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Facultad de Ciencias Matemáticas
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Introducción

La presente tesis está centrada en dos temas principales: el primero abarca el primer caṕıtulo y
el segundo se divide entre los caṕıtulos dos y tres. En el primer caṕıtulo estudio un problema que
apareció como tal hace relativamente poco tiempo (aunque ya en la segunda mitad del pasado siglo
se publicaron una serie de resultados que, con la terminoloǵıa adecuada, estaŕıan englobados dentro
de esta teoŕıa). Nos interesaremos en la búsqueda de estructuras algebraicas (como espacios vecto-
riales, álgebras, espacios de Banach) contenidas en subconjuntos de funciones cuyos elementos (con
la posible excepción del elemento nulo) verifican ciertas propiedades anti-intuitivas (propiedades de
dif́ıcil visualización). Ello nos puede conducir a la idea de cómo la intución puede engañarnos, y
sugerir que, aunque se haya dedicado una ingente cantidad de esfuerzo y tiempo para encontrar un
único ejemplo que verifique tales propiedades, y dicho trabajo pueda dar la idea de que no existen
muchos más espećımenes de similares caracteŕısticas, de hecho existen ejemplares suficientes como
para construir espacios “grandes” cuyos elementos (salvo el cero) satisfacen las mismas propiedades.
Más espećıficamente, decimos que un subconjunto de un espacio vectorial topológico es α-lineable
(dado un numero cardinal α) si podemos garantizar la existencia de un espacio vectorial de di-
mensión α contenido en el conjunto (unión el elemento cero, en caso de que cero no forme parte
del conjunto de partida). Si el espacio vectorial es cerrado, nos referiremos a este conjunto como α-
espaciable (y la propiedad que trataremos será la de α-espaciabilidad) y si la estructura en cuestión
es un álgebra de Banach, entonces diremos que el conjunto es (α, β)-algebrable (donde aqúı β es
la cardinalidad de un conjunto minimal de generadores del álgebra). Si no se especifica ningún
número cardinal, entendemos que la estructura a considerar es simplemente de dimensión infinita.
Este nuevo acercamiento al estudio de las funciones y sus propiedades apareció como una teoŕıa
independiente a comienzos del presente siglo, en el art́ıculo Lineability and spaceability of sets of
functions on R ( R.M. Aron, V.I. Gurariy and J.B. Seoane-Sepúlveda, Proc. Amer. Math. Soc.,
133 (2005), no. 3, 795–803), y desde su aparición ha demostrado ser un campo de estudio muy
fruct́ıfero tanto en la cantidad y variedad de resultados como en el interes de los mismos (véanse por
ejemplo los resultados recogidos en la bibliograf́ıa que acompaña a la tesis, un compendio detallado
y exhaustivo que recoge la mayor parte de los resultados publicados hasta 2014 se puede consultar
en Linear subsets of non-linear sets in topological vector spaces (L. Bernal-González, D. Pellegrino,
J.B. Seoane-Sepúlveda, Bull. Amer. Math. Soc. (N-S), 51 (2014), no. 1, 71–130.)).
Los conjuntos que se estudiarán en esta tesis, en cuanto a las propiedades anti-intuitivas en las que
nos centraremos, se compondrán de funciones definidas sobre la recta real. Más concretamente, los
conjuntos que estudiaremos son los siguientes:

1. Funciones continuas no diferenciables en ningún punto (donde se realiza un uso importante
del ejemplo presentado por Weierstrass).

2. Funciones continuas cuya convolución consigo mismas no es diferenciable en ningún punto
(destaquemos en este punto que el operador convolución es un operador que suaviza las
propiedades de las funciones que intervienen, y, por ejemplo, la convolución de dos funciones
de cuadrado integrable aporta una función continua).

3. Funciones continuas sobre [0, 1] diferenciables salvo en un conjunto de medida nula, con
derivada nula en todo punto donde la derivada está definida, pero no Lipschitz (recorde-
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mos que en caso de tener diferenciabilidad en todo punto, y que la derivada sea acotada, el
teorema del Valor Medio nos garantiza Lipschitzianidad).

4. Funciones diferenciables definidas sobre un conexo no convexo y que no verifican el equivalente
en R2 del teorema del Valor Medio.

5. Funciones (de variable real) infinitamente diferenciables pero no anaĺıticas en ningún punto
(recordemos que en el caso de variable compleja, las propiedades de diferenciabilidad infinita
y analiticidad son equivalentes).

En todos los casos tratados, se consigue demostrar máxima linealidad (es decir, el espacio
vectorial que se consigue encontrar es de la máxima dimensión posible). En los conjuntos descritos
en 3 y 5 se consiguen encontrar estructuras algebraicas más complejas: en el primer caso se consigue
demostrar la existencia de un subespacio vectorial de funciones continuas sobre [0, 1] diferenciables
salvo en un conjunto de medida nula, con derivada nula en todo punto donde la derivada está
definida, pero no Lipschitz, linealmente isométrico a c0. En el segundo, se demuestra la (c, c)-
algebrabilidad del conjunto al que hacemos referencia en 5.
El segundo tema que se trata en esta tesis y que cubriremos en el resto de la misma estudia
distintas normas de polinomios. En el segundo caṕıtulo nos centraremos en la comparación de las
normas de un polinomio y su derivada. Siguiendo las directrices del problema clásico que trata las
desigualdades de Markov y Bernstein, para los resultados que presentamos en este caṕıtulo segundo
estudiaremos polinomios definidos sobre espacios de dimensión finita.
Aunque estos problemas se han estudiado con diligencia en el caso de polinomios sobre espacios
de Banach (véanse, por ejemplo, las conocidas generalizaciones de las estimaciones de Markov y
Bernstein, o la constante incondicional para un espacio de Banach), usaremos un punto de vista
diferente que se empezó a desarrollar en la segunda mitad del siglo XX, y que propone estudiar
espacios de polinomios, dotados de una seminorma (el supremo de los valores que toma el polinomio
sobre un compacto convexo pero sin simetŕıa central). Con este nuevo acercamiento, la pregunta
que surge es si los resultados conocidos para espacios de Banach siguen siendo válidos.
En concreto (y por mor de la completitud) recogemos los resultados ya conocidos que se refieren al
triángulo sólido de vértices (0,0), (0,1) y (1,0) (cuyas estimaciones aparecieron publicadas en [78])
y el cuadrado sólido de vértices (0, 0), (0, 1), (1, 1) y (1, 0) (publicado en [55]), e incluiremos los
resultados (ya originales) cuando se consideran los sectores circulares de amplitud 1 y π

2 . Para estos
últimos problemas, conseguimos dar de forma expĺıcita las constantes de polarización (comparativa
entre las normas de un polinomio y su polar, esto es, la única forma multilineal simétrica que,
restringida a la diagonal, nos permite recuperar el polinomio original), Markov e incondicional y la
función de Bernstein. Todos los polinomios tratados están definidos sobre R2 y son homogéneos de
grado 2.
El tŕıptico formado por el triángulo, el cuadrado y el sector circular de amplitud π

2 forma un grupo
interesante, ya que cada uno de estos cuerpos es la restricción de la bola unidad de un espacio de
Banach tremendamente familiar (`21, `

2
∞ y `22, respectivamente) al primer cuadrante. Pondremos

el acento en hasta qué punto los resultados ya conocidos para el caso general de los espacios de
Banach (especialmente respeco a cotas sobre las constantes estudiadas) siguen siendo válidos y
propondremos otras preguntas (no respondidas), en concreto el comportamiento que las constantes
correspondientes parecen seguir cuando se considera la bola unidad de un espacio `2p (1 < p < ∞)
intersecada con el primer cuadrante.
La tabla donde se recogen los datos a los que se ha hecho referencia unas ĺıneas más arriba se detalla
a continuación:
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∆ D
(
π
2

)
�

Constante de Markov 2
√

10 2
√

5
√

13

Constante de Polarización 3 2 3
2

Constante Incondicional 2 3 5

Destacar además que los polinomios óptimos para estas constantes (en el sentido de tornar la
desigualdad en igualdad) son los mismos, en cada espacio distinto. Aśı, tenemos desigualdad (en
los tres problemas considerados en la tabla anterior) para los siguientes polinomios:

1. ±(x2 + y2 − 6xy) para el triángulo.

2. ±(x2 + y2 − 4xy) para el sector D
(
π
2

)
.

3. ±(x2 + y2 − 3xy) para el cuadrado unidad.

El tercer y último caṕıtulo continúa con la comparación entre normas de polinomios. La constante
de Bohnenblust-Hille relaciona la norma de un polinomio, vista como función definida sombre un
espacio de Banach (de la misma forma que fue considerada en el caṕıtulo anterior, el supremo sobre
la bola unidad del espacio), y la norma ‖ · ‖p de los coeficientes del polinomio (que suele notarse
como | · |p).
Más concretamente, el teorema clásico de Bohnenblust y Hille garantiza la existencia de una con-
stante Dm, dependiendo sólamente en el parámetro m, de tal forma que la desigualdad

|P | 2m
m+1
≤ Dm‖P‖,

para todo polinomio P de gradom definido sobre n variables (nótese que la constante de Bohnenblust-
Hille no depende de la dimensión n). Recordemos también que estamos usando la notación

‖P‖ = sup{|P (x)| : ‖x‖`n∞ = 1}.

También hay que destacar que el valor 2m
m+1 es óptimo, en el sentido que Bohnenblust y Hille

probaron que, para p < 2m
m+1 , cualquier constante que consideremos en una desigualdad de tipo

|P |p ≤ C‖P‖, para todo polinomio P , la constante C tiene que depender por fuerza en la di-
mensión n.
El problema que estudiaremos en esta tesis es el comportamiento (puntual o asintótico) que las
constantes de Bohnenblust-Hille presentan, y la primera propiedad que nos gustaŕıa destacar es que
dicho comportamiento difiere bastante dependiendo del cuerpo sobre el que el espacio de Banach
está definido. Aśı, si el cuerpo considerado es el de los números complejos, la desigualdad es a
lo sumo subexponencial, esto es, para todo ε > 0, existe una constante Cε > 0 de tal forma que
Dm(1 + ε)m para todo número natural m.
En este tercer caṕıtulo estudiaremos primero el caso de polinomios definidos sobre los números
reales, con coeficientes reales, y estudiaremos si la desigualdad de Bohnenblust-Hille para poli-
nomios reales es subexponencial, y cuál es el crecimiento óptimo. Responderemos a estas preguntas
mostrando que, para polinomios definidos sobre los números reales, se obtiene

lim sup
m
D1/m
m = 2.
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Aunque el hecho de que los polinomios estén definidos sobre los números reales o los números
complejos (con coeficientes pertenecientes a los cuerpos correspondientes) da forma a problemas
completamente diferentes, todav́ıa pueden usarse resultados probados para el caso real para obtener
ciertas conclusiones en el caso complejo. Aśı, seremos capaces de demostrar el valor exacto para el
caso de polinomios homogéneos de grado 2.
En las últimas secciones de este tercer y último caṕıtulo, seguiremos con la misma estrategia para
obtener resultados para polinomios de grados superiores. En este caso, no podemos dar el valor
exacto, pero podemos dar cotas superiores, junto con evidencia simbólica de que estas estima-
ciones deben aproximarse bastante a la constante correspondiente de facto. Aśı, en estos resultados
echaremos mano de cálculo simbólico computacional. Por mor de la completitud de cara a estos
resultados, incluiremos los códigos empleados (más una breve explicación de qué ideas subyacen
tras los algoritmos empleados) para la representación simbólica del comportamiento simbólico de
las constantes de Bohnenblust-Hille (en el caso real). El programa empleado es MatLab.
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Introduction

This thesis will be divided into two topics: the first one will cover the first chapter and will
deal with a problem that took form little time ago (even though already in the second half of the
past century there would be some results). We will be interested on finding algebraic structures
(vector spaces, algebras, Banach spaces) contained in subsets of functions whose elements fulfill
some anti-intuitive property, union the zero function. Thereby, we can have an idea of how the
intuition may mislead us, and hint that, even though we may think that because of having to spend
a huge effort in finding one example of such elements we may not find many more, in fact there are
enough to consider huge spaces all whose elements except from the zero element satisfy the same
property.
More specifically, we define a subset of a topological vector space to be α−lineable (for a cardinal
number α) if we can find a vector space of dimension α contained in the set (union the zero element,
in case it is not included). If the vector space is closed, then we will be talking about α−spaceability
(and we will say that the set is α−spaceable), and if the structure included is a Banach algebra
then we will define the set to be (α, β)−algebrable (where here β would be the cardinality of a
minimal set of generators of the algebra). If no cardinal number is defined, then we will assume
the structure to be infinite dimensional.
This trend was developed as an independent theory in the end of the last Century, in [5], and
since its appearance it has resulted in a fruitful field of study, as the amount of results show (see
for example [4], [7], [12], [24], [26] or [54], a very recent and detailed paper giving an exhausting
overview of the results published until 2014 can be found in [16]).
The sets that will be considered here when studying those anti-intuitive properties will deal with
functions defined over the real line, more concretely results that lie beneath the definition of differ-
entiability (for example the relationship between bounds of the differential and the Lipschitzianity
of the function). In particular, we will revisit the famous example given by Weierstrass. There will
also be some sections dedicated to the analyticity of real functions and its relation with the infinite
differentiability.
The second topic that we gather here and which we will deal with throughout the rest of the Ph.
D. studies different norms of polynomials. On the second chapter we will focus on the comparison
of the norm of a polynomial, against the norm of its differential. Following a classic problem, the
Markov and Bernstein polynomial inequalities, we will be dealing with polynomials defined over a
finite dimensional space.
Even though the problem has been exhaustively studied when considering the polynomials defined
over Banach spaces (see the well-known Markov and Bernstein estimates or the Unconditional con-
stants for general Banach spaces), we will use a notion that started to develop in the second half
of the XXth century and that considers spaces of polynomials defined over a semi-normed space
(with still the norm of the polynomial defined as the supremum over some bounded convex set),
when this set is not symmetric nor balanced. The question then is to determine until what extend
the results that were known for Banach spaces remain true in this new approach.
In concrete, we will gather the already known results when considering the solid triangle of vertices
(0, 0), (0, 1) and (1, 0) (published in [78]) and the solid square of vertices (0, 0), (0, 1), (1, 1) and
(1, 0) (published in [55]), and we will include the original results when considering the circular
sectors with radius 1 and width π

4 and π
2 . All the vector spaces will be R2 and all the polynomials

will be homogeneous ones of degree 2.
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The triplet of unit balls triangle, square and sector of width π
2 (and explaining why the first two are

specifically included) constitutes an interesting group, since each one of those subsets are the unit
ball of a very well-known space (`21, `

2
∞ and `22, respectively) restricted to the first quadrant. We will

stress the extension to which the already known results for boundedness of the constants (theorems
appeared in [67]) still hold and we will remark the unanswered question of how the constants will
work when the unit ball is the corresponding unit ball for some `2p space (1 < p < ∞, p not equal
to 2) intersected with the first quadrant.
The third and last chapter continues with the comparison of norms of polynomials. The Bohnenblust-
Hille constant relates the norm of a polynomial considered as a functional over a Banach space and
the `p−norm of the coefficients of the polynomial.
More concretely, the problem follows the search for a constant Dm, depending only on m, such that
the inequality

|P | 2m
m+1
≤ Dm‖P‖,

for every P polynomial of degree m defined over n variables, where |P |p is used to denote the
`p−norm of the coefficients of the polynomial and

‖P‖ = sup
{
|P (x)| : ‖x‖`n∞ = 1

}
.

The estimate must hold uniformly for every n, and the quantity 2m
m+1 is optimal, in the sense that

Bohnenblust and Hille showed that for p < 2m
m+1 , any constant fitting in that inequality depends

necessarily on the number of variables.
If the field over which we are considering the problem is the field of complex numbers, the inequality
is at most subexponential, that is, for any ε > 0, there exists a constant Cε > 0 such that Dm ≤
Cε(1 + ε)m for all positive integers m.
In this third chapter, we will study first the case for the real field, and we will study whether the
real polynomial Bohnenblust-Hille inequality is subexponential, and what the optimal growth of
this inequality is. We will also wonder whether this growth is the optimal we can consider.
We will answer those questions by showing that, for polynomials defined over real numbers,

lim sup
m
D1/m
m = 2.

