, θ)|.

Let us define C1 = [−1, 1]× [0, π
4
]. We will analyze 5 cases.

(1) (t, θ) ∈ (−1, 1)× (0, π
4
).

We are interested just in critical points. Hence,

∂fλ
∂t

(t, θ) =

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
sin θ

+

[
1−

(
1 +

1√
1 + t

)
λ

]
cos θ = 0,

(6.2)

∂fλ
∂θ

(t, θ) =
[(

1 + t+ 2
√

1 + t
)
λ− t

]
sin θ

+
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]
cos θ = 0

(6.3)

Equation (6.3) tells us that

sin θ =

(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)
t−
(
1 + t+ 2

√
1 + t

)
λ

cos θ. (6.4)

If we now plug (6.4) in equation (6.2), we obtain
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0 =

{[
1−

(
1 +

1√
1 + t

)
λ

]
+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
×
(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)
t−
(
1 + t+ 2

√
1 + t

)
λ

}
cos θ.

Using that 0 < θ < π
4
, we can conclude

0 =

[
1−

(
1 +

1√
1 + t

)
λ

]
+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
×
(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)
t−
(
1 + t+ 2

√
1 + t

)
λ

and thus

0 =

[
1−

(
1 +

1√
1 + t

)
λ

]
·
[
t−
(

1 + t+ 2
√

1 + t
)
λ
]

+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
·
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]
= t−

(
1 + t+ 2

√
1 + t

)
λ− tλ+

(
1 + t+ 2

√
1 + t

)
λ2 − λt√

1 + t

+
λ2

√
1 + t

(
1 + t+ 2

√
1 + t

)
+

(
1 +

2√
1 + t

)(
4 + t+ 4

√
1 + t

)
λ2

−
(

1 +
2√

1 + t

)(
1 + t+ 2

√
1 + t

)
λ−

(
1 +

1√
1 + t

)(
4 + t+ 4

√
1 + t

)
λ

+

(
1 +

1√
1 + t

)(
1 + t+ 2

√
1 + t

)
= t
(
1− 2λ+ 2λ2 − 2λ+ 1

)
+
(
−2λ+ 2λ2 + 4λ2 − 2λ− 4λ+ 2

)√
1 + t

+
t√

1 + t

(
−λ+ λ2 + 2λ2 − 2λ− λ+ 1

)
+

1√
1 + t

(
λ2 + 8λ2 − 2λ− 4λ+ 1

)
+
(
−λ+ λ2 + 2λ2 + 4λ2 − λ− 4λ+ 1 + 2 + 8λ2 − 8λ

)
= 2t(λ− 1)2 + 6

√
1 + t(λ− 1)

(
λ− 1

3

)
+ 3

t√
1 + t

(λ− 1)

(
λ− 1

3

)
+

1√
1 + t

(3λ− 1)2 + 15

(
λ− 1

3

)(
λ− 3

5

)
.

Working with this last expression, we get

0 = 2t
√

1 + t(λ− 1)2 + 6(1 + t)(λ− 1)

(
λ− 1

3

)
+ 3t(λ− 1)

(
λ− 1

3

)
+(3λ− 1)2 + 15

√
1 + t

(
λ− 1

3

)(
λ− 3

5

)
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and hence, rearranging terms,

√
1 + t

[
15

(
λ− 1

3

)(
λ− 3

5

)
+ 2t(λ− 1)2

]
= −9t(λ− 1)

(
λ− 1

3

)
− 15

(
λ− 1

3

)(
λ− 3

5

)
. (6.5)

If λ = 1, we obtain √
1 + t+ 1 = 0

and so, in particular, we have λ 6= 1. Equation (6.5) has two solutions,

t1(λ) =
−1 + 2λ+ 3λ2

(λ− 1)2
and t2(λ) =

5λ2 + 2λ− 3

4(λ− 1)2
.

Using equation (6.2), we may see

tan θ =

(
1 + 1√

1+t

)
λ− 1(

1 + 2√
1+t

)
λ−

(
1 + 1√

1+t

) .
In particular, evaluating in t1(λ) we obtain

tan θ1 =

(
1 + 1−λ

2λ

)
λ− 1(

1 + 1−λ
λ

)
λ−

(
1 + 1−λ

2λ

) = λ,

in which case we have

D1,1(λ) := |fλ(t1, θ1)| =
∣∣∣−√1 + λ2

∣∣∣ =
√

1 + λ2.

Regarding t2 (λ), we obtain

tan θ2 =

(
1 +

√
4(λ−1)2

(3λ−1)2

)
λ− 1(

1 + 2
√

4(λ−1)2

(3λ−1)2

)
λ−

(
1 +

√
4(λ−1)2

(3λ−1)2

) .
Since θ2 ∈

(
0, π

4

)
, we need to guarantee 0 < tan θ2 < 1, and for this we need 0 < λ < 1

5
.

Therefore

tan θ2 =
5λ− 1

7λ− 3
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and in this case,∣∣∣D1,2(λ) := |fλ(t2, θ2)|

=
∣∣∣[5λ2 + 2λ− 3

4(λ− 1)2
−
(9λ2 − 6λ+ 1

4(λ− 1)2
+

3λ− 1

λ− 1

)
λ
] 3− 7λ√

74λ2 − 52λ+ 10

+
[(

3 +
9λ2 − 6λ+ 1

4(λ− 1)2
+

6λ− 2

λ− 1

)
λ−

(9λ2 − 6λ+ 1

4(λ− 1)2
+

3λ− 1

λ− 1

)]
× 1− 5λ√

74λ2 − 52λ+ 10

∣∣∣
=
∣∣∣− 78λ4 − 208λ3 + 196λ2 − 80λ+ 14

4(λ− 1)2
√

74λ2 − 52λ+ 10

∣∣∣
=
∣∣∣− 39λ2 − 26λ+ 7

2
√

74λ2 − 52λ+ 10

∣∣∣
=

39λ2 − 26λ+ 7

2
√

74λ2 − 52λ+ 10
.

(2) θ = 0,−1 ≤ t ≤ 1.

We have
fλ(t, 0) = t−

(
1 + t+ 2

√
1 + t

)
λ.

Then,
fλ(−1, 0) = −1,

fλ(1, 0) = 1− 2
(

1 +
√

2
)
λ,

and hence

|fλ(1, 0)| =

{
1− 2(1 +

√
2)λ if 0 ≤ λ <

√
2−1
2
,

2
(
1 +
√

2
)
λ− 1 if

√
2−1
2
≤ λ ≤ 1.

Working now on (−1, 1), since

f ′λ(t, 0) = 1−
(

1 +
1√

1 + t

)
λ,

the critical point of fλ(t, 0) is

t =
λ2

(1− λ)2
− 1.

Recall that we need to make sure that −1 < t < 1. Therefore, in this case we also need
to ask

λ <

√
2

1 +
√

2
= 2−

√
2.

Plugging the critical point of fλ(t, 0) into fλ(t, 0), we obtain

fλ

(
λ2

(λ− 1)2
− 1, 0

)
=

λ2

(λ− 1)2
− 1−

[
λ2

(λ− 1)2
+

2λ

1− λ

]
λ =

λ2

λ− 1
− 1,



94 Chapter 6. Polynomial inequalities on the π/4-circle sector

and hence ∣∣∣∣fλ( λ2

(λ− 1)2
− 1, 0

)∣∣∣∣ = 1 +
λ2

1− λ
.

• Assume first 0 ≤ λ <
√

2−1
2

. Then,

sup
−1≤t≤1

|fλ(t, 0)| = max

{
1, 1− 2

(
1 +
√

2
)
λ, 1 +

λ2

1− λ

}
= 1 +

λ2

1− λ
.

• Assume now
√

2−1
2
≤ λ < 2−

√
2. Then,

sup
−1≤t≤1

|fλ(t, 0)| = max

{
1, 2

(
1 +
√

2
)
λ− 1, 1 +

λ2

1− λ

}
= 1 +

λ2

1− λ
.