We shall also use the results obtained for the real case to prove some results for the complex
Bohnenblust-Hille constant. In fact we will be able to provide the exact value for the case of
homogeneous polynomials of degree 2.
For those last results, some extra help from computer symbolic calculation was required, and in the
last pages of this dissertation, we will include the codes used (together with a short explanation of
how it works) for the symbolic representation of the asymptotic behaviour of the Bohnenblust-Hille
constants (the real case). The program used is MatLab.



Chapter 1

In search for linear structures

1.1 Preliminaries

As certain concepts in Mathematical Analysis were developing and new definitions were being
coined, the examples that naturally arose followed certain patterns that fulfilled more requisites
than those strictly required. Hence, the continuous functions that appeared in the popular domain
were differentiable, everywhere except for at most a finite number of points, or the differentiable
functions had to have at least an interval in which they were monotone. It was stated then the
question as to whether necessary conditions for certain properties, like continuity for differentiability
almost everywhere, were also sufficient. In fact, there were certain works whose aim was to achieve
that.

At the end of the XIX century this was answered in the negative: Weierstrass gave an example,
in a lecture at the Academy of Sciences in Berlin, of a continuous nowhere differentiable function,
even though there were some other authors that suggested different examples before him but did not
come with a formal proof of those functions enjoying the desired properties. The case of Weierstrass’
function (that came to be popularly known as Weierstrass’ Monster) shall be more carefully treated
in section 1.2.

The idea of pathological phenomena for a function began to develop. A property for which finding
an element that fulfills it required working with indirect tools, normally without explicit expressions
and sometimes with the need of hypotheses that could be rejected by part of the Mathematical
Community (e.g., the Axiom of Choice for the Vitali example of a non-measurable set). The feeling
was then that there could not be many examples of that kind.

In the second half of the XX century, some authors (when working with infinite dimension vector
spaces) started to find large linear structures whose elements (except for, perhaps, the null vector)
fulfilled some of these pathological properties.

It was in the XXI century when V. I. Gurariy coined the terms that are nowadays employed and
which first appeared in [5] (see, also, [58, 93]). For the following list of definitions and notations we
refer the reader to [3, 5, 6, 7, 15, 47].

Definition 1.1.1 (Lineability and spaceability). Let X be a topological vector space and M a subset
of X. Let µ be a cardinal number.

(1) M is said to be µ-lineable (µ-spaceable) if M ∪ {0} contains a vector space ( resp. a closed

11
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vector space) of dimension µ. At times, we shall be referring to the set M as simply lineable
or spaceable if the existing subspace is infinite dimensional.

(2) We also let λ(M) be the maximum cardinality (if it exists) of such a vector space.

(3) When the above linear space can be chosen to be dense in X we shall say that M is µ-dense-
lineable.

Moreover, Bernal introduced in [15] the notion of maximal lineable (and those of maximal dense-
lineable and maximal-spaceable), meaning that, when keeping the above notation, the dimension of
the existing linear space equals dim(X). Besides asking for linear spaces one could also study other
structures, such as algebrability and some related ones, which were presented in [3].

Definition 1.1.2. Given a Banach algebra A, a subset B ⊂ A and two cardinal numbers α and β,
we say that:

(1) B is algebrable if there is a subalgebra C of A so that C ⊂ B ∪ {0} and the cardinality of any
system of generators of C is infinite.

(2) B is dense-algebrable if, in addition, C can be taken dense in A.

(3) B is (α, β)-algebrable if there is an algebra B1 so that B1 ⊂ B∪{0}, dim(B1) = α, card (S) =
β, and S is a minimal system of generators of B1.1

(4) At times we shall say that B is, simply, κ-algebrable if there exists a κ-generated subalgebra C
of A with C ⊂ B ∪ {0}.

We also say that a subset M of a linear algebra L is strongly κ-algebrable if there exists a κ-
generated free algebra A contained in M ∪ {0} (see [11]). Other types of structures have also been
considered, such as cones or modules2. The links between the previous concepts are as follows (in
which all the below implications are strict):

(strong) algebrability
↓

spaceability moduleability coneability
↘ ↓ ↗

lineability

For instance, in 1940 B. Levine and D. Milman proved the following illustrating result, which
translated into the modern terminology states the following:

Theorem 1.1.3 (B. Levine, D. Milman, [71]). The subset of C[0, 1] of all functions of bounded
variation is not spaceable.

Or this other early result, due to V. Gurariy, in 1966 (also stated with this modern terminology):

1Here, by S is a minimal set of generators of an algebra D we mean that D = A(S) is the algebra generated by
S, and for every x0 ∈ S x0 /∈ A(S \ {x0}).

2Let L be a subset of a Banach algebra (or a topological algebra) X. We say that L is moduleable if there exists
an infinitely generated subalgebra M of X and an infinitely generated additive subgroup G of X such that G is a
(M,K)-bimodule, G is K-infinite dimensional and L ∪ {0} ⊃ G.
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Theorem 1.1.4 (V.I. Gurariy, [53]). The set of differentiable functions on [0, 1] is not spaceable
in (C[0, 1]; ‖ · ‖∞).

This last theorem, for example, was originally published in the following terms:

Theorem 1.1.5 (V. I. Gurariy, [53]). If all elements of a closed subspace E of C[0, 1] are differ-
entiable on [0, 1], then E is finite-dimensional.

The following positive result is also due to Gurariy:

Theorem 1.1.6 (V. I. Gurariy, [53]). C[0, 1] has infinite-dimensional closed subspaces consisting
of differentiable functions on (0, 1) (and even analytic on (0, 1)).

The latter was proved using a result due to A.F. Leont’ev, where he suggested to take the closure
(in C[0, 1]) of the linear hull of a sequence of powers {tnk}∞k=1, where nk > 0 and

∑∞
k=1

1
nk

<∞.

Gurariy also suggested the idea that the class of such infinite-dimensional vector subspaces was
very narrow:

Theorem 1.1.7 (V. I. Gurariy, [53]). If every element of a finite-dimensional subspace E of C[0, 1]
is differentiable on (0, 1), then for every ε > 0 there exists a closed subspace Eε of E such that

d(Eε,c0) := inf{‖T‖ · ‖T−1‖ with T : Eε −→ c0 is an isomorphism} < 1 + ε,

which would lead to the following:

Corollary 1.1.8. If the elements of a reflexive subspace E of C[0, 1] are differentiable on (0, 1),
then E is finite-dimensional.

This previous battery of results became even larger at the beginning of the XX century when,
as mentioned above, this terminology first appeared in [5, 93]. Lineability and spaceability have
a remarkable influence on many fields of mathematics, from Linear Chaos to Real and Complex
Analysis, passing through Set Theory and Linear and Multilinear Algebra, or even Operator Theory,
Topology, Measure Theory, Functional Analysis and even in Probability Theory. Recently a survey
paper on the topic appeared (see [16]) and even a complete detailed monograph as well, [3].

1.2 Results concerning differentiability of functions

As we stated before, the seed of the conception of the pathological phenomena was introduced with
the search for a continuous nowhere differentiable function. The existence of such a mapping was
not clear; actually there had been some attemps to prove its non-existence.

Even though Weierstrass was the first author who gave a rigorous example of a function like that,
during a lecture delivered at the Berlin Academy on July 18, 1872, there had been some other
examples before him:

1. Around the year 1830, Bernard Bolzano had constructed a function that fulfilled those fea-
tures, but the result remained unpublished until 1922, some years after his manuscripts were
discovered.
Bolzano’s idea was to construct a sequence of continuous functions, defined between closed
intervals, that converged uniformly.
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2. Charles Cellélier proposed the function

C(x) =

∞∑

k=1

1

ak
sin(akx), with a > 1000,

which was quite similar to that given by Weierstrass and conceived earlier than the year 1860,
but was not published until 1890.

3. In his dissertation from 1854, Riemann used the function

R(x) =

∞∑

k=1

1

k2
sin(k2x)

when searching for necessary and sufficient conditions for a function in order to have a Fourier
series.
Riemann is believed to have used this function as an example, later in his lectures around the
year 1861, of a continuous nowhere differentiable function (even though it was proved that R
had a finite derivative at the points of the form π 2p+1

2q+1 , p, q ∈ Z). However, he never presented
a formal proof.

In this section we study the function presented by Weierstrass, since we shall use it as a pattern
to construct a linear vector space of dimension c (from now on denoting the continuum) of coninuous
nowhere differentiable functions.

The original Weierstrass’ Monster was defined as:

Wa,b(x) =

∞∑

k=0

ak cos(bkπx)

where 0 < a < 1, ab > 1 + 3
2π and b is an odd natural number greater than 1. The paper with the

proof was published in 1875 by Paul du Bois-Reymond, after some exchanging with Weierstrass
(see, e.g., [98]), even though Hardy published in 1916 a paper where more general assumptions in
the parameters that appear in the Weierstrass function were considered, namely 0 < a < 1, ab ≥ 1
and b > 1 ([59]).

For our result, we shall follow the proof as it appears in the following theorem in [96]:

Theorem 1.2.1 (Weierstrass). The function W : R −→ R given by

W (x) =

∞∑

k=0

ak cos(bkπx)

where 0 < a < 1, ab > 1 + 3
2π and b is an odd natural number greater than 1, is a continuous

nowhere differentiable function on R

Related to this theorem, we shall have the following result:

Theorem 1.2.2 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, [66]). The
set of all continuous nowhere differentiable functions from R to R is c-lineable.
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Figure 1.1: A sketch of Weierstrass’ monster

Proof. Consider, for 7
9 < a < 1,

Wa(x) =

∞∑

k=0

ak cos(9kπx).

We see that each Wa is a Weierstrass function, since 9a > 7 > 1 + 3
2π.

We need to show that {Wa : 7
9 < a < 1} is a linearly independent system that spans a space of

continuous nowhere differentiable functions (with the exception of the zero element). Indeed, let
7
9 < a1 < a2 < . . . < al < 1, α1, . . . , αl ∈ R, define g(x) =

∑l
i=1 αiWai(x) and assume g = 0. We

shall prove by induction that

l∑

i=1

αia
n
i = 0 and

l∑

i=1

αi
an+1
i

1− ai
= 0,

for all n ∈ N, which would prove αi = 0 for all 1 ≤ i ≤ l since we would have a Vandermonde-like
determinant.
First, start with n = 0. We have

Wa(
1

3
) =

∞∑

k=0

ak cos(
9k

3
π) = cos(

π

3
) +

∞∑

k=1

ak cos(3k−13kπ) = cos(
π

3
)− a

1− a

for every a with 7
9 < a < 1.

Hence,

g(
1

3
) =

l∑

i=1

αi

(
cos

π

3
− ai

1− ai

)
= cos

π

3

(
l∑

i=1

αi

)
−

l∑

i=1

αiai
1− ai

= 0.
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Similarly,

g(
1

9
) =

l∑

i=1

αi

(
cos

π

9
− ai

1− ai

)
= cos

π

9

(
l∑

i=1

αi

)
−

l∑

i=1

αiai
1− ai

= 0,

which implies (
l∑

i=1

αi

)(
cos

π

9
− cos

π

3

)
= 0

from which
∑l
i=1 αi = 0 and

∑l
i=1

aiαi
1−ai = 0.

Assume now
∑l
i=1 αia

n
i = 0 and

∑l
i=1 αi

an+1
i

1−ai = 0, for all 0 ≤ n ≤ m.

Then,

Wai(
1

9m+2
) =

∞∑

k=0

aki cos
9kπ

9m+2

= cos
π

9m+2
+ ai cos

π

9m+1
+ . . .+ am+1

i cos
π

9
− am+2

i

1− ai
.

Hence, using the induction hypothesis,

g(
1

9m+2
) =

l∑

i=1

αiWai(
1

9m+2
)

=

l∑

i=1

αi

[
cos

π

9m+2
+ ai cos

π

9m+1
+ . . .+ am+1

i cos
π

9
− am+2

i

1− ai

]

=

(
l∑

i=1

αia
m+1
i

)
cos

π

9
−

l∑

i=1

αi
am+2
i

1− ai
= 0,

(1.2.1)

which allows us to conclude, using the induction hypothesis, that

(
l∑

i=1

αia
m+1
i

)
cos

π

9
−

l∑

i=1

αi
am+2
i

1− ai
+

l∑

i=1

αi
am+1
i

1− ai
= 0

and then

(
l∑

i=1

αia
m+1
i

)
cos

π

9
−

l∑

i=1

αi
am+1
i (ai − 1)

1− ai
=

(
l∑

i=1

αia
m+1
i

)
(cos

π

9
+ 1) = 0.

Using this last result we have
∑l
i=1 αia

m+1
i = 0, which, together with the conclusion in (1.2.1),

yields
∑l
i=1 αi

am+2
i

1−ai = 0. This proves the linear independency of the Wa’s.

Assume now that α1 · . . . · αl 6= 0, 7
9 < al < al−1 < . . . < a1 < 1 and g(x) :=

∑l
i=1 αiWai(x) is

differentiable at x0 ∈ R.
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Then, following the proof of Theorem 1.2.1, we have that for each m ∈ N and each 1 ≤ i ≤ l there
exist εi1,m, ε

i
1,m ∈ [−1, 1] and there exists ηim ≥ 1 such that

g′(x0) = lim
m→∞

[
(−1)am

l∑

i=1

αi(9ai)
m

(
εi1,mπ

9ai − 1
+ ηim

2

3

)]

= lim
m→∞

[
−(−1)am

l∑

i=1

αi(9ai)
m

(
εi2,mπ

9ai − 1
+ ηim

2

3

)]

and putting both limits together we obtain

lim
m→∞

[
l∑

i=1

αi(9ai)
m

(
π

9ai − 1
(εi1,m + εi2,m) +

4

3
ηim

)]
= 0.

In other words,

lim
m→∞

[
(9a1)m

l∑

i=1

αi

(
ai
a1

)m(
π

9ai − 1
(εi1,m + εi2,m) +

4

3
ηim

)]
= 0. (1.2.2)

Now, following again the steps of the proof of Theorem 1.2.1 where ηim is to appear, and keeping
in mind that 1 + xm+1 ≥ 1

2 , then we would conclude

ηim
4

3
= 2

∞∑

k=0

aki
1 + cos(9kπxm+1)

1 + xm+1

≤ 4

∞∑

k=0

aki [1 + cos(9kπxm+1)] ≤ 8
1

1− ai
≤ 8

1− a1
<∞.

Hence, by the conclusion in (1.2.2) and the latter, π
9ai−1 (εi1,m + εi2,m) + 4

3η
i
m is bounded above and

below (by a strictly positive quantity), for all 1 ≤ i ≤ l and, since 0 < ai < a1 for all 2 ≤ i ≤ l and
9a1 > 1, we get that

lim
m→∞

[
(9a1)m

l∑

i=1

αi

(
ai
a1

)m(
π

9ai − 1
(εi1,m + εi2,m) +

4

3
ηim

)]
= sign(α1) · ∞,

contradicting the conclusion that the upper limit is null.

Remark 1.2.3. The latter is an already known result: V. I. Gurariy gave first (see, e.g., [53]) a
non-constructive proof of the ℵ0-lineability of the set of continuous nowhere differentiable functions,
and V.P. Font, V.I. Gurariy and M.I. Kadets gave in [50] an example of an infinite dimensional
closed subspace of this set (in particular it showed c-lineability), that is, that the subset of C[0, 1]
of nowhere differentiable functions is spaceable. At the end of the XX century much more was
discovered about this set, and L. Rodŕıguez-Piazza showed in [88] that the previous subspace could
be chosen so that it was isometrically isomorphic to any separable Banach space.

It is interesting to observe that Theorem 1.2.2 is the first constructive proof of the c-lineability
of the space of all continuous and nowhere differentiable functions.
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The nowhere differentiability of the function proposed by Weierstrass (while being continuous)
was the most shocking property that it would hold, but it also fulfills some more pathological
properties.