• Assume finally 2−
√

2 ≤ λ ≤ 1. Then,

sup
−1≤t≤1

|fλ(t, 0)| = max
{

1, 2
(

1 +
√

2
)
λ− 1

}
= 2

(
1 +
√

2
)
λ− 1.

Thus, in conclusion,

sup
−1≤t≤1

|fλ(t, 0)| =

{
1 + λ2

1−λ if 0 ≤ λ < 2−
√

2,(
2 + 2

√
2
)
λ− 1 if 2−

√
2 ≤ λ ≤ 1,

=:

{
D2,1(λ) if 0 ≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1.

(3) θ = π
4

and −1 ≤ t ≤ 1.

We have

fλ

(
t,
π

4

)
=

√
2

2

[
t−
(

1 + t+ 2
√

1 + t
)
λ+

(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)]
=

√
2

2

[(
3 + 2

√
1 + t

)
λ−

(
1 + 2

√
1 + t

)]
.

Again, we have

fλ

(
−1,

π

4

)
=

√
2

2
(3λ− 1) ,

fλ

(
1,
π

4

)
=

√
2

2

[(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)]
,

f ′λ

(
t,
π

4

)
=

√
2

2

[
λ√

1 + t
− 1√

1 + t

]
.

and f ′λ(t,
π
4
) = 0 implies λ = 1 (in which case fλ(t,

π
4
) =
√

2 for every t).
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• Assume first 0 ≤ λ < 1
3
. Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ, 1− 3λ

}
=

√
2

2

[(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ
]

• Assume now 1
3
≤ λ < 4

√
2− 5. Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ, 3λ− 1

}
=

{ √
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 1
3
≤ λ < 2

√
2+1
7

,√
2

2
(3λ− 1) if 2

√
2+1
7
≤ λ < 4

√
2− 5.

• Assume finally 4
√

2− 5 ≤ λ ≤ 1. Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{
3λ− 1,

(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)}

=

√
2

2
(3λ− 1).

Hence, we can say that

sup−1≤t≤1 |fλ
(
t, π

4

)
| =

{ √
2

2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2+1
7

√
2

2
(3λ− 1) if 2

√
2+1
7
≤ λ ≤ 1.

=:

{
D3,1(λ) if 0 ≤ λ < 2

√
2+1
7

D3,2(λ) if 2
√

2+1
7
≤ λ ≤ 1.

(4) t = −1, 0 ≤ θ ≤ π
4
.

Applying lemma 6.5, we obtain

sup
0≤θ≤π

4

fλ(−1, θ) =

{
1 if 0 ≤ λ < 1+

√
2

3
,

√
2

2
(3λ− 1) if 1+

√
2

3
≤ λ ≤ 1.

=:

{
D4,1(λ) if 0 ≤ λ < 1+

√
2

3
,

D4,2(λ) if 1+
√

2
3
≤ λ ≤ 1.

(5) t = 1, 0 ≤ θ ≤ π
4
.

We use again lemma 6.5, with a = 1−
(
2 + 2

√
2
)
λ and b =

(
5 + 4

√
2
)
λ−

(
2 + 2

√
2
)
.

Through standard calculations, we see that b
a
< 0 if and only if λ ∈

[
0,
√

2−1
2

)
∪
(

6−2
√

2
7

, 1
]
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and b
a
> 1 if and only if

√
2−1
2

< λ < 3+4
√

2
23

. Therefore,

sup
0≤θ≤π

4

|fλ(1, θ)|

=


max

{∣∣1− (2 + 2
√

2
)
λ
∣∣ , √2

2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣} if 0 ≤ λ < 3+4

√
2

23
,√(

1−
(
2 + 2

√
2
)
λ
)2

+
((

5 + 4
√

2
)
λ−

(
2 + 2

√
2
))2

if 3+4
√

2
23
≤ λ < 6−2

√
2

7
,

max
{∣∣1− (2 + 2

√
2
)
λ
∣∣ , √2

2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣} if 6−2

√
2

7
≤ λ ≤ 1.