Definition 1.2.4. Let f and g be two functions belonging to L1(T) (that is, periodic functions of
period 1 and such that they are integrable over any interval of length 1). We define the convolution
of f and g as the function

f ∗ g(x) =

∫

[0,1]

f(y)g(x− y)dy =

∫

[0,1]

f(x− y)g(y)dy.

Basically, the operator convolution is an operator that takes the ”smoothest” properties from
both convoluted functions. For example, convoluting an absolutely integrable function with a
continuously differentiable function arises a continuously differentiable function. Also, applying
Hölder’s inequality, we may prove the following:

Proposition 1.2.5. If f ∈ Lp(T) and g ∈ Lp′(T) (where p′ stand for the conjugate exponent of p,
that is, 1

p + 1
p′ = 1), then f ∗ g is continuous. Furthermore, its Fourier series converges uniformly

to it.

In particular, the convolution of two nowhere continuous functions may be continuous. One
might ask him/herself if we could have a similar result concerning differentiability. However, that
is not the case with the Weierstrass Monster. To show it, we will deal with a slightly different
definition of convolution (but that shall have the smoothness properties as well).

Definition 1.2.6. For f, g ∈ L1(T), we shall define the Voltera convolution of f and g as follows:

f ∗V g(t) =

∫ t

0

f(τ)g(t− τ)dτ.

We have in particular the following theorems:

Theorem 1.2.7 (P. Jiménez-Rodŕıguez, S. Maghsoudi, G.A. Muñoz-Fernández, [62]). For 7
9 <

a1, a2 < 1, we have that Wa1 ∗V Wa2 is nowhere differentiable.

Proof. First of all, let us denote

ya,k(t) = ak cos(9kπt).

Now we can see that

|ya,k(s)| ≤ ak and |ya,k(s)− ya,k(t)| ≤ (9a)kπ.

Let now t0 > 0 and, for every n ∈ N, find an even number pn such that

rn :=
pn
9n
≤ t0 <

pn + 2

9n

and define also sn := pn+3
9n .
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Then, for k ≥ n

ya1,k ∗V ya2,k(rn) =

∫ rn

0

ak1 cos(9kπτ)ak2 cos(9kπ(rn − τ))dτ

= (a1a2)k
∫ rn

0

cos(9kπτ)
[
cos(9kπrn) cos(9kπτ) + sin(9kπrn) sin(9kπτ)

]
dτ

= (a1a2)k
∫ rn

0

cos2(9kπτ)dτ =
(a1a2)k

2

[
τ +

sin(9kπτ)

9kπ

]τ=rn

τ=0

=
(a1a2)k

2
rn ≥

(a1a2)k

2

(
t0 −

2

9n

)
.

Similarly, we get

ya1,k ∗V ya2,k(sn) =
−(a1a2)k

2
sn ≤

−(a1a2)k

2
t0,

from which
ya1,k ∗V ya2,k(sn)− ya1,n ∗V ya2,n(rn)

sn − rn
≤ − (a1a2)k

3
(9nt0 − 1),

and hence
∑

k≥n

ya1,k ∗V ya2,k(sn)− ya1,n ∗V ya2,n(rn)

sn − rn
≤ −9nt0 − 1

3
· (a1a2)n

1− a1a2
.

Then, there exists ηn(a1, a2) ≤ −1 such that

∑

k≥n

ya1,k ∗V ya2,k(sn)− ya1,n ∗V ya2,n(rn)

sn − rn
= ηn(a1, a2)

9nt0 − 1

3
· (a1a2)n

1− a1a2
. (1.2.3)

Let now k 6= m ≥ 0. Then,

ya1,k ∗V ya2,m(sn) = ak1a
m
2

∫ sn

0

cos(9kπsnτ)[cos(9mπsn) cos(9mπτ) + sin(9mπsn) sin(9mπτ)]dτ

=
ak1a

m
2

2

[
cos(9mπsn)

(
sin[(9k + 9m)πτ ]

(9k + 9m)π
+

sin[(9k − 9m)πτ ]

(9k − 9m)π

)sn

0

− sin(9mπsn)

(
cos[(9k + 9m)πτ ]

(9k + 9m)π
− cos[(9k − 9m)πτ ]

(9k − 9m)π

)sn

0

]

=
ak1a

m
2

2π

[
1

9k + 9m
(
cos(9mπsn) sin[(9k + 9m)πsn]− sin(9mπsn) cos[(9k + 9m)πsn]

)

+
1

9k − 9m
(
cos(9mπsn) sin[(9k − 9m)πsn] + sin(9mπsn) cos[(9k − 9m)πsn]

)

−2 · 9m sin(9mπsn)

92k − 92m

]

=
ak1a

m
2

2π

(
1

9k + 9m
sin(9kπsn) +

1

9k − 9m
sin(9kπsn)− 2 · 9m sin(9mπsn)

92k − 92m

)
.
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Hence, we can put, for m 6= k,

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

=
ak1a

m
2

2π

[
2 · 9k

92k − 92m

(
sin(9kπsn)− sin(9kπrn)

)
+

2 · 9m
92k − 92m

(sin(9mπrn)− sin(9mπsn))

]
.

In a similar way (for 0 ≤ k ≤ n− 1),

ya1,k ∗V ya2,k(sn) = (a1a2)k
∫ sn

0

cos(9kπτ)[cos(9kπsn) cos(9kπτ) + sin(9kπsn) sin(9kπτ)]dτ

=
(a1a2)k

2

[
cos(9kπsn)

(
τ +

sin(2 · 9kπτ)

2 · 9kπ

)sn

0

− sin(9kπsn)

(
cos(2 · 9kπτ)

2 · 9kπ

)sn

0

]

=
(a1a2)k

2

[
cos(9kπsn)

(
sn +

sin(2 · 9kπsn)

2 · 9kπ

)
− sin(9kπsn)

cos(2 · 9kπsn)− 1

2 · 9kπ

]

=
(a1a2)k

2

(
sin(9kπsn)

9kπ
+ sn cos(9kπsn)

)
,

and hence we can write (reaching the analogous expression for ya1,k ∗ ya2,k(rn)):

ya1,k∗V ya2,k(sn)−ya1,k∗V ya2,k(rn) =
(a1a2)k

2

[
sin(9kπsn)− sin(9kπrn)

9kπ
+ sn cos(9kπsn)− rn cos(9kπrn)

]
.

Putting everything together, we can conclude the following inequalities:

1. If 0 ≤ m 6= k,

∣∣∣∣
ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn

∣∣∣∣ ≤ ak1am2
92k + 92m

|92k − 92m| ≤ 2 · ak1am2 . (1.2.4)

2. If 0 ≤ k ≤ n− 1,

∣∣∣∣
ya1,k ∗V ya2,k(sn)− ya1,k ∗V ya2,k(rn)

sn − rn

∣∣∣∣ ≤
(a1a2)k

2

[
2 + 9kπ

(
t0 +

3

9n

)]
. (1.2.5)

With those inequalities, we may see that

∣∣∣∣∣∣

∞∑

k=0

∑

m6=k

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn
+

n−1∑

k=0

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn

∣∣∣∣∣

≤
∞∑

k=0

∑

m6=k
2 · ak1am2 +

n−1∑

k=0

(a1a2)k

2

[
2 + 9kπ

(
t0 +

3

9n

)]

≤ 2

(1− a1)(1− a2)
+

(a1a2)n

1− a1a2
+
π

2

(9a1a2)n − 1

9a1a2 − 1

(
t0 +

3

9n

)

<
2

(1− a1)(1− a2)
+

(a1a2)n

1− a1a2
+

9nt0 − 1

4
· (a1a2)n

1− a1a2
.
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After all these calculations, we can guarantee, for n large enough,

∣∣∣∣∣∣

∞∑

k=0

∑

m 6=k

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn
+

n−1∑

k=0

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn

∣∣∣∣∣

≤ 9nt0 − 1

4
· (a1a2)n

1− a1a2
,

and then, for n large enough, we can find the existence of a constant εn(a1, a2) ∈ [−1, 1] such that

n−1∑

k=0

∞∑

m=0

ya1,k ∗V ya2,m(sn)− ya1,k ∗V ya2,m(rn)

sn − rn
= εn(a1, a2)

9nt0 − 1

4
· (a1a2)n

1− a1a2
. (1.2.6)

In conclussion, using the identities in (1.2.3) and (1.2.6), we can say, for n large enough, that

Wa1 ∗V Wa2(sn)−Wa1 ∗V Wa2(rn)

sn − rn
= ηn(a1, a2)

9nt0 − 1

3
· (a1a2)n

1− a1a2
+εn(a1, a2)

9nt0 − 1

4
· (a1a2)n

1− a1a2
,

for some constants ηn(a1, a2) ≤ −1, εn(a1, a2),∈ [−1, 1]. Using this last expression, it is easy to see
that

Wa1 ∗V Wa2(sn)−Wa1 ∗V Wa2(rn)

sn − rn
−−−−→
n→∞

−∞.

Remark 1.2.8. If, instead of the choice of sequences {rn}∞n=1, {sn}∞n=1 we had used the following
definition of sequences {vn}∞n=1 and {wn}∞n=1:

vn :=
qn
9n
≤ t0 <

qn + 2

9n
, wn :=

qn + 3

9n
,

for an appropriate choice of odd numbers qn ∈ Z, we would have had that

Wa1 ∗V Wa2(wn)−Wa1 ∗V Wa2(vn)

wn − vn
−−−−→
n→∞

∞.

Theorem 1.2.9 (P. Jiménez-Rodŕıguez, S. Maghsoudi, G.A. Muñoz-Fernández, [62]). The set of
all continuous functions that, convoluting with themselves, give a nowhere differentiable function,
is c-lineable.

Proof. Consider the set {
Wa(x) :

7

9
< a < 1

}
.

Again, we shall show that this set is linearly independent and that its span is in the set we are
interested in. To this aim, assume 7

9 < a1 < a2 < . . . < ak < 1 and α1, . . . , αk ∈ R \ {0} and
consider the function

g(x) =

k∑

i=1

αiWai(x).
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Following the steps of the Theorem 1.2.7 and with the same definitions of sequences {sn}∞n=1, {rn}∞n=1,
we find that, for n large enough,

g ∗V g(sn)− g ∗V g(rn)

sn − rn
=

k∑

i,j=1

αiαj

{(
ηn(ai, aj)

3
+
εn(ai, aj)

4

)
· (aiaj)

n(9nt0 − 1)

1− a1a2

}

= (9a2
k)n

k∑

i,j=1

αiαj

{(
ηn(ai, aj)

3
+
εn(ai, aj)

4

)(
aiaj
a2
k

)n
9nt0 − 1

9n(1− a1a2)

}
.

Now, if (i, j) 6= (k, k), we get that

αiαj

{(
ηn(ai, aj)

3
+
εn(ai, aj)

4

)(
aiaj
a2
k

)n
9nt0 − 1

9n(1− a1a2)

}
−−−−→
n→∞

0,

and if (i, j) = (k, k), we get

α2
k

{(
ηn(ak, ak)

3
+
εn(ak, ak)

4

)
9nt0 − 1

9n(1− a1a2)

}
−−−−→
n→∞

x < 0.

Hence, we conclude
g ∗V g(sn)− g ∗V g(rn)

sn − rn
−−−−→
n→∞

−∞.

Remark 1.2.10. If, instead of the choice of sequences {rn}∞n=1, {sn}∞n=1 we had used the definition
of sequences {vn}∞n=1 and {wn}∞n=1as in Remark 1.2.8, we would have had that

g ∗V g(wn)− g ∗V g(vn)

wn − vn
−−−−→
n→∞

∞.

One might think that the nowhere-differentiability of the functions is a condition strong enough
to guarantee the nowhere differentiability of the convolution of the function with itself. Nevertheless,
that is not the case, as we shall see in the following result. First of all, let us state a consequence
of Weierstrass M -test:

Proposition 1.2.11. Let (fn)∞n=0 be a sequence of differentiable functions on an interval I = [a, b]
and let (an)∞n=0 be a sequence of numbers such that

∑∞
n=0 |an| <∞. Assume that ‖f ′n‖∞ ≤ K <∞

for all n ≥ 0 and that
∑∞
n=0 anfn(x) converges for at least one x ∈ I. Then,

∑∞
n=0 anfn converges

uniformly on I to a differentiable function f such that f ′ =
∑∞
n=0 anf

′
n.

Proof. We just need to apply Weierstrass M-test to show that
∑∞
n=0 anf

′
n converges uniformly on

I. Since
∑∞
n=0 anfn(x) converges for for some x ∈ I, according to a basic result on functions of

one real variable,
∑∞
n=0 anfn converges uniformly to a differentiable function and (

∑∞
n=0 anfn)

′
=∑∞

n=0 anf
′
n.

Next we reproduce the definition of Knopp’s function. Let 0 < a < 1, b > 1 with 1/a > ab > 1
and Φ(z) := dist(z,Z). Observe that dist(z,Z) is the distance from z to Z, i.e.,

dist(z,Z) = inf{|z −m| : m ∈ Z}.
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If fk(x) = Φ(bkx) is defined over a bounded interval, say [0,M ], then Knopp’s example is defined
as f(x) =

∑∞
k=0 a

kfk(x) for x ∈ [0,M ].

Although f is a continuous nowhere differentiable function (see [69] for the original work by
Knopp or [10] for a more modern exposition), it can be proved that f ∗ f is differentiable. Indeed,
we have that

f ∗ f(x) =

∫ x

0

f(τ)f(x− τ)dτ =

∫ x

0

( ∞∑

k=0

akfk(τ)

)( ∞∑

j=0

ajfj(x− τ)

)
dτ

=

∞∑

k=0

k∑

j=0

∫ x

0

akΦ(bkτ)ak−jΦ(bk−j(x− τ))dτ

=

∞∑

k=0

(
a2b+ 1

2

)k (
2

a2b+ 1

)k k∑

j=0

a2k−j
∫ x

0

Φ(bkτ)Φ(bk−j(x− τ))dτ

=

∞∑

k=0

(
a2b+ 1

2

)k
gk(x),

with

gk(x) =

(
2

a2b+ 1

)k k∑

j=0

a2k−j
∫ x

0

Φ(bkτ)Φ(bk−j(x− τ))dτ.

Each of the functions gk is differentiable, with

g′k(x) =

(
2

a2b+ 1

)k k∑

j=0

a2k−j
∫ x

0

Φ(bkτ)bk−jΦ′(bk−j(x− τ))dτ,

and hence,

|g′k(x)| ≤
(

2a2b

a2b+ 1

)k k∑

j=0

(
1

ab

)j
M

2
≤ Mab

2(1− ab) .

In conclusion, |g′k(x)| ≤ Mab
2(1−ab) , for all x in [0,M ] and for all k. Applying Proposition 1.2.11 it

follows that f is differentiable. We may find interesting Figure 1.2, where we have a sketch of the
graph of f ∗ f in a small interval.

Let us concentrate now in some other analytic properties for continuous functions, also related
to differentiability. It is a simple exercise (by means of the Mean Value Theorem) to check that
(given any interval I) a differentiable function f : I → R is Lipschitz if and only if its derivative is
bounded. It is natural to wonder whether this result still holds true under weaker conditions. An
example of a continuous almost everywhere differentiable function on [0, 1], with almost everywhere
null derivative and non-Lipschitz can be found in [99] (namely, the well-known Cantor-Lebesgue
function).

Example 1.2.12 (Cantor-Lebesgue function). Let C be the Cantor set and, for each n ∈ N and
1 ≤ k ≤ 2n − 1, let Ikn be the kth open interval that is removed from [0, 1] up to the nth iteration
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Graph of Knopp’s function f on [0, 1/2] Graph of f ∗ f on [0, 1/2]

Figure 1.2: We have considered f with the parameters a = 0.2 and b = 21. We have truncated the
series appearing in the definition of f up to 10 terms in order to sketch the graph of f and f ∗ f .

of the standard construction of C, ordered form left to right. Define, for each n ∈ N, the function
fn : [0, 1]→ [0, 1],

fn(x) =





0 if x = 0,
k
2n if x ∈ Ikn,
1 if x = 1, and

linear otherwise.

Above, when we say linear, we mean it in such a way that fn is continuous. The sequence {fn} is a
uniformly Cauchy sequence of continuous functions and, hence, converges uniformly to some con-
tinuous function, f , which is known as the Cantor-Lebesgue function. In the following proposition
we shall recall some properties of this function that shall be useful later.