Since 0 ≤ λ <
√

2 − 1 implies
∣∣1− (2 + 2

√
2
)
λ
∣∣ < √

2
2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣, it

follows that

sup
0≤θ≤π

4

|fλ(1, θ)|

=


√

2
2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣ if 0 ≤ λ < 3+4

√
2

23√
48
√

2λ2 − 56λ+ 69λ2 − 40
√

2λ+ 8
√

2 + 13 if 3+4
√

2
23
≤ λ < 6−2

√
2

7∣∣1− (2 + 2
√

2
)
λ
∣∣ if 6−2

√
2

7
≤ λ ≤ 1

=


√

2
2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 3+4
√

2
23√

48
√

2λ2 − 56λ+ 69λ2 − 40
√

2λ+ 8
√

2 + 13 if 3+4
√

2
23
≤ λ < 6−2

√
2

7(
2 + 2

√
2
)
λ− 1 if 6−2

√
2

7
≤ λ ≤ 1.

=:


D5,1(λ) if 0 ≤ λ < 3+4

√
2

23

D5,2(λ) if 3+4
√

2
23
≤ λ < 6−2

√
2

7

D5,3(λ) if 6−2
√

2
7
≤ λ ≤ 1.

Since (see Figures 6.5 and 6.6)

D1,1(λ) ≤

{
D2,1(λ) if 0 ≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1,

D1,2(λ) ≤ D3,1(λ) for 0 < λ < 1
5
,

we can rule out case (1). Since

D3,1(λ) = D5,1(λ) for 0 ≤ λ ≤ 3+4
√

2
23

,

D3,2(λ) = D4,2(λ) for 1+
√

2
3
≤ λ ≤ 1,

we can directly rule out case (3). Since (see Figures 6.5 and 6.7)

D4,1(λ) = 1 ≤

{
D2,1(λ) if 0 ≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ < 1+
√

2
3
,

D4,2(λ) ≤ D2,2 for 1+
√

2
3
≤ λ ≤ 1,
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Figure 6.5: Graphs of the mappings D1,1(λ), D2,1(λ) and D2,2(λ).

we can rule out case (4). Finally, since (see Figure 6.8)

D5,2(λ) ≤ D2,1(λ) for 3+4
√

2
23
≤ λ < 6−2

√
2

7
,

D5,3(λ) = D2,2(λ) for 2−
√

2 ≤ λ ≤ 1,

we can rule out the expressions D5,2(λ) and D5,3(λ) of case (5).

Thus, putting all the above cases together, we may reach the conclusion

sup
(t,θ)∈C1

|fλ(t, θ)|

=


D5,1(λ) if 0 ≤ λ <

(2−3
√

2)
√

4
√

2+7+5
√

2+6

14
,

D2,1(λ) if
(2−3

√
2)
√

4
√

2+7+5
√

2+6

14
≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1,

=


√

2
2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ <
(2−3

√
2)
√

4
√

2+7+5
√

2+6

14
,

1 + λ2

1−λ if
(2−3

√
2)
√

4
√

2+7+5
√

2+6

14
≤ λ < 2−

√
2,(

2 + 2
√

2
)
λ− 1 if 2−

√
2 ≤ λ ≤ 1,

and hence

sup
−1≤t≤1

‖DPt(x, y)‖D(π
4

) = 2x sup
(t,θ)∈C1

|fλ(t, θ)|

=


√

2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y <
(2−3

√
2)
√

4
√

2+7+5
√

2+6

14
x,

2
(
x+ y2

x−y

)
if

(2−3
√

2)
√

4
√

2+7+5
√

2+6

14
x ≤ y <

(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x,

assuming in every moment x 6= 0 (in order to illustrate the previous step, the reader can
take a look at Figure 6.9).
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Figure 6.6: Graphs of the mappings D1,2(λ) and D3,1(λ).
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Figure 6.7: Graphs of the mappings D2,2(λ) and D4,2(λ).
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Figure 6.8: Graphs of the mappings D2,1(λ) and D5,2(λ).
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Figure 6.9: Graphs of the mappings D2,1(λ), D2,2(λ) and D5,1(λ).