Proposition 1.2.13. The Cantor-Lebesgue function is a non-decreasing continuous function onto
[0, 1], differentiable on (0, 1)\C, where it has null-derivative, and non-Lipschitz. It is also injective
over C.

Again, after seeing an example of such a function, one could think that there cannot be too many
functions of that kind, and one more time this is indeed what has happened. More concretely, in
the following result we prove the existence of a c-dimensional closed linear space of such functions.

Theorem 1.2.14 (P. Jiménez-Rodŕıguez, [61]). The set of all continuous almost everywhere dif-
ferentiable functions, with almost everywhere null derivative and non-Lipschitz, is spaceable in
(C([0, 1];R), ‖ · ‖∞).

Before proving the theorem, we shall state some results and definitions that might make the
steps of the proof clearer and simpler.

Lemma 1.2.15. Let {pk : k ∈ N} be the natural order in the set of prime numbers. Define the
function,

h : c0 → C([0, 1];R)
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as follows: for (xl)
∞
l=1 ∈ c0,

h(xl)(y) =





xk+1

2n if y = 1
3n , where n is odd and pk = min{p prime : p|n},

xn
2

if y = 1
3n , where n is even,

0 if y ∈ {0, 1}, and
linear otherwise,

Then, the following properties hold for h:

1. h is a linear functional.

2. ‖h(xl)‖∞ = ‖(xl)‖∞ for every (xl)
∞
l=1 ∈ c0 (h is an isometry).

Proof. 1. Let (xl), (zl) ∈ c0. Then,

h ((xl) + (zl)) (y) =





xk+1+zk+1

2n if y = 1
3n , n is odd and pk = min{p prime : p|n},

xn
2

+ zn
2

if y = 1
3n , where n is even

0 if y ∈ {0, 1},
linear otherwise.

=





xk+1

2n if y = 1
3n , n is odd and pk = min{p prime : p|n},

xn
2

if y = 1
3n , where n is even

0 if y ∈ {0, 1},
linear otherwise.

+





zk+1

2n if y = 1
3n , n is odd and pk = min{p prime : p|n},

zn
2

if y = 1
3n , where n is even

0 if y ∈ {0, 1},
linear otherwise.

= h(xl)(y) + h(zl)(y),

since the equation of the line joining (a1, b1 + c1) with (a2, b2 + c2) is the sum of the equations
of the lines that join the points (a1, b1) with (a2, b2) and (a1, c1) with (a2, c2). The linearity
by scalars works the same way.

2. Let (xl) ∈ c0 and assume |xk0 | = ‖(xl)‖∞. If we set y = 1
32k0

then |h(xl)(y)| = |x 2k0
2
| =

|xk0 | = ‖(xl)‖∞ and since by construction of h we also have |h(xl)(y)| ≤ ‖(xl)‖∞ for all
y ∈ [0, 1], we have ‖h(xl)‖∞ = ‖(xl)‖∞.

Definition 1.2.16. Define
T : c0 −→ C([0, 1];R)

(xl) → h(xl) ◦ f ,

where f : [0, 1]→ [0, 1] is the original Cantor-Lebesgue function from Example 1.2.12.

Proposition 1.2.17. Let T be the function defined in definition 1.2.16. Then, we have:

1. T is an isometry.
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2. T (xl) is almost everywhere differentiable, with almost everywhere null derivative, for every
(xl)

∞
l=1 ∈ c0.

3. T (xl) is non-Lipschitz, for every (xl) ∈ c0 \ {0}.
Proof. 1. This comes from the fact that h (lemma 2.2) is an isometry and from the fact that f

is surjective over [0, 1].

2. Let C be the Cantor set and y ∈ (0, 1)\C. Then f(y) = k
2m , with m ∈ N and 1 ≤ k ≤ 2m−1,

in particular f(y) 6= 1
3n for all n ∈ N. Hence, h(xl) is differentiable at f(y) and then T (xl)

is differentiable at y. Also, if T (xl) is differentiable at y ∈ (0, 1) \ C, we get T (xl)
′(y) =

h(xl)
′(f(y)) · f ′(y) = 0.

3. Let l0 ≥ 1 such that xl0 6= 0 and consider, for every n ∈ N,

yn = f−1

(
1

3(pl0−1)n

)
.

Those yn are well-defined, being the function f injective over the Cantor set. Since f is also
a non-decreasing function, we obtain

yn ≤ inf

{
f−1

(
1

2(pl0−1)n

)}
≤ 1

3(pl0−1)n
.

Then,

|T (xl)(yn)− T (xl)(0)|
yn − 0

=

∣∣∣h(xl)
(

1

3
(pl0−1)n

)∣∣∣
yn

≥
(

3

2

)(pl0−1)n

· |xl0 | −−−−→
n→∞

∞.

Proof of the Theorem 1.2.14. With the conclusions obtained in the Proposition 1.2.17, we have just
left to prove that if g ∈ T (c0) \ {0}, then g is in the set we are interested. But T is an isometry,
and therefore its image is a closed set. Hence, g ∈ T (c0) \ {0} = T (c0) \ {0} means g = T (xn) and
the previous lemma applies.

Since the operator that we have considered to prove the spaceability of this set is an isometry,
we can actually infer a much stronger result, since what we actually have is a “special” type of
spaceability by means of an isometry with the classical sequence space c0.

Corollary 1.2.18. c0 is isometrically isomorphic to a subspace of continuous almost everywhere
differentiable function on [0, 1], with almost everywhere null derivative and non-Lipschitz.

Remark 1.2.19. In [9] the authors are able to build a non separable closed subspace of CBV
(continuous functions with bounded variation defined on [0, 1] and endowed with the norm ‖f‖CBV =
|f(0)|+V ar(f)), each non-zero element of which is a strongly singular function, that is, a continuous
function with almost everywhere null-derivative and that is nowhere constant. One property of these
kind of functions is the nowhere Lipschitzianity and, hence, the set the authors consider has more
pathological properties that those studied in this note. However, the conclusion presented here is not
a consequence of [9], since the topology in CBV is stronger than that induced by ‖ · ‖∞ (therefore,
being closed in CBV does not imply being closed in ‖ · ‖∞). Also, we were able to find an isometric
copy of c0 contained in the set we were interested in (plus the zero set).
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For the previous results, we dealt with the nature of the Mean Value Theorem for functions
f : I → R. We can extend this theorem to functions f : U ⊆ Rn −→ R, where U is a convex
open set. Actually, given x, y ∈ U , there is ζ ∈ [x, y] := {λx + (1 − λ)y : λ ∈ (0, 1)} such that
f(y)− f(x) = Df(ζ) · (y − x).

On the other hand, there is not an analogous of this result for functions from Rn to Rm in
general. Indeed, the mapping f : R→ R2 given by f(t) = (1−cos t, sin t) does not satisfy the Mean
Value Theorem in [0, 2π].

Here we shall construct a c-dimensional vector space of functions for which the Mean Value
Theorem fails, even though they fulfill the hypotheses for the classical 1-dimensional version of this
result. We shall also show that, for functions f : U ⊆ Rn −→ R, the hypothesis of U being convex
cannot be replaced with a weaker one such as (for instance) U being path-connected. We shall
construct a c-dimensional vector space of differentiable functions over a path-connected open set,
with bounded derivative and for which the Mean Value Theorem does not hold.

Theorem 1.2.20 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, [65]).
The set M of differentiable functions f : R −→ R2 that do not enjoy the Mean Value Theorem is
c-lineable.

Proof. Given λ > 0, let fλ(x) = eλx(x2 − x, x3 − 2x2 + x), which is a differentiable function. We
consider H = {fλ : λ > 0}. Let us see that H is linearly independent and that span(H) ⊆M ∪{0}.
Indeed, let α1, . . . , αk ∈ R, λ1, . . . , λk > 0 and define

g =

k∑

i=1

αif
λi =

(
k∑

i=1

αie
λix

)
(x2 − x, x3 − 2x2 + x).

Let us assume that g = 0. Then there is an open interval J in which
∑k
i=1 αie

λix = 0, and this
implies αi = 0 for all 1 ≤ i ≤ k. This proves the linear independency of H.

Now, assume αi 6= 0 for every 1 ≤ i ≤ k and that g fulfills the Mean Value Theorem. It is clear
that there exists an interval (a, b) ⊂ [0, 1] with g(x) 6= 0 on (a, b).

If there is x ∈ (b, 1) with
(∑k

i=1 αie
λix
)

= 0, then we define η2 = min{y > b :
∑k
i=1 αie

λiy =

0}. Otherwise, we define η2 = 1. If x ∈ (0, a) with
∑k
i=1 αie

λix = 0, then we define η1 = max{y <
a :

∑k
i=1 αie

λiy = 0}. Otherwise, we define η1 = 0.

Then, (a, b) ⊆ (η1, η2) ⊂ [0, 1]. Also, g(η1) = g(η2) = (0, 0) and g(x) 6= 0 ∀x ∈ (η1, η2). Now,
and by assumption, there exists x ∈ (η1, η2) with

(η2 − η1)Dg(x) = (η2 − η1)

k∑

i=1

αi(e
λix(λix

2 − (λi − 2)x− 1),

and

eλix(λix
3 + (3− 2λi)x

2 + (λi − 4)x+ 1)) = g(η2)− g(η1) = (0, 0).

Hence, (
k∑

i=1

αiλie
λix

)
x2 +

(
k∑

i=1

αi(2− λi)eλix
)
x−

k∑

i=1

αie
λix = 0 (1.2.7)
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and (
k∑

i=1

αiλie
λix

)
x3 +

(
k∑

i=1

αi(3− 2λi)e
λix

)
x2 +

(
k∑

i=1

αi(λi − 4)eλix

)
x+

+

k∑

i=1

αie
λix = 0.

Adding both equations we obtain

(
k∑

i=1

αiλie
λix

)
x3 +

(
k∑

i=1

αi(3− λi)eλix
)
x2 − 2

(
k∑

i=1

αie
λix

)
x = 0,

leading to (
k∑

i=1

αiλie
λix

)
x2 +

(
k∑

i=1

αi(3− λi)eλix
)
x− 2

(
k∑

i=1

αie
λix

)
= 0.

Next, combining it with equation (1.2.7), we obtain

(
k∑

i=1

αie
λix

)
x−

k∑

i=1

αie
λix = 0.

Now, since
∑k
i=1 αie

λix 6= 0 for x ∈ (η1, η2), we can conclude that x = 1, which is a contradiction
with the fact that x < η2 ≤ 1.

A function with bounded gradient on a convex set satisfies the Mean Value Theorem and, thus,
it is Lipschitz. However, if the set is not convex the latter does not hold. Actually, we can even
obtain lineability in this situation as we show below.

Theorem 1.2.21 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, [65]).
Let D = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, y) ∈ R2 : x = 0 and y > 0}. The set of differentiable
functions f : D → R with bounded gradient that are not Lipschitz (and, thus, not verifying the
Mean Value Theorem) is c-lineable.

Proof. We define, for every λ > 1, fλ : D −→ R as

fλ(x, y) =





yλ arctan

(
λy

x

)
if x < 0,

yλ
[
arctan

(
λy

x

)
+ π

]
if x > 0,

π

2
yλ if x = 0.

We shall prove that the set H = {fλ : λ > 1} is linearly independent and that span(H) is in
the set we are studying.

Assume first g(x, y) =
∑k
i=1 αifλi(x, y) = 0 for λ1, . . . , λk > 1 and α1, . . . , αk ∈ R. Then, for

every −1 < y < 0 we obtain 0 = g(0, y) = π
2

∑k
i=1 αiy

λi which allows us to conclude αi = 0 for
every 1 ≤ i ≤ k, since {yλ : λ > 1} is a linearly independent set over (−1, 0). To check now that
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Figure 1.3: f2 : D −→ R.

g (assumed αi 6= 0, ∀1 ≤ i ≤ k) is in our set, we shall work with the functions fλ alone, since the
arguments we are going to use can be easily extended to finite linear combinations. Let us obtain

first ∂fλ
∂x (x0, y0). If x0 6= 0 we can simply differentiate fλ to get ∂fλ

∂x (x0, y0) = −λ yλ+1
0

x2
0+(λy0)2

.

For x0 = 0,

lim
t→0+

fλ(t, y0)− fλ(0, y0)

t
= lim
t→0+

yλ0

[
π
2 + arctan

(
λy0
t

)]

t
= lim
t→0+

yλ0 (−y0λ)

t2 + (λy0)2

= −y
λ−1
0

λ
,

and identical calculations lead to the same value for limt→0−
fλ(t,y0)−fλ(0,y0)

t .
Hence, we obtain

∂fλ
∂x

(x0, y0) =




−λ yλ+1

0

x2
0+(λy0)2

if x 6= 0

−y
λ−1
0

λ if x0 = 0
.

Analogously one can obtain

∂fλ
∂y

(x0, y0) =





λyλ−1
0

(
arctan

(
λy0

x0

)
+

x0y0

x2
0 + (λy0)2

)
if x < 0,

λyλ−1
0

(
arctan

(
λy0

x0

)
+

x0y0

x2
0 + (λy0)2

+ π

)
if x > 0,

π

2
λyλ−1

0 if x = 0.
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Thus, the partial derivatives exist. Let us now see that they are continuous (which would prove
fλ ∈ C1(R2;R)), for which we shall only have to focus on the points of the form (0, y0). Indeed,

lim
(x,y)→(0,y0)

∣∣∣∣
∂fλ
∂x

(x, y)− ∂fλ
∂x

(0, y0)

∣∣∣∣ = lim
(x,y)→(0,y0)

∣∣∣∣∣
yλ−1

0

λ
− λyλ+1

x2
0 + (λy0)2

∣∣∣∣∣ = 0.

Analogously,

lim
(x,y)→(0,y0)

∣∣∣∣
∂fλ
∂y

(x, y)− ∂fλ
∂y

(0, y0)

∣∣∣∣ = 0,

from which it follows that the partial derivatives are continuous.

Assume now that x0 6= 0. Then
∣∣∣∂fλ∂x (x0, y0)

∣∣∣ ≤ λ|y0|λ−1 ≤ λ. Similarly
∣∣∣∂fλ∂x (0, y0)

∣∣∣ ≤ 1
λ < 1 < λ,

which gives us
∣∣∣∂fλ∂x (x0, y0)

∣∣∣ ≤ λ for every (x0, y0) ∈ D. In an analogous way,
∣∣∣∂fλ∂y (x0, y0)

∣∣∣ ≤
λ 1+3π

2 , ∀(x0, y0) ∈ D and hence we deduce that Dfλ is bounded on D.
Finally, suppose that fλ is Lipschitz with constant K > 0. Thus, given (x, y), (x̂, ŷ) ∈ D we have

|fλ(x̂, ŷ)− fλ(x, y)| ≤ K‖(x̂− x, ŷ − y)‖2.

Now, if we fix ŷ = y > 0 and force x > 0 and x̂ < 0 we obtain

|fλ(x̂, y)− fλ(x, y)| =
∣∣∣∣yλ
[
arctan

(
λy

x̂

)
− arctan

(
λy

x

)
− π

]∣∣∣∣
≤ K‖(x̂− x, 0)‖2,

but |fλ(x̂, y)− fλ(x, y)| −−−−−−→
x̂→0,x→0

2π|y|λ 6= 0 for y 6= 0 and

K‖(x̂− x, 0)‖2 −−−−−−→
x̂→0,x→0

0,

which makes it impossible for fλ to be Lipschitz.

1.3 When the Identity Theorem seems to fail

In Complex Analysis, the Identity Theorem states that, if two holomorphic functions f and g defined
on a domain (connected open subset) D ⊂ C agree on a set A which has an accumulation point
in D, then f = g all over D. Of course, one amazing consequence of this fact is that any analytic
function is completely determined by its values on any neighborhood V in D, no matter how small
V is.

On a totally different framework, a real function is said to be real analytic if it possesses
derivatives of all orders and agrees with its Taylor series in a neighborhood of every point. Of
course, the Identity Theorem also holds for real analytic functions but one needs to be careful
when applying it, since (in R) one can have C∞ functions that are not analytic, as the following
well-known function shows (see Figure 1.4):

f(x) =

{
e
−1

x2 if x 6= 0,
0 if x = 0.
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Figure 1.4:

As some simple calculations would entail, the above function only agrees with its Taylor series
expansion at x = 0.