Let us deal now with the polynomials

Qs(x, y) = x2 + sy2 − 2
√

2(1 + s)xy, 1 ≤ s ≤ 5 + 4
√

2.

Then,

∇Qs(x, y) =
(

2x− 2
√

2(1 + s)y, 2sy − 2
√

2(1 + s)x
)
,

‖DQs(x, y)‖D(π
4

) = sup
0≤θ≤π

4

∣∣∣2x [(1−
√

2(1 + s)λ
)

cos θ +
(
sλ−

√
2(1 + s)

)
sin θ

]∣∣∣ ,
and thus

sup
1≤s≤5+4

√
2

‖DQs(x, y)‖D(π
4

) = 2x sup
(s,θ)∈C2

|gλ(s, θ)|,

with
gλ(s, θ) =

(
1−

√
2(1 + s)λ

)
cos θ +

(
sλ−

√
2(1 + s)

)
sin θ

and C2 = [1, 5 + 4
√

2]× [0, π
4
]. Again, we have several cases:

(6) (s, θ) ∈ (1, 5 + 4
√

2)× (0, π
4
).

Let us first calculate the critical points of gλ over C2.

∂gλ
∂s

(s0, θ0) =
−λ√

2(1 + s0)
cos θ0 +

(
λ− 1√

2(1 + s0)

)
sin θ0,

∂gλ
∂θ

(s0, θ0) =
(
s0λ−

√
2(1 + s0)

)
cos θ0 −

(
1−

√
2(1 + s0)λ

)
sin θ0,

so, if Dgλ(s0, θ0) = 0, using the first expression, we obtain tan θ0 = λ√
2(1+s0)λ−1

, and,

using the second one, we obtain tan θ0 =
s0λ−
√

2(1+s0)

1−
√

2(1+s0)λ
.

Hence, we may say
s0λ−

√
2(1 + s0)

1−
√

2(1 + s0)λ
=

λ√
2(1 + s0)λ− 1
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and thus

s0 =
2− λ2

λ2
.

Then, tan θ0 = λ and also, if we want to guarantee that 1 < s0 < 5 + 4
√

2, we need√
2− 1 < λ < 1.

In that case, sin θ0 = λ√
1+λ2

and cos θ0 = 1√
1+λ2

, and then

gλ(s0, θ0) =
−1√

1 + λ2
+
−λ2

√
1 + λ2

= −
√

1 + λ2,

so
D6(λ) := |gλ(s0, θ0)| =

√
1 + λ2.

(7) s = 1, 0 ≤ θ ≤ π
4
.

Apply lemma 6.5 with a = 1 − 2λ and b = λ − 2. Using 0 ≤ λ ≤ 1, observe that we
always have b < 0 and b ≤ a. Also, a <

(
1−
√

2
)
b if and only if λ > 5−3

√
2

7
.

Putting everything together, we can say

sup
0≤θ≤π

4

|gλ(1, θ)| =

{
1− 2λ if 0 ≤ λ < 5−3

√
2

7
,

√
2

2
(1 + λ) if 5−3

√
2

7
≤ λ ≤ 1,

=:

{
D7,1(λ) if 0 ≤ λ < 5−3

√
2

7
,

D7,2(λ) if 5−3
√

2
7
≤ λ ≤ 1.

(8) s = 5 + 4
√

2, 0 ≤ θ ≤ π
4
.

Apply again lemma 6.5, this time to a = 1 − 2
(
1 +
√

2
)
λ and b =

(
5 + 4

√
2
)
λ −

2
(
1 +
√

2
)
. As usual, we notice that a < 0 if and only if λ >

√
2−1
2

, b < 0 if and only

if λ < 6−2
√

2
7

and a < b if and only if λ > 3+4
√

2
23

. All together, we can say that, for
3+4
√

2
23

< λ < 6−2
√

2
7

, we have

sup
0≤θ≤π

4

|gλ(5 + 4
√

2, θ)| =
√
a2 + b2 =

√
13 + 8

√
2−

(
56 + 40

√
2
)
λ+

(
69 + 48

√
2
)
λ2.

Also, notice that, for any λ ∈ [0, 1], we are going to have b < −
(
1 +
√

2
)
a and a <(

1−
√

2
)
b. Hence,

sup
0≤θ≤π

4

|gλ(5 + 4
√

2, θ)|

=


√

2
2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 3+4
√

2
23

,√
13 + 8

√
2−

(
56 + 40

√
2
)
λ+

(
69 + 48

√
2
)
λ2 if 3+4

√
2

23
≤ λ < 6−2

√
2

7
,

2
(
1 +
√

2
)
λ− 1 if 6−2

√
2

7
≤ λ ≤ 1,

=:


D8,1(λ) if 0 ≤ λ < 3+4

√
2

23
,

D8,2(λ) if 3+4
√

2
23
≤ λ < 6−2

√
2

7
,

D8,3(λ) if 6−2
√

2
7
≤ λ ≤ 1.
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(9) θ = 0, 1 ≤ s ≤ 5 + 4
√

2.

We have
gλ(s, 0) = 1−

√
2(1 + s)λ,

gλ(1, 0) = 1− 2λ,

gλ(5 + 4
√

2, 0) = 1− 2
(

1 +
√

2
)
λ,

g′λ(s, 0) = − λ√
2(1 + s)

6= 0 for λ 6= 0.

Then,

sup
1≤s≤5+4

√
2

|gλ(s, 0)| = max
{
|1− 2λ|, |1− 2(1 +

√
2)λ|

}
=

{
1− 2λ if 0 ≤ λ < 2−

√
2

2
,

2
(
1 +
√

2
)
λ− 1 if 2−

√
2

2
≤ λ ≤ 1,

=:

{
D9,1(λ) if 0 ≤ λ < 2−

√
2

2
,

D9,2(λ) if 2−
√

2
2
≤ λ ≤ 1.

(10) θ = π
4
, 1 ≤ s ≤ 5 + 4

√
2.

We have

gλ

(
s,
π

4

)
=

√
2

2

[
1 + sλ−

√
2(1 + s)(1 + λ)

]
.

Then

gλ

(
1,
π

4

)
= −
√

2

2
(1 + λ),

gλ

(
5 + 4

√
2,
π

4

)
=

√
2

2

[(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)]
,

g′λ

(
s0,

π

4

)
= 0 if and only if s0 =

(1 + λ)2

2λ2
− 1

and since we need to ensure that 1 < s0 < 5 + 4
√

2, we need 2
√

2−1
7

< λ < 1. In that case,

gλ

(
s0,

π

4

)
= −
√

2(1 + 3λ2)

4λ
.

Hence,

sup
1≤s≤5+4

√
2

∣∣∣gλ (s.π
4

)∣∣∣ =

{ √
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2−1
7

,
√

2(1+3λ2)
4λ

if 2
√

2−1
7
≤ λ ≤ 1,

=:

{
D10,1(λ) if 0 ≤ λ < 2

√
2−1
7

,

D10,2(λ) if 2
√

2−1
7
≤ λ ≤ 1.