On the other hand, Weierstrass’ factorization theorem states that, if f ∈ H(C), then f has only
countably many zeros (possibly only finitely many), counting multiplicities. It also follows that,
if f has only finitely many zeroes, then f is of the form p(z)eh(z) for some h ∈ H(C) and some
polynomial p ∈ C[z].

Of course, if an entire function has infinitely many zeroes with an accumulation point, then (by
the Identity Theorem) it must be the zero function. For real functions this does not hold. For
instance, the differentiable function g : R→ R given by (see Figure 1.4)

g(x) =

{
x2 sin(πx−1) if x 6= 0,

0 if x = 0,

has the infinite set Z =
{

1
n : n ∈ N

}
∪{0} as its set of zeroes, Z has an accumulation point (0) but,

obviously, g 6= 0.
After all the above, the following question comes out naturally:

Are there non-zero real valued differentiable functions with infinitely many zeroes, pos-
sessing derivatives of all orders, and also non-analytic? And, how big is this set of
functions? What algebraic/linear structure does this set possess?

In the following results we shall answer these questions positively. Moreover, we shall even show
more: We shall construct an algebra A of real valued functions enjoying, simultaneously, each of
the following properties:

(i) A is uncountably infinitely generated. That is, the cardinality of a minimal system of gener-
ators of A is c.

(ii) Every non-zero element of A is nowhere analytic.

(iii) A ⊂ C∞(R).

(iv) Every element of A has infinitely many zeroes in R.

(v) For every f ∈ A and n ∈ N, fn) (the n-th derivative of f) is also in A.
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Functions with infinitely many zeros in a closed finite interval are known as annulling functions.
The question on the existence of an algebra of such functions inside of C[0, 1] is what shall also be
solved here.

Let H be a Hamel basis of R. That is, a basis of the real numbers R, considered as a Q-vector
space. Furthermore, without loss of generality, we can assume that H consists only of positive real
numbers.

Let us now consider the minimum algebra of C(R) that contains the family of functions {ρα}α∈H
with ρα : R→ R defined as follows:

ρα(x) =

∞∑

j=1

λj(x)φα
(
2jx− [2jx]

)j
,

where [·] denotes the greatest integer function, φα : R→ R is given by

φα(x) =

{
e
−α
x2 · e

−α
(x−1)2 if 0 < x < 1,

0 elsewhere,

and, for j ∈ N,

λj(x) =

{
1 if |x| ≥ 1

2j ,
0 otherwise.

Theorem 1.3.1 (J. A. Conejero, P. Jiménez-Rodŕıguez, G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda,
[31]). All functions {ρα}α>0 are C∞ and nowhere analytic. Moreover, all the derivatives and the
function itself vanish at the points {2−j}j∈N0

.

Proof. For every α > 0, the function φα(x) is smooth everywhere and analytic except at x = 0 and
x = 1. Moreover, the function φα(x) is flat at both of these points, that is, all the derivatives and
the function φα itself evaluated at those points are also 0. Replacing x by 2jx− [2jx] the behaviour
of φα(x)j over the interval [0, 1] is replicated by φα(2jx− [2jx])j on any dyadic interval of the form
[(m − 1)/2j ,m/2j ] for all m ∈ Z. Thus, φα(2jx − [2jx])j is smooth everywhere and analytic in R
except the points x = m/2j for all m ∈ Z.

For any x 6= 0, there is some j0 ∈ N such that x ≥ 1
2j for all j ≥ j0, therefore

ρα(x) =

∞∑

j=j0

λj(x)φα
(
2jx− [2jx]

)j
.

Thus, the same proof of the infinite differentiability and nowhere analyticity of pα at any point x 6= 0
follows the very same strategy of the proof of the infinite differentiability and nowhere analyticity
of the functions ∞∑

j=1

1

j!
φα(2jx− [2jx])

from [68] (Theorem 1).

Theorem 1.3.2 (J. A. Conejero, P. Jiménez-Rodŕıguez, G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda,
[31]). Let A be the algebra generated by {ρα}α∈H. Then:
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(i) A is uncountably infinitely generated.

(ii) Every non-zero element of A is nowhere analytic.

(iii) A ⊂ C∞(R).

(iv) Every non-zero element of A is an annulling function on R.

(v) For every f ∈ A and n ∈ N, fn) is also in A.

Proof. Any element h ∈ A can be written as h(x) =
∑n
k=1 βiρ

mk
αk

(x) with αk ∈ H,mk ∈ N, for
k = 1, . . . , n. Let us suppose that h ≡ 0, that is, for every x ∈ R, we have h(x) = 0. Let us evaluate
h(x) at the points xj = 3

2j+1 , j = 1, . . . , n. Evaluating the function ρmkαk at the points xj , the sum
that gives its definition is reduced to just one single term:

ρmkαk

(
3

2j+1

)
= φjαkmk

(
1

2

)
= e−8jαkmk .

Therefore, if we consider the system of equations obtained from the conditions h
(

3
2j+1

)
= 0 for

j = 1, . . . , n, we obtain the following:




e−8α1m1 e−8α2m2 · · · e−8αnmn

e−16α1m1 e−16α2m2 · · · e−16αnmn

...
...

. . .
...

e−8nα1m1 e−8nα2m2 · · · e−8nαnmn







β1

β2

...
βn


 =




0
0
...
0


 .

If (for all j = 1, . . . , n) we multiply the j-column of the above matrix by e8αjmj , we have that the
former system is equivalent to a system with the following matrix,




1 1 · · · 1
e−8α1m1 e−8α2m2 · · · e−8αnmn

...
...

. . .
...(

e−8α1m1
)n−1 (

e−8α2m2
)n−1 · · ·

(
e−8αnmn

)n−1


 ,
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Figure 1.6: Graphs of fλ,m for some choices of m and λ.

which is non-singular since it is a Vandermonde-type matrix (and also because the αk’s are different
elements of the Hamel basis H). Therefore βi = 0 for i = 0, . . . , k. The rest of the statements yield
directly from Theorem 1.3.1.

Remark 1.3.3. I would like to finish this note by mentioning that the result in Theorem 1.3.2 is
the best possible in the following sense:

(a) The dimension of A (as a vector space) is the largest possible, c, since the dimension of the
space of continuous functions is also c. Also, the cardinality of the system of generators of A
is the biggest possible for the same reason.

(b) If we restrict ourselves to the interval [0, 1] (or to any compact interval for that matter), the
corresponding algebra A cannot be constructed being close in C[0, 1]. This is due to the fact
that Gurariy showed in [53] that the set of differentiable functions on [0, 1] does not contain
an infinite dimensional closed subspace.

To summarize, there is no way to improve the “size” of A or its topological structure by making it
close.



Chapter 2

Inequalities in three dimensional
polynomial spaces

The field of polynomial inequalities comprises of an extremely vast range of problems. Our contri-
bution in this chapter focuses on three specific types of inequalities. Namely, Bernstein and Markov
type inequalities, inequalities involving unconditional constants and inequalities that arise from the
notion of polarization constant of a polynomial space. These three problems have been previously
studied with great generality (see for instance [19, 32, 52, 55, 60, 67, 70, 74, 79, 80, 81, 89, 90, 91]),
which serves as motivation and inspiration to deepen into this type of questions.

2.1 Motivation and preliminaries

Bernstein and Markov inequalities

The first of the inequalities we will study is named after the following result published by one of
the Markov brothers in 1889:

Theorem 2.1.1 (A.A. Markov). If P is a real polynomial of degree n and |P (x)| ≤ 1 on [−1, 1],
then |P ′(x)| ≤ n2 on [−1, 1].
Moreover, equality is attained by P (x) = ±Tn(x), where Tn is the nth Chebishev polynomial, defined
as

Tn(x) =





1 for n = 0,

x for n = 1,

2xTn−1(x)− Tn−2(x) otherwise.

It is interesting to observe that the previous problem was told to Markov by D. Mendeleev,
father of the periodic table of the elements. Actually, it seems that Mendeleev was able to solve the
problem for quadratic polynomials when studying the results obtained after one of his experiments.
For a more complete description on Mendeleev’s experiment, see for instance [19].

As for an analogue of Markov’s estimate for polynomials on the complex unit disk, the mathe-
matician S. Bernstein concluded a very similar result:

35
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Theorem 2.1.2 (S. Bernstein). If P is a complex polynomial of degree n such that |P ′(z)| ≤ 1 on
D, then |P ′(z)| ≤ n for every z ∈ D. Moreover, equality is attained for P (z) = zn.

From this result, Bernstein was able to conclude the following inequality for real polynomials:

Corollary 2.1.3 (Bernstein inequality for real polynomials). If P is a real polynomial of degree n
such that |P (x)| ≤ 1 for every x ∈ (−1, 1), then

|P ′(x)| ≤ n√
1− x2

.

Along the XX century, both Markov and Bernstein’s theorems were studied in the more general
setting of polynomials in many variables. For instance, O.G. Kellogg found the following estimate
on the length of the gradient of a polynomial:

Theorem 2.1.4 (O.G. Kellogg). Let P be a polynomial in m real variables of degree at most n.
Then,

‖∇P (x)‖2 ≤ n2,

where ‖ · ‖2 stands for the Euclidean length, ‖x‖2 ≤ 1 and P is bounded by 1 over the vectors of
Euclidean length not exceeding 1.

Markov type inequalities were also studied for polynomials on a non centrally symmetric convex
set. As an example of a result of this kind we mention Whilhemsen estimate on the one hand, and
Kroo and Revesz’s results on the other.

Theorem 2.1.5 (R.D. Wilhelmsen). Let K be a convex body and P a real polynomial in m variables
bounded by 1 on K. Then, for every x ∈ K we have

‖∇P (x)‖2 ≤
4m2

diam(K)
, (2.1.1)

where diam(K) stands for the diameter of K, that is, diam(K) := sup{‖x− y‖ : x, y ∈ K}.
Theorem 2.1.6 (A. Kroó, S. Révesz, [70]). Under the same hypotheses of the Theorem 2.1.5 we
have

‖∇P (x)‖2 ≤
4m2 − 2m

diam(K)
,

for every x ∈ K
The previous results admit a further extension to polynomials on a general Banach space. In

order to discuss polynomials on a normed space we need first some definitions, notations and results.

Definition 2.1.7. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two normed spaces over the field K (real or
complex numbers). We say that P : E → F is a homogeneous polynomial of degree n if there exists
a symmetric multilinear mapping L : En → F such that P (x) = L(x, . . . , x) for all x ∈ E. We will
use the following notations:

P(nE;F ) = {P : E → F : P is a continuous n-homogeneous polynomial}
L(nE;F ) = {L : En → F : L is a continuous multilinear function},
Ls(nE;F ) = {L : En → F : L is a continuous symmetric multilinear function}.
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For simplicity, when F = K we use P(nE), L(nE) and Ls(nE) instead of P(nE;K), L(nE;K) and
Ls(nE;K) respectively.

As usual, BE will denote the open unit ball of E.
It can be proved (see for instance [44]) that a homogeneous polynomial (or a multilinear mapping)

is continuous if and only if it is bounded on BE. We will consider the following natural norms on
the spaces of continuous homogeneous polynomials and continuous multilinear functions:

‖P‖ := sup{‖P (x)‖F : ‖x‖E ≤ 1},
‖L‖ := sup{‖L(x1, . . . , xn)‖F : ‖xk‖E ≤ 1, k = 1, . . . , n},

for all P ∈ P(nE;F ) and all L ∈ L(nE;F ).

Theorem 2.1.8 (Y. Sarantopoulos). Let E be a Banach space and P ∈ BP(nE;R). Then,

‖DP (x)‖ ≤ max

{
n2,

n√
1− ‖x‖2

}
for all x ∈ BE .

This allows us to generalize what is popularly known as Markov inequality (uniform estimates
between norms of polynomials and its differentials) and Bernstein inequalities (pointwise estimates)
to polynomials defined over Banach spaces.

Polarization constants

It is widely known that for every P ∈ Pn(E;F ) there exists a unique symmetric linear form

L ∈ L(nE,F ) such that P (x) = L(x, . . . , x). We will denote it as L = P̌ or equivalently P = L̂.
We call L the polar of P . Actually we can recover the polar if we only know the polynomial by
using the so called polarization formula:

P̌ (x1, . . . , xn) =
1

2nn!

∑

εi=±1

P (ε1x1 + · · ·+ εnxn).

Theorem 2.1.9 (Martin, [74]). If E is a real or complex normed space and P ∈ P(nE), then

‖P‖ ≤ ‖P̌‖ ≤ nn

n!
‖P‖.

Moreover, equality is attained for the Banach space `n1 and the polynomial P (x1, . . . , xn) = x1 · · ·xn.

This last theorem holds for every polynomial defined over a normed space. However, for a
specific space E the constant nn

n! can be improved. This motivates the following definition:

Definition 2.1.10. If E is a normed space over K, we define its nth-polarization constant as

K(n,E) := inf{M > 0 : ‖P̌‖ ≤M‖P‖ for all P ∈ P(nE)}.

The problem of calculating exactly the value of a polarization constant for a specific space is
very complicated. However, some progress has been done since this question began to be studied.
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It is worth mentioning the contribution done by Y. Sarantopoulos in [89, 90], where the author
studies K(n,E) for E being an Lp space.

Notice that having a (sharp) Markov-type inequality may very easily provide estimations for
the Polarization constant, since

DP (x)(v) = nP̌ (x,
n−1︷︸︸︷. . . , x, v), for all x, v ∈ E.

Observe that when n = 2, we have that DP (x)(v) = nP̌ (x, v), which provides an explicit relation-
ship between the Markov and the polarization constants for quadratic polynomials.

Unconditional constants

The last of the four polynomial inequalities that will be treated in this chapter involves the so called
unconditional constants. First, let us consider the following definition:

Definition 2.1.11 (Unconditional bases). If E is a real Banach space, a basis {xn} ⊆ E is said to
be unconditional if

∑∞
n=1 anxn converges unconditionally for every {an} ⊆ K. Recall that a series∑∞

n=1 yn in E converges unconditionally if
∑∞
n=1 xσ(n) converges for every permutation σ of N.

Notice that it can be proved that if
∑∞
n=1 θnyn converges for every choice of signs θn = ±1, then∑∞

n=1 yn converges unconditionally.

Definition 2.1.12 (Unconditional constants). Let E be a Banach space. If {xn} ⊆ E is an
unconditional basis and we set

Mθ(

∞∑

n=1

anxn) =

∞∑

n=1

θnanxn,

for every choice of signs θ = {θn}∞n=1, the number χ(E) := supθ ‖Mθ‖ is called the unconditional
constant of {xn}.

A considerable effort has been done in order to calculate unconditional constants in polynomial
spaces. The following result is a good example:

Theorem 2.1.13 (A. Defant, J.C. Dı́az, D. Garćıa, M. Maestre, [32]). The unconditional basis
constants of all m-homogeneous polynomials on `np have the following asymptotic behavior:

χ(P(m`np ))
m�
{
n
m−1

2 if 2 < p ≤ ∞,

n
m−1
q if 1 ≤ p ≤ 2,

where q is the conjugate exponent of p and an,m
m� bn,m means that for every m ∈ N there exist

constants Am > 0 and Bm > 0 such that an,m ≤ Ambn,m and bn,m ≤ Bman,m.