Since (the reader can take a look at Figure 6.10)

D6(λ) ≤

{
D8,2(λ) if

√
2− 1 < λ < 6−2

√
2

7
,

D8,3(λ) if 6−2
√

2
7
≤ λ < 1,
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we can rule out case (6). Since (see Figures 6.11 and 6.12)

D7,1(λ) ≤ D10,1(λ) for 0 ≤ λ < 5−3
√

2
7

D7,2(λ) ≤

{
D10,1(λ) if 5−3

√
2

7
≤ λ < 2

√
2−1
7

,

D10,2(λ) if 2
√

2−1
7
≤ λ ≤ 1,

we can rule out case (7). Since

D8,1(λ) = D10,1(λ) for 0 ≤ λ <
2
√

2− 1

7

we can rule out the expression D8,1(λ) of case (8). Since

D9,1(λ) = D7,1(λ) for 0 ≤ λ < 5−3
√

2
7

,

D9,2(λ) = D8,3(λ) for 6−2
√

2
7
≤ λ ≤ 1,

we can directly rule out case (9). Furthermore, since (see Figure 6.13)

D8,2(λ) ≤ D10,2(λ) for 3+4
√

2
23
≤ λ < 6−2

√
2

7
,

D8,3(λ) ≤ D10,2(λ) for 6−2
√

2
7
≤ λ ≤ (4

√
2−5)
√

4
√

2+7+8−5
√

2

7
,

we can conclude that

sup
(s,θ)∈C2

|gλ(s, θ)|

=


D10,1(λ) if 0 ≤ λ < 2

√
2−1
7

,

D10,2(λ) if 2
√

2−1
7
≤ λ <

(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
,

D8,3(λ) if
(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
≤ λ ≤ 1.

=


√

2
2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2−1
7

,
√

2(1+3λ2)
4λ

if 2
√

2−1
7
≤ λ <

(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
,

2
(
1 +
√

2
)
λ− 1 if

(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
≤ λ ≤ 1,

and hence

sup
1≤s≤5+4

√
2

‖DQs(x, y)‖D(π
4

)

=


√

2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7

x,
√

2(x2+3y2)
2y

if 2
√

2−1
7

x ≤ y <
(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
x,

4
(
1 +
√

2
)
y − 2x if

(4
√

2−5)
√

4
√

2+7+8−5
√

2

7
x ≤ y ≤ x.
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Figure 6.10: Graphs of the mappings D6(λ), D8,2(λ) and D8,3(λ).
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Figure 6.11: Graphs of the mappings D7,1(λ) and D10,1(λ).
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Figure 6.12: Graphs of the mappings D7,2(λ), D10,1(λ) and D10,2(λ).
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Figure 6.13: Graphs of the mappings D8,2(λ), D8,3(λ) and D10,2(λ).

Finally, if we compare the results obtained with Pt and Qs, since
√

2(1+3λ2)
4λ

≥ 1 + λ2

1−λ
whenever λ ≤

√
2− 1, we obtain

Φ(x, y) =



√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7

x,√
2(x2+3y2)

2y
if 2
√

2−1
7

x ≤ y <
(√

2− 1
)
x,

2
(
x+ y2

x−y

)
if
(√

2− 1
)
x ≤ y <

(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x.

We can see that Φ(x, y) ≤ 4 +
√

2, for all (x, y) ∈ D
(
π
4

)
. Furthermore, the maximum

is attained by the polynomials

P1(x, y) = x2 +
(

5 + 4
√

2
)
y2 −

(
4 + 4

√
2
)
xy = Q5+4

√
2(x, y).

Corollary 6.7. Let P ∈ P
(

2D
(
π
4

))
and assume L ∈ Ls

(
2D
(
π
4

))
is the polar of P . Then

‖L‖D(π4 ) ≤

(
2 +

√
2

2

)
‖P‖D(π4 ).

Moreover, equality is achieved for

P1(x, y) = Q5+4
√

2(x, y) = x2 +
(

5 + 4
√

2
)
y2 −

(
4 + 4

√
2
)
xy.

Hence, the polarization constant of the polynomial space P
(

2D
(
π
4

))
is 2 +

√
2

2
.

6.3 Unconditional constants for polynomials on sec-

tors

Here, we obtain a sharp estimate on the norm of the modulus of a polynomial in
P
(

2D
(
π
4

))
in terms of it norm. That sharp estimate turns out to be the unconditional

constant of the canonical basis of P
(

2D
(
π
4

))
.
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Theorem 6.8. The unconditional constant of the canonical basis of P
(

2D
(
π
4

))
is 5+4

√
2.