Using the standard notation for multiindices, let xα denote the monomial xα1
1 · · ·xαmm , where

x = (x1, . . . , xm) ∈ Rm and α = (α1, . . . , αm) with αk ∈ N ∪ {0}, 1 ≤ k ≤ m. Now let Bn =
{xα : |α| = n} be the canonical basis of P(nRm), and consider S = {xαk : |αk| = n, 1 ≤ k ≤ r}
any subset of Bn, ε = (ε1, . . . , εr) a choice of signs, P (x) = aα1

xα1 + . . . + aαrx
αr and Pε(x) =

ε1aα1x
α1 + . . .+ εraαrx

αr . Then, if B is a convex set in Rm, we have

‖Pε‖B := sup
x∈B
|Pε(x)| ≤ sup

x∈B
|aα1 ||x|α1 + . . .+ |aαr ||x|αr = ‖|P |‖B,
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where |P |(x) = |aα1 |xα1 + . . .+ |aαr |xαr . Moreover, if εk = sign(aαk), then ‖Pε‖B = ‖|P |‖B. This
shows that the unconditional constant of S coincides with the best possible constant CB,S in the
inequality

‖|P |‖B ≤ CB,S‖P‖B, (2.1.2)

for every P in the space generated by S.
It is interesting to note that already in 1914, H. Bohr [23] studied this type of inequalities for

infinite complex power series. Actually, the study of Bohr radii is nowadays a fruitful field (see for
instance [14, 21, 33, 36, 37, 41]).
Observe that the relationship between unconditional constants in polynomial spaces and inequalities
of the type (2.1.2) was already noticed in [36].

2.2 A few final considerations before the results

For the estimates that we will present in the following theorems, we will make use of a straight-
forward consequence of the Krein-Milman Theorem, for which any convex function defined over a
convex set attains its maximum value at the extreme points of the set (that is, the points for which
it is impossible to find a convex combination out of the trivial one).
Also, in the case of Markov and Bernstein type inequalities, we will be providing estimates on the
length of ∇P (x, y). In this context, the norm of DP (x, y) as a linear form on Rm, denoted by
‖DP (x, y)‖2, coincides with the length of the gradient ∇P (x, y), denoted by ‖∇P (x, y)‖2. This
justifies the simultaneous use of the notations ‖DP (x, y)‖2 and ‖∇P (x, y)‖2.
Having all these considerations in mind, we know that the unit ball in a Banach space is a balanced
convex body (that is, a convex, bounded, closed set with non-empty interior) with symmetry with
respect to the origin. We can then have

‖P‖D = sup{|P (x)| : x ∈ D},

for any convex set, D, and then we can apply to P(nE;F ) all the theory we have summarized at
the beginning of the chapter.
We wonder how important the feature of the body being symmetric is. To this aim, we are going
to consider, in a vector space, a convex body, C, without symmetry with respect to the origin. We
may, in the same fashion, consider ‖P‖C = sup{|P (x)| : x ∈ C} (which is no longer a norm, but a
seminorm) and study the space (P(nE;F ), ‖ · ‖C) .
As a final consideration, given a convex non-symmetric convex set C, we will be working on
P(2C,R), identifying ax2 + by2 + cxy = (a, b, c) ∈ R3 and ‖(a, b, c)‖C = sup{|ax2 + by2 + cxy| :
(x, y) ∈ C}.
Since we are going to consider polynomials taking real values, we shall denote P(2(C)) to be the
space of homogeneous polynomials defined over the vector space where C is contained, endowed
with the norm

‖P‖C = sup{|P (x)| : x ∈ C}.
We will study in detail the polynomials of degree 2 over R2, where the norm will be consider as
maximum taken over the simplex, the unit square (of vertices (0, 0), (0, 1), (1, 0) and (1, 1)) and
sectors of different amplitude β (the sets D(β) = {reit : 0 ≤ t ≤ β, 0 ≤ r ≤ 1}).
We shall denote

BC =
{
P ∈ P(2E) : ‖P‖C < 1

}
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Figure 2.1: Unit ball of (R3, ‖ · ‖∆).

2.3 Polynomials over the simplex

Let ∆ be the convex hull of the points (0, 0), (0, 1) and (1, 0). Remember that we will identify
ax2+by2+cxy = (a, b, c) ∈ R3 and we will consider ‖(a, b, c)‖∆ = sup{|ax2+by2+cxy| : (x, y) ∈ ∆}.

2.3.1 The geometry of P(2∆).

First of all we find a formula for ‖ · ‖∆ in the following result.

Theorem 2.3.1 (G.A. Muñoz-Fernández, S.G. Révész, J.B. Seoane-Sepúlveda, [78]). Let a, b, c ∈ R
and P (x, y) = ax2 + by2 + cxy. Then

‖P‖∆ =

{
max

{
|a|, |b|,

∣∣∣ c2−4ab
4(a−c+b)

∣∣∣
}

if a−c+b 6=0 and 0< 2b−c
2(a−c+b) <1,

max{|a|, |b|} otherwise.
(2.3.1)

In order to parametrize S∆ it will be useful to know what the projection of S∆ onto any of the
coordinate planes looks like.

Theorem 2.3.2 (G.A. Muñoz-Fernández, S.G. Révész, J.B. Seoane-Sepúlveda, [78]). The projec-
tion of S∆ onto the ab−plane is B`2∞ .

With the help of Theorems 2.3.1 and 2.3.2, it will be possible to characterize the extreme points
of B∆.



2.3. POLYNOMIALS OVER THE SIMPLEX 41

Theorem 2.3.3 (G.A. Muñoz-Fernández, S.G. Révész, J.B. Seoane-Sepúlveda, [78]). If we define
the mappings

f+(a, b) = 2 + 2
√

(1− a)(1− b)
and

f−(a, b) = −f+(−a,−b) = −2− 2
√

(1 + a)(1 + b),

for every (a, b) ∈ B`2∞ and the set

F = {(a, b, c) ∈ R3 : (a, b) ∈ S`2∞ and f−(a, b) ≤ c ≤ f+(a, b)},

then

(a) S∆ = graph(f+|B`2∞ ) ∪ graph(f−|B`2∞ ) ∪ F .

(b) ext(B∆) = {±(1,−2− 2
√

2(1 + t), t),±(t,−2− 2
√

2(1 + t), 1) : t ∈ [−1, 1]}.

Figure 2.1 shows what the unit ball of (R3, ‖ · ‖∆) looks like.

2.3.2 Markov Inequality in P(2∆)

Remark that Markov Inequality in P(2∆) is about the size, i.e. norm, of the linear functional
DP (x, y), i.e., the sup of the values attained over the set B`22 , uniformly for all (x, y) ∈ ∆, as
mentioned before. It can also be expressed as the Euclidean norm of the gradient vector∇P (x, y) :=(
∂
∂xP (x, y), ∂∂yP (x, y)

)
. In [78], the authors obtained what here we state as main result of this

subsection:

Theorem 2.3.4 (G.A. Muñoz-Fernández, S.G. Révész, J.B. Seoane-Sepúlveda, [78]). Let P ∈
P(2∆) be arbitrary. Then for any (x, y) ∈ ∆ we have

‖DP (x, y)‖2 ≤ 2
√

10 · ‖P‖∆,

and equality occurs for the polynomial ±(x2 + y2 − 6xy) and at the points (0, 1) and (1, 0).

2.3.3 Polarization constant of P(2∆).

First we find a pointwise gradient estimate on the whole plane R2 for polynomials in P(2∆) – so,
in a sense a Bernstein type inequality – but considering the sup norm over ∆ for the gradient.
This inequality, restricted to ∆, will provide in Corollary 2.3.6 a sharp Markov type inequality for
polynomials on ∆ and the polarization constant of the space P(2∆). The latter will be used to
show that Martin’s inequality (theorem 2.1.9) does not hold with the same constant when working
on non symmetric convex bodies.

Theorem 2.3.5 (G.A. Muñoz-Fernández, S.G. Révész, J.B. Seoane-Sepúlveda, [78]). If for each
(x, y) ∈ R2, Ψ∆(x, y) represents the best constant in

‖DP (x, y)‖∆ ≤ Ψ∆(x, y)‖P‖∆, for every P ∈ P(2∆), (2.3.2)
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Figure 2.2: Ψ∆(x, y) on the simplex.

then

Ψ∆(x, y) =





|2x− 6y| if x = 0 or x 6= 0 and ( yx ≤ −1 or y
x ≥ 2),∣∣2x+ 2y + y2/x

∣∣ if x 6= 0 and 1 ≤ y
x ≤ 2,∣∣2x+ 2y + x2/y

∣∣ if y 6= 0 and 1 ≤ x
y ≤ 2,

|6x− 2y| if y = 0 or y 6= 0 and (xy ≤ −1 or x
y ≥ 2).

As a consequence of the previous result we can establish the following Markov type estimate for
polynomials in P(2∆).

Corollary 2.3.6. If P ∈ P(2∆) then

max
(x,y)∈∆

‖DP (x, y)‖∆ ≤ 6‖P‖∆. (2.3.3)

Furthermore, 6 is optimal in (2.3.3) since equality holds for the polynomial P (x, y) = x2 +y2−6xy.

Remark 2.3.7. As stated before, if P ∈ P(2∆), then DP (x) = 2P̌ (x, ·) for every x ∈ R2. This
shows that ‖DP (x)‖∆ = 2‖P̌‖∆ for all x ∈ R2 and, hence using (2.3.3) we derive

‖P̌‖∆ ≤ 3‖P‖∆.

Furthermore, as the constant 3 here is sharp in view of Corollary 2.3.6, Martin’s inequality (2.1.9)
does not hold for polynomials on a non symmetric convex body.
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2.3.4 Unconditional constant of the simplex

Theorem 2.3.8 (B.C. Grecu, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, [52]). If P ∈ P(2∆)
then

‖|P |‖∆ ≤ 2‖P‖∆,
and 2 is optimal in the previous inequality. Therefore the unconditional constant (referred to the
canonical basis) of P(2∆) is 2.

2.4 Inequalities on the unit square

Define � to be the convex hull of the points (0, 0), (0, 1), (1, 0), (1, 1). Again, we will be working on
P(2�;R) and we will identify (P(2�;R), ‖ · ‖�) with (R3, ‖ · ‖�), setting ‖(a, b, c)‖� = ‖ax2 + by2 +
cxy‖� = sup{|ax2 + by2 + cxy : (x, y) ∈ �}

2.4.1 The geometry of P(2�)

First of all we obtain a formula for ‖ · ‖�:

Theorem 2.4.1 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). If P (x, y) = ax2 + by2 + cxy, then

‖P‖� =





max
{
|a|, |b|, |a+ b+ c|, c2−4ab

4|b|

}
if c2 − 4ab > 0, b 6= 0 and − c

2b ∈ (0, 1).

max
{
|a|, |b|, |a+ b+ c|, c2−4ab

4|a|

}
if c2 − 4ab > 0, a 6= 0 and − c

2a ∈ (0, 1).

max {|a|, |b|, |a+ b+ c|} otherwise.

In order to sketch S� and obtain the extreme points of B�, it is important to have a parametriza-
tion of S�. This parametrization can be constructed by projecting B� onto the ab-plane. For this
matter we will use the subsets A, B and C of [−1, 1]2 (see Figure 2.3):

A : = {(a, b) ∈ [−1, 1]2 : −1 ≤ a ≤ 0 and a+ 1 ≤ b ≤ 1},
B : =

{
(a, b) ∈ [−1, 1]2 : −1 ≤ a ≤ 1 and max{−1, a− 1} ≤ b ≤ min{1, a+ 1}

}
,

C : = {(a, b) ∈ [−1, 1]2 : 0 ≤ a ≤ 1 and −1 ≤ b ≤ a− 1}.

Theorem 2.4.2 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). The projection of S� onto the ab−plane is [−1, 1]2.

Theorem 2.4.3 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). If for every (a, b) ∈ [−1, 1]2 we define the mappings

F (a, b) =





2
√
ab+ |a| if (a, b) ∈ A,

2
√
ab+ |b| if (a, b) ∈ C,

1− a− b if (a, b) ∈ B,

G(a, b) = −F (−a,−b),
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Figure 2.3: projection of B�) onto the ab−plane.

where A, B and C are as in Figure 2.3 and the set

H = {(a, b, c) ∈ R3 : (a, b) ∈ ∂[−1, 1]2 and G(a, b) ≤ c ≤ F (a, b)},

then

(a) S� = graph(F ) ∪ graph(G) ∪H.

(b) The extreme points of B� have the form

±(t,−1, 2
√

1− t) and ± (−1, t, 2
√

1− t) with t ∈ [0, 1]

or

±(1, 1,−1), ±(1, 1,−3), ±(1, 0, 0), ±(0, 1, 0).

2.4.2 Markov and Bernstein inequalities in P(2�)

Theorem 2.4.4 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). If P ∈ P(2�) then we have

‖DP (x, y)‖2 ≤M(x, y) · ‖P‖�, (2.4.1)

for every (x, y) ∈ �, where

M(x, y) =





√
24y4+12x2y2+x4+x(8y2+x2)

3
2

8y2 if 0 < α0x ≤ y ≤ x,
√

24x4+12x2y2+y4+y(8x2+y2)
3
2

8x2 if 0 < x ≤ y ≤ x
α0

,√
13x2 + 13y2 − 24xy otherwise,
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Figure 2.4: The unit sphere B�.

and α0 ≈ 0.4029036618 is the unique root of the equation

80α4 − 192α3 + 92α2 − 1 = (8α2 + 1)
3
2

in the interval [ 3−
√

5
2 , 12−3

√
3

13 ]. Moreover, the inequality is sharp.

Corollary 2.4.5. If P ∈ P(2�) then for any (x, y) ∈ � we have

‖DP (x, y)‖2 ≤
√

13 · ‖P‖�.
Equality occurs for the polynomials ±(x2 + y2 − 3xy) at the points (0, 1) and (1, 0).

2.4.3 Polarization constant of P(2�)

First we obtain the following Bersntein type inequality where only the norm ‖ · ‖� is considered.

Theorem 2.4.6 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). If for each (x, y) ∈ �, Ψ�(x, y) represents the best constant in

‖DP (x, y)‖� ≤ Ψ�(x, y)‖P‖�, for every P ∈ P(2�), (2.4.2)

then

Ψ�(x, y) =





3x− 2y if y ≤ (
√

2− 1)x,
5
2x− y + y2

2x if x 6= 0 and (
√

2− 1)x ≤ y ≤ 1
2x,

2x+ y2

2x if x 6= 0 and 1
2x ≤ y ≤ x,

2y + x2

2y if y 6= 0 and x ≤ y ≤ 2x,
5
2y − x+ x2

2y if y 6= 0 and 2x ≤ y ≤ (
√

2 + 1)x,

3y − 2x if (
√

2 + 1)x ≤ y.
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Figure 2.5: The Bernstein mapping M(x, y) for �.

Corollary 2.4.7. If P ∈ P(2�) then

max
(x,y)∈�

‖DP (x, y)‖� ≤ 3‖P‖�. (2.4.3)

Furthermore, 3 is optimal in (2.4.3) since equality holds for the polynomials P (x, y) = ±(x2 + y2−
3xy).

Corollary 2.4.8. If P ∈ P(2�) and L ∈ Ls(2�) is the polar of P , then

‖L‖� ≤
3

2
‖P‖�. (2.4.4)

Furthermore, 3
2 is optimal in (2.4.4) since equality holds for the polynomials P (x, y) = ±(x2 + y2−

3xy).

2.4.4 Unconditional constant of P(2�)

Theorem 2.4.9 (J.L. Gámez-Merino, G.A. Muñoz-Fernández, V. Sánchez, J.B. Seoane-Sepúlveda
[55]). If P ∈ P(2�) then

‖|P |‖� ≤ 5‖P‖�.

Equality is attained for the polynomials P (x, y) = ±(x2 + y2 − 3xy). Therefore the unconditional
constant of the canonical basis of P(2�) is 5.
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2.5 Polynomials on BD(π4 )

In the following two sections, we will be considering the sets

D
(π

4

)
=
{
reiθ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

4

}
,

D
(π

2

)
=
{
reiθ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2

}
.

Identify (P(2D(·)), ‖ · ‖D(·)) = (R3, ‖ · ‖D(·)), as usual, with ax2 + by2 + cxy = (a, b, c) and
‖(a, b, c)‖D(·) = sup{|ax2 + by2 + cxy| : (x, y) ∈ D(·)}.
Even though we will be dealing with the sectors of width angle π

4 and π
2 , respectively, in [77]

the authors study the geometry of sectors of arbitrary width, paying also special attention to the
amplitude 3π

4 .

2.5.1 The geometry of D
(
π
4

)

We shall follow an analogous procedure as in sections 2.3 and 2.4: first we shall have a complete
description of the set that constitutes the extremal points of the unit ball, and then we shall consider
those to simplify the calculations when searching for the maximum of the different functions that
appear.
To this aim, we obtain first a formula for ‖ax2 + by2 + cxy‖D(β), where β = π

4 ,
π
2 and a, b, c ∈ R.

Theorem 2.5.1 (G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, A. Weber, [77]).
If a, b, c ∈ R and P (x, y) = ax2 + by2 + cxy then ‖P‖D(π4 ) and ‖P‖D(π2 ) are given, respectively, by

{
max

{
|a|, 1

2 |a+ b+ c|, 1
2 |a+ b+ sign(c)

√
(a− b)2 + c2|

}
if c(a− b) ≥ 0,

max{|a|, 1
2 |a+ b+ c|} if c(a− b) ≤ 0,

max

{
|a|, |b|, 1

2
|a+ b+ sign(c)

√
(a− b)2 + c2|

}
.

Proof. As usual, the Krein-Milman theorem tells us that the supremum of |P | over D(β) is obviously
attained on the set {(cos θ, sin θ) : 0 ≤ θ ≤ β}. It is easy to see that, when restricted to that set, P
is given by

f(θ) =
1

2
[a+ b+ (a− b) cos 2θ + c sin 2θ] ,

for θ ∈ [0, β]. Let

g(θ) =
1

2
[a+ b+ (a− b) cos θ + c sin θ] ,

for θ ∈ [0, 2β]. Then obviously ‖P‖D(β) = supθ∈[0,2β] |g(θ)|. The study of the simpler case c(a−b) =
0 is solved by elementary calculations (observe that in this case the formula of the norm for both
sectors coincide). If now c(a− b) 6= 0, then g′ vanishes at the points θ0 such that tan θ0 = c

a−b .
Assume first that β = π

4 . Then tan θ = c
a−b has exactly one root θ0 ∈ [0, π2 ] if and only if

c
a−b > 0, in which case

cos θ0 =
1√

1 + c2

(a−b)2
and sin θ0 =

c
a−b√

1 + c2

(a−b)2
.
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Hence

g(θ0) =
1

2


a+ b+ (a− b) 1√

1 + c2

(a−b)2
+ c

c
a−b√

1 + c2

(a−b)2




=
1

2

[
a+ b+

(a− b)|a− b|√
c2 + (a− b)2

+
c2 sign(a− b)√
c2 + (a− b)2

]

=
1

2

[
a+ b+ sign(a− b) (a− b)2 + c2√

c2 + (a− b)2

]

=
1

2

[
a+ b+ sign(c)

√
c2 + (a− b)2

]
.

This, together with the fact that g(0) = a and g(π2 ) = 1
2 (a+ b+ c), proves the first formula.

Suppose that now β = π
2 . Then tan θ = c

a−b has exactly one solution θ0 ∈ [0, π]. If c(a− b) > 0

then θ0 ∈ [0, π2 ] and we have already seen that g(θ0) = 1
2

[
a+ b+ sign(c)

√
c2 + (a− b)2

]
. If

c(a− b) < 0 then θ0 ∈ [π2 , π] and

cos θ0 = − 1√
1 + c2

(a−b)2
and sin θ0 = −

c
a−b√

1 + c2

(a−b)2
.

It is finally easy to check, as above, that in this case we obtain again

g(θ0) =
1

2

[
a+ b+ sign(c)

√
c2 + (a− b)2

]
.

This, together with the fact that g(0) = a and g(π) = b, proves the second formula.

Before starting to compute the different constants in this section, we shall prove the following
technical result:

Lemma 2.5.2. Let us define P1 and P2 by

P1 := {(a, b) ∈ R2 : a ≥ −1 and 4 + a− 4
√

1 + a ≤ b ≤ 4 + a+ 4
√

1 + a},
P2 := {(a, b) ∈ R2 : a ≤ 1 and −4 + a− 4

√
1− a ≤ b ≤ −4 + a+ 4

√
1− a}.

Then:

(a) The inequality
1

2

∣∣∣a+ b−
√

2 [(a− 1)2 + (b− 1)2]
∣∣∣ ≤ 1, (2.5.1)

holds if and only if (a, b) ∈ P1.

(b) The inequality
1

2

∣∣∣a+ b+ 2
√

(1− a)(1− b)
∣∣∣ ≤ 1, (2.5.2)

holds if and only if (a, b) ∈ P2.
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Figure 2.7: Projection of SD(π4 ) onto the ab-plane
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Theorem 2.5.3 (G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, A. Weber, [77]).
Let A and B be as in Figure 2.7, namely

A = {(a, b) : a ∈ [−1, 1], a < b ≤ γ1(a)},
B = {(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ a},

where γ1, γ2 are defined by

γ1(a) = 4 + a+ 4
√

1 + a,

γ2(a) = −γ1(−a) = −4 + a− 4
√

1− a,

for a ∈ [−1, 1]. Then, the projection of SD(π4 ) over the ab-plane is

πab(SD(π4 )) = {(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ γ1(a)}.

Proof. Let (a, b) ∈ A and set c = 2 − a − b. Suppose first that 2 − a − b > 0. Then c(a − b) < 0,
and therefore, according to the first formula in Theorem 2.5.1 we have

‖(a, b, 2− a− b)‖D(π4 ) = max

{
|a|, 1

2
|a+ b+ c|

}
= max{|a|, 1} = 1.

On the other hand, if 2− a− b ≤ 0, then c(a− b) ≥ 0. Applying now the first formula in Theorem
2.5.1 again we obtain

‖(a, b, 2− a− b)‖D(π4 ) = max

{
|a|, 1, 1

2

∣∣∣a+ b−
√

(a− b)2 + (2− a− b)2
∣∣∣
}

= max

{
|a|, 1, 1

2

∣∣∣a+ b−
√

2[(a− 1)2 + (b− 1)2]
∣∣∣
}
.

Recall that here (a, b) satisfies |a| ≤ 1 and 2−a ≤ b ≤ 4+a+4
√

1 + a. Since 4+a−4
√

1 + a ≤ 2−a
for −1 ≤ a ≤ 1, it follows from Lemma 2.5.2, part (a), that

1

2

∣∣∣a+ b−
√

2[(a− 1)2 + (b− 1)2]
∣∣∣ ≤ 1,

proving that ‖(a, b, 2− a− b)‖D(π4 ) = 1.

Now assume that (a, b) ∈ B(see Figure 2.7), and define c = 2
√

(1− a)(1− b). Notice that if
(a, b) ∈ B then 2− a− b ≥ 0, from which

1

2

∣∣∣a+ b+ sign(c)
√

(a− b)2 + c2
∣∣∣ =

1

2

∣∣∣a+ b+
√

(a− b)2 + 4(1− a)(1− b)
∣∣∣

=
1

2

∣∣∣a+ b+
√

(2− a− b)2
∣∣∣ = 1.

In this case c(a− b) ≥ 0, so using the first formula in Theorem 2.5.1 once again, we arrive at

∥∥∥(a, b, 2
√

(1− a)(1− b))
∥∥∥
D(π4 )

= max

{
|a|, 1

2

∣∣∣a+ b+ 2
√

(1− a)(1− b)
∣∣∣ , 1
}
.
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However, under the given conditions, Lemma 2.5.2, part (b) asserts that

1

2

∣∣∣a+ b+ 2
√

(1− a)(1− b)
∣∣∣ ≤ 1,

which implies that
∥∥∥(a, b, 2

√
(1− a)(1− b))

∥∥∥
D(π4 )

= 1.

We have proved so far that

πab(SD(π4 )) ⊂ {(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ γ1(a)}.

On the other hand, if (a, b) /∈ {(a, b) : a ∈ [−1, 1], γ2(a) ≤ b ≤ γ1(a)} then either |a| > 1 or
one of the inequalities γ2(a) ≤ b ≤ γ1(a) fail with −1 ≤ a ≤ 1. In the first case we would have
‖(a, b, c)‖D(π4 ) ≥ |a| > 1 for all c ∈ R, i.e., (a, b) /∈ πab(SD(π4 )). Now if |a| ≤ 1 and γ1(a) < b, then
a− b < 0. If c ≤ 0, from the first formula in Theorem 2.5.1 we would have

‖(a, b, c)‖D(π4 ) ≥ max

{
1

2
|a+ b+ c|, 1

2

∣∣∣a+ b−
√

(a− b)2 + c2
∣∣∣
}
.

It can be easily checked that 1
2 |a+ b+ c| > 1 if 0 ≥ c > 2−a− b and 1

2

∣∣∣a+ b−
√

(a− b)2 + c2
∣∣∣ > 1

if c ≤ 2 − a − b. This last statement follows from the fact that 1
2

∣∣∣a+ b−
√

(a− b)2 + c2
∣∣∣ > 1 is

equivalent to the expression c2 > 4(1+a)(1+b) and, in this case, c2 ≥ (2−a−b)2 > 4(1+a)(1+b).
Now if c > 0, Theorem 2.5.1 allows us to show that

‖(a, b, c)‖D(π4 ) ≥
1

2
|a+ b+ c| = 1

2
(a+ b+ c) > 2 + a+ 2

√
1 + a ≥ 1,

whenever −1 ≤ a ≤ 1. In any case (a, b) /∈ πab(SD(π4 )).
Finally, using the symmetry of the unit ball and the previous case, if γ2(a) > b with −1 ≤ a ≤ 1

then ‖(a, b, c)‖D(π2 ) > 1 for all c ∈ R, from which (a, b) /∈ πab(SD(π4 )). This concludes the proof.

Remark 2.5.4. In the proof of the first part of the following result, it will be useful to observe that

1

2
|b+ c− 1| ≤ 1⇔ −1− b ≤ c ≤ 3− b.

Also, if b ≤ −1, then
1

2

∣∣∣b− 1 +
√

(b+ 1)2 + c2
∣∣∣ ≤ 1⇔ |c| ≤ 3− b.

Theorem 2.5.5 (G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, A. Weber, [77]).
Let A and B be as in Theorem 2.5.3 (see also Figure 2.7) and define

F1(a, b) =

{
2− a− b if (a, b) ∈ A,

2
√

(1− a)(1− b) if (a, b) ∈ B,

and F2(a, b) = −F1(−a,−b) for all (a, b) ∈ πab(SD(π4 )). If

Γ = {(±1, b, c) ∈ R2 : (±1, b) ∈ ∂πab(SD(π4 )), F2(±1, b) ≤ c ≤ F1(±1, b)},

then
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Figure 2.8: SD(π4 ). The extreme points of BD(π4 ) are drawn with a thicker line and dots

(a) SD(π4 ) = graph(F1) ∪ graph(F2) ∪ Γ.

(b) The set ext(BD(π4 )) consists of the elements

±
(
t, 4 + t+ 4

√
1 + t,−2− 2t− 4

√
1 + t

)
for t ∈ [−1, 1],

±
(

1, s,−2
√

2(1 + s)
)

for s ∈ [1, 5 + 4
√

2],

and
±(1, 1, 0).

Proof. As for the first part of the theorem, notice that graph(F1) ⊂ SD(π4 ) as seen in the proof
of Theorem 2.5.3. By symmetry we also have that graph(F2) ⊂ SD(π4 ). Finally Γ ⊂ SD(π4 ) too.
Indeed, by symmetry we can focus on the study of the points of Γ of the form (−1, b, c) with
−5− 4

√
2 ≤ b ≤ 3 and F2(−1, b) ≤ c ≤ F1(−1, b). Observe that

F1(−1, b) =

{
2
√

2(1− b) if −5− 4
√

2 ≤ b ≤ −1,

3− b if −1 ≤ b ≤ 3,
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and

F2(−1, b) =

{
−1− b if −5− 4

√
2 ≤ b ≤ −1,

0 if −1 ≤ b ≤ 3.

Hence c ≥ F2(−1, b) ≥ 0 for all b ∈ [−5− 4
√

2, 3] and c = 0 can only be zero when −3 ≤ b ≤ 1. In
that case, since 1

2 |b− 1| ≤ 1, it follows from Theorem 2.5.1 that

‖(−1, b, 0)‖D(π4 ) = max

{
1,

1

2
|b− 1|

}
= 1.

Otherwise c > 0. First, if −5− 4
√

2 ≤ b ≤ −1 then c(−1− b) ≥ 0. Therefore using Theorem 2.5.1
we have

‖(−1, b, c)‖D(π4 ) = max

{
1,

1

2
|b+ c− 1|, 1

2
|b− 1 +

√
(b+ 1)2 + c2|

}
.

Since −5− 4
√

2 ≤ b ≤ −1 and −3− b ≤ c ≤ 2
√

2(1− b) ≤ 3− b, from Remark 2.5.4 it follows that
‖(−1, b, c)‖D(π4 ) = 1. Finally, if −1 < b ≤ 3 then c(−1− b) < 0, which implies, from Theorem 2.5.1
that

‖(−1, b, c)‖D(π4 ) = max

{
1,

1

2
|b+ c− 1|

}
.

Since now −1 ≤ b ≤ 3 and −3 − b ≤ 0 < c ≤ −1 − b, from Remark 2.5.4 we have that
‖(−1, b, c)‖D(π4 ) = 1 too. We have proved so far that graph(F1) ∪ graph(F2) ∪ Γ ⊂ SD(π4 ). On
the other hand, suppose (a, b, c) /∈ graph(F1) ∪ graph(F2) ∪ Γ. Obviously, (0, 0, 0) /∈ SD(π4 ), so
we can also assume that (a, b, c) 6= (0, 0, 0). The straight line {λ(a, b, c) : λ ∈ R} certainly meets
the set graph(F1) ∪ graph(F2) ∪ Γ. Put, (a, b, c) = λ0(a0, b0, c0) with λ0 6= 0, 1 and (a0, b0, c0) ∈
graph(F1) ∪ graph(F2) ∪ Γ. Then ‖(a, b, c)‖D(π4 ) = λ0‖(a0, b0, c0)‖D(π4 ) = λ0 6= 1, and therefore
(a, b, c) /∈ S(π4 ). This concludes part (a).

Part (b) is an easy consequence of the fact that the sets graph(F1), graph(F2) and Γ are ruled
surfaces in R3. Actually Γ is contained in the two planes a = ±1. Hence the only possible extreme
points are contained in the intersections graph(F1) ∩ Γ, graph(F2) ∩ Γ and graph(F1) ∩ graph(F2).
Once we have removed the interior of all straight lines contained in those intersections, we end up
with the following candidates to be extreme points of BD(π4 ):

±
(
t, 4 + t+ 4

√
1 + t,−2− 2t− 4

√
1 + t

)
for t ∈ [−1, 1],

±
(

1, s,−2
√

2(1 + s)
)

for s ∈ [1, 5 + 4
√

2],

and

±(1, 1, 0).

Constructing a supporting hyperplane to each of the previous points is a straightforward exercise
and the details shall not be taken into consideration. This last observation finishes the proof.

We reproduce a sketch of SD(π4 ) in Figure 2.8.
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2.5.2 Markov and Bernstein inequalities in P
(

2D
(
π
4

))

Theorem 2.5.6 (G. Araújo, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda,
[1]). (Bernstein inequality) For every (x, y) ∈ D

(
π
4

)
the following inequality is sharp:

‖∇P (x, y)‖2 ≤ Φπ/4(x, y)‖P‖D(π4 ),

where P ∈ P
(

2D
(
π
4

))
and

Φπ/4(x, y) =





F (x, y) if 0 ≤ y ≤
√

2−1
2 x or

(
4
√

2− 5
)
x ≤ y ≤ x,

G(x, y) if
√

2−1
2 x ≤ y ≤

(√
2− 1

)
x,

H(x, y) if
(√

2− 1
)
x ≤ y ≤

(
4
√

2− 5
)
x,

and

F (x, y) = 2

√(
13 + 8

√
2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy,

G(x, y) =

√
x4

y2
+ 4(x2 + y2),

H(x, y) =

√
9x4 − 12x3y + 22x2y2 − 12xy3 + 9y4

2(x− y)2
.

Proof. In order to calculate Φπ/4(x, y) := sup{‖∇P (x, y)‖2 : ‖P‖D(π4 ) ≤ 1}, by the Krein-Milman

approach, it is sufficient to calculate

sup{‖∇P (x, y)‖2 : P ∈ ext(BD(π4 ))}.