In other words, the inequality

‖|P |‖D(π4 ) ≤ (5 + 4
√

2)‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
. Furthermore, the previous inequality is sharp and equality is

attained for the polynomials

±P1(x, y) = ±Q5+4
√

2(x, y) = ±
[
x2 + (5 + 4

√
2)y2 − (4 + 4

√
2)xy

]
.

Proof. We just need to calculate

sup
{
‖|P |‖D(π4 ) : P ∈ ext

(
BD(π4 )

)}
.

In order to calculate the above supremum we use the extreme polynomials described in
Lemma 6.2. If we consider first the polynomials Pt, then

|Pt| =
(
|t|, 4 + t+ 4

√
1 + t, 2 + 2t+ 4

√
1 + t

)
.

Now, using Lemma 6.1 we have

sup
−1≤t≤1

‖|Pt|‖D(π4 ) = sup
−1≤t≤1

max

{
|t|, 1

2

(
|t|+ 4 + t+ 4

√
1 + t+ 2 + 2t+ 4

√
1 + t

)}
= sup
−1≤t≤1

1

2

(
|t|+ 6 + 3t+ 8

√
1 + t

)
= 5 + 4

√
2.

Notice that the above supremum is attained at t = 1. On the other hand, if we consider

the polynomials Qs, we have |Qs| =
(

1, s, 2
√

2(1 + s)
)

. Now, using Lemma 6.1 we have

sup
1≤s≤5+4

√
2

‖|Qs|‖D(π4 ) = sup
1≤s≤5+4

√
2

max

{
1,

1

2

(
1 + s+ 2

√
2(1 + s)

)}
= sup

1≤s≤5+4
√

2

1

2

(
1 + s+ 2

√
2(1 + s)

)
= 5 + 4

√
2.

Observe that the last supremum is now attained at s = 5 + 4
√

2.

6.4 Conclusions

Comparing the results obtained in [70] and [94] for polynomials on the simplex ∆, in
[69] for polynomials on the unit square 2, in [77] for polynomials on the sector D

(
π
2

)
and

the results obtained in the previous sections, we have the following:
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P(2∆) P
(

2D
(
π
2

))
P
(

2D
(
π
4

))
P(22)

Markov constants 2
√

10 2
√

5 4(13 + 8
√

2)
√

13

Polarization constants 3 2 2 +
√

2
2

3
2

Unconditional Constants 2 3 5 + 4
√

2 5

Furthermore, all the constants appearing in the previous table are sharp. Actually, the
extreme polynomials where the constants are attained are the following:

1. ±(x2 + y2 − 6xy) for the simplex.

2. ±(x2 + y2 − 4xy) for the sector D
(
π
2

)
.

3. ±
(
x2 + (5 + 4

√
2)y2 − (4 + 4

√
2)xy

)
for the sector D

(
π
4

)
.

4. ±(x2 + y2 − 3xy) for the unit square.

Compare the previous table with similar results that hold for 2-homogeneous polyno-
mials on the Banach spaces `2

1, `2
2 and `2

∞:

P(2`2
1) P (2`2

2) P(2`2
∞)

Markov constants 4 2 2
√

2

Polarization constants 2 1 2

Unconditional Constants 1+
√

2
2

√
2 1 +

√
2

Observe that the Markov constants of the spaces P(2`2
1) and P(2`2

∞) can be calculated
taking into consideration the description of the geometry of those spaces given in [50].
Also, the Markov constant of P(2`2

2) is twice its polarization constant, or in other words,
2.
On the other hand, the constants appearing in the second line of the previous table are
well-known results (see for instance [121]).
Finally, the unconditional constants corresponding to the third line of the previous table
were calculated in Theorem 3.5, Theorem 3.19 and Theorem 3.6 of [70].
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[69] J.L. Gámez-Merino, G.A. Muñoz-Fernández, V.M. Sánchez, and J. B. Seoane-
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