By symmetry, we may just study the polynomials of Theorem 2.5.5 with positive sign. Let us start
first with Pt(x, y) = tx2 +

(
4 + t+ 4

√
1 + t

)
y2 − 2

(
1 + t+ 2

√
1 + t

)
xy, t ∈ [−1, 1]. Then,

∇Pt(x, y) =
(
2tx− 2

(
1 + t+ 2

√
1 + t

)
y, 2

(
4 + t+ 4

√
1 + t

)
y − 2

(
1 + t+ 2

√
1 + t

)
x
)
,

so that

‖∇Pt(x, y)‖22 =4t2x2 + 4
(
1 + t+ 2

√
1 + t

)2
y2 − 8t

(
1 + t+ 2

√
1 + t

)
xy

+ 4
(
4 + t+ 4

√
1 + t

)2
y2 + 4

(
1 + t+ 2

√
1 + t

)2
x2

− 8
(
4 + t+ 4

√
1 + t

) (
1 + t+ 2

√
1 + t

)
xy

Make now the change u =
√

1 + t ∈
[
0,
√

2
]
, so that

‖∇Pu(x, y)‖22 =8(x− y)2u4 + 16
(
x2 − 4xy + 3y2

)
u3

+ 8
(
x2 − 10xy + 13y2

)
u2 + 32

(
3y2 − xy

)
u+ 4

(
x2 + 9y2

)
.

Since

∂

∂u
‖∇Pu(x, y)‖22 = 16

(
2 (x− y)

2
u2 +

(
x2 − 8xy + 7y2

)
u+ 2y (3y − x)

)
(u+ 1) ,
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it follows that the critical points of ‖DPu(x, y)‖22 are u = 2y
x−y , u = 3y−x

2(x−y) and u = −1 if x 6= y and

u = 4 and u = −1 if x = y. Since we need to consider 0 ≤ u ≤
√

2, we can directly omit the case
x = y.

Therefore, we can write

∂

∂u
‖∇Pu(x, y)‖22 = 32(x− y)2

(
u− 2y

x− y

)(
u− 3y − x

2(x− y)

)
(u+ 1).

Let u1 = 2y
x−y and u2 = 3y−x

2(x−y) (Again, since we need to consider 0 ≤ u ≤
√

2, we can omit the

solution u = −1). Also, we have the extra conditions u1 ∈ [0,
√

2] whenever 0 ≤ y ≤
(√

2− 1
)
x

and u2 ∈ [0,
√

2] whenever 1
3x ≤ y ≤

(
4
√

2− 5
)
x. Considering all these facts, we need to compare

the quantities

C1(x, y) := ‖∇Pu1
(x, y)‖22 = ‖∇Pt1‖22 = 4

x6 − 4x5y + 7x4y2 − 8x3y3 + 7x2y4 − 4xy5 + y6

(x− y)4

= 4
(
x2 + y2

)
,

for 0 ≤ y ≤
(√

2− 1
)
x and t1 = 3y2+2xy−x2

(x−y)2 ,

C2(x, y) := ‖∇Pu2(x, y)‖22 = ‖∇Pt2‖22 =
9x6 − 30x5y + 55x4y2 − 68x3y3 + 55x2y4 − 30xy5 + 9y6

2(x− y)4

=

(
3x2 − 2xy + 3y2

)2

2(x− y)2
,

for 1
3x ≤ y ≤

(
4
√

2− 5
)
x and t2 = 5y2+2xy−3x2

4(x−y)2 ,

C3(x, y) := ‖∇Pt3=−1‖22 = 4
(
x2 + 9y2

)
,

and

C4(x, y) := ‖∇Pt4=1‖22 = 4
[(

13 + 8
√

2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy
]
.

Let us focus now on Qs =
(

1, s,−2
√

2(1 + s)
)

, 1 ≤ s ≤ 5 + 4
√

2. Then, we have

‖∇Qs(x, y)‖22 = 4x2 + 4s2y2 + 8(1 + s)(x2 + y2)− 8(1 + s)
√

2(1 + s)xy.

Making the change v =
√

2(1 + s) ∈
[
2, 2 + 2

√
2
]
, we need to study the function

‖∇Qv(x, y)‖22 = v2
(
y2v2 − 4xyv + 4x2

)
+ 4

(
x2 + y2

)
.

If x = y = 0 we have ‖∇Qv(x, y)‖22 = 0, so we will assume both x 6= 0 and y 6= 0. The critical
points of ‖∇Qv(x, y)‖22 are v = x

y , v = 2x
y and v = 0 (but 0 /∈ [2, 2 + 2

√
2]). Observe that v1 =

x
y ∈

[
2, 2 + 2

√
2
]

whenever
√

2−1
2 x ≤ y ≤ 1

2x and v2 = 2x
y ∈

[
2, 2 + 2

√
2
]

whenever y ≥
(√

2− 1
)
x.

Thus, we also need to compare the quantities

C5(x, y) := ‖∇Qv1(x, y)‖22 = ‖∇Qs1(x, y)‖22 =
x4

y2
+ 4

(
x2 + y2

)
,



2.5. POLYNOMIALS ON BD(π4 ) 57

for
√

2−1
2 x ≤ y ≤ 1

2x and s1 = x2−2y2

2y2 ,

C6(x, y) := ‖∇Qv2(x, y)‖22 = ‖∇Qs2(x, y)‖22 = 4
(
x2 + y2

)
,

for
(√

2− 1
)
x ≤ y ≤ x and s2 = 2x2−y2

y2 , and also

C7(x, y) := ‖∇Qs3=1‖22 = 4
(
x2 + y2

)
+ 16(x− y)2,

and

C8(x, y) := ‖∇Qs4=5+4
√

2‖22
=
(

12 + 8
√

2
) [

4x2 +
(

12 + 8
√

2
)
y2 −

(
8 + 8

√
2
)
xy
]

+ 4
(
x2 + y2

)

= 4
[(

13 + 8
√

2
)
x2 +

(
69 + 48

√
2
)
y2 − 2

(
28 + 20

√
2
)
xy
]
.

Note that (the reader can take a look at Figures 2.9, 2.10 and 2.11)

C1(x, y), C6(x, y) ≤ C7(x, y) ≤
{

C4(x, y) if 0 ≤ y ≤ 2−
√

2
2 x or 1

2x ≤ y ≤ x,
C5(x, y) if

√
2−1
2 x ≤ y ≤ 1

2x,

C3(x, y) ≤
{
C2(x, y) if 1

3x ≤ y ≤
(
4
√

2− 5
)
x,

C4(x, y) if 0 ≤ y ≤ 1
3x or (4

√
2− 5)x ≤ y ≤ x,

C8(x, y) = C4(x, y).

Hence, for (x, y) ∈ D
(
π
4

)
,

Φπ/4(x, y) = sup
{
‖∇P (x, y)‖2 : P ∈ ext

(
BD(π4 )

)}

=





C4(x, y) if 0 ≤ y ≤
√

2−1
2 x or (4

√
2− 5)x ≤ y ≤ x,

C5(x, y) if
√

2−1
2 x ≤ y ≤ (

√
2− 1)x,

C2(x, y) if (
√

2− 1)x ≤ y ≤ (4
√

2− 5)x.

In order to illustrate the previous step, the reader can take a look at Figure 2.12.

With the above Bernstein type estimate now it is easy to derive the following sharp Markov
type bound on the gradient of polynomials in P

(
2D
(
π
4

))
.

Theorem 2.5.7 (G. Araújo, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda,
[1]). (Markov inequality) For every P ∈ P

(
2D
(
π
4

))
and every (x, y) ∈ PD

(
π
4

)
we have that

‖∇P (x, y)‖2 ≤ 2

√
13 + 8

√
2‖P‖D(π4 ).

Moreover, equality is achieved for the polynomials ±P1(x, y) = ±
(
x2 +

(
5 + 4

√
2
)
y2 − 4

(
1 +
√

2
)
xy
)

at (1, 0).
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Figure 2.9: Graphs of the mappings C1(1, λ), C6(1, λ), C7(1, λ).
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Figure 2.10: Graphs of the mappings C4(1, λ), C5(1, λ), C7(1, λ).
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Figure 2.11: Graphs of the mappings C2(1, λ), C3(1, λ), C4(1, λ).
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Figure 2.12: Graphs of the mappings C2(1, λ), C4(1, λ), C5(1, λ).

2.5.3 Polarization constant of P
(

2D
(
π
4

))

In order to calculate the polarization constant, we prove a Bernstein type inequality for polynomials
in P

(
2D
(
π
4

))
. Observe that if P ∈ P

(
2D
(
π
4

))
and (x, y) ∈ D

(
π
4

)
then the differential DP (x, y)

of P at (x, y) can be viewed as a linear form. What we shall do is to find the best estimate for
‖DP (x, y)‖D(π4 ) in terms of (x, y) and ‖P‖D(π4 ).

We shall first state a lemma that will be useful in the future:

Lemma 2.5.8. Let a, b ∈ R. Then,

sup
θ∈[0,π4 ]

|a cos θ + b sin θ| =
{

max
{
|a|,

√
2

2 |a+ b|
}

if b
a > 1 or b

a < 0,
√
a2 + b2 otherwise.

=





√
a2 + b2 if 0 < b

a < 1,√
2

2 |a+ b| if
(
1−
√

2
)
b < a < b or b < a <

(
1−
√

2
)
b,

|a| if −
(
1 +
√

2
)
a < b < 0 or 0 < b < −

(
1 +
√

2
)
a.

Theorem 2.5.9 (G. Araújo, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda,
[1]). For every (x, y) ∈ D(π4 ) and P ∈ P(2D(π4 )) we have that

‖DP (x, y)‖D(π4 ) ≤ Ψπ/4(x, y)‖P‖D(π4 ), (2.5.3)

where

Ψπ/4(x, y) =





√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7 x,√

2(x2+3y2)
2y if 2

√
2−1
7 x ≤ y < (

√
2− 1)x,

2
(
x+ y2

x−y

)
if (
√

2− 1)x ≤ y <
(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x

Moreover, inequality (2.5.3) is optimal for each (x, y) ∈ D(π4 ).
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Proof. In order to calculate Ψπ/4(x, y) := sup{‖DP (x, y)‖D(π4 ) : ‖P‖D(π4 )) ≤ 1}, by the Krein-
Milman approach, it suffices to calculate

sup{‖DP (x, y)‖D(π4 ) : P ∈ ext(BD(π4 ))}.

By symmetry, we may just study the polynomials of Lemma 2.5.5 with positive sign. Let us start
first with

Pt(x, y) = tx2 +
(
4 + t+ 4

√
1 + t

)
y2 −

(
2 + 2t+ 4

√
1 + t

)
xy.

So we may write

∇Pt(x, y) =
(
2tx−

(
2 + 2t+ 4

√
1 + t

)
y, 2

(
4 + t+ 4

√
1 + t

)
y −

(
2 + 2t+ 4

√
1 + t

)
x
)
,

from which

‖DPt(x, y)‖D(π4 ) = sup
0≤θ≤π4

∣∣2
[
tx−

(
1 + t+ 2

√
1 + t

)
y
]

cos θ

+ 2
[(

4 + t+ 4
√

1 + t
)
y −

(
1 + t+ 2

√
1 + t

)
x
]

sin θ
∣∣

= 2x sup
0≤θ≤π4

|fλ(t, θ)|,

for fλ(t, θ) =
[
t−
(
1 + t+ 2

√
1 + t

)
λ
]

cos θ

+
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]
sin θ,

where λ = y
x , x 6= 0 (the case x = 0 is trivial, since the only point in D(π4 ) where x = 0 is (0, 0), in

which case Pt(0, 0) = ‖DPt(0, 0)‖D(π4 ) = 0).

We need to calculate
sup
−1≤t≤1

‖DPt(x, y)‖D(π4 ) = 2x sup
0≤θ≤π4
−1≤t≤1

|fλ(t, θ)|.

Let us define C
(1)
π
4

= [−1, 1]× [0, π4 ]. We will analyze 5 cases.

(1) (t, θ) ∈ (−1, 1)× (0, π4 ).

We are interested just in critical points. Hence,

∂fλ
∂t

(t, θ) =

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
sin θ

+

[
1−

(
1 +

1√
1 + t

)
λ

]
cos θ = 0,

(2.5.4)

∂fλ
∂θ

(t, θ) =
[(

1 + t+ 2
√

1 + t
)
λ− t

]
sin θ

+
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]
cos θ = 0

(2.5.5)

Equation (2.5.5) tells us that

sin θ =

(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)

t−
(
1 + t+ 2

√
1 + t

)
λ

cos θ. (2.5.6)
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If we now plug (2.5.6) in equation (2.5.4), we obtain

0 =

{[
1−

(
1 +

1√
1 + t

)
λ

]
+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]

×
(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)

t−
(
1 + t+ 2

√
1 + t

)
λ

}
cos θ.

Using that 0 < θ < π
4 , we can conclude

0 =

[
1−

(
1 +

1√
1 + t

)
λ

]
+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]

×
(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)

t−
(
1 + t+ 2

√
1 + t

)
λ

and thus

0 =

[
1−

(
1 +

1√
1 + t

)
λ

]
·
[
t−
(
1 + t+ 2

√
1 + t

)
λ
]

+

[(
1 +

2√
1 + t

)
λ−

(
1 +

1√
1 + t

)]
·
[(

4 + t+ 4
√

1 + t
)
λ−

(
1 + t+ 2

√
1 + t

)]

= t−
(
1 + t+ 2

√
1 + t

)
λ− tλ+

(
1 + t+ 2

√
1 + t

)
λ2 − λt√

1 + t

+
λ2

√
1 + t

(
1 + t+ 2

√
1 + t

)
+

(
1 +

2√
1 + t

)(
4 + t+ 4

√
1 + t

)
λ2

−
(

1 +
2√

1 + t

)(
1 + t+ 2

√
1 + t

)
λ−

(
1 +

1√
1 + t

)(
4 + t+ 4

√
1 + t

)
λ

+

(
1 +

1√
1 + t

)(
1 + t+ 2

√
1 + t

)

= t
(
1− 2λ+ 2λ2 − 2λ+ 1

)
+
(
−2λ+ 2λ2 + 4λ2 − 2λ− 4λ+ 2

)√
1 + t

+
t√

1 + t

(
−λ+ λ2 + 2λ2 − 2λ− λ+ 1

)
+

1√
1 + t

(
λ2 + 8λ2 − 2λ− 4λ+ 1

)

+
(
−λ+ λ2 + 2λ2 + 4λ2 − λ− 4λ+ 1 + 2 + 8λ2 − 8λ

)

= 2t(λ− 1)2 + 6
√

1 + t(λ− 1)

(
λ− 1

3

)
+ 3

t√
1 + t

(λ− 1)

(
λ− 1

3

)

+
1√

1 + t
(3λ− 1)2 + 15

(
λ− 1

3

)(
λ− 3

5

)
.

Working with this last expression, we get

0 = 2t
√

1 + t(λ− 1)2 + 6(1 + t)(λ− 1)

(
λ− 1

3

)
+ 3t(λ− 1)

(
λ− 1

3

)

+(3λ− 1)2 + 15
√

1 + t

(
λ− 1

3

)(
λ− 3

5

)
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and hence, rearranging terms,

√
1 + t

[
15

(
λ− 1

3

)(
λ− 3

5

)
+ 2t(λ− 1)2

]
= −9t(λ− 1)

(
λ− 1

3

)
− 15

(
λ− 1

3

)(
λ− 3

5

)
.

(2.5.7)
If λ = 1, we obtain √

1 + t+ 1 = 0

and so, in particular, we have λ 6= 1. Equation (2.5.7) has two solutions,

t1(λ) =
−1 + 2λ+ 3λ2

(λ− 1)2
and t2(λ) =

5λ2 + 2λ− 3

4(λ− 1)2
.

Using equation (2.5.4), we may see

tan θ =

(
1 + 1√

1+t

)
λ− 1

(
1 + 2√

1+t

)
λ−

(
1 + 1√

1+t

) .

In particular, evaluating in t1(λ) we obtain

tan θ1 =

(
1 + 1−λ

2λ

)
λ− 1(

1 + 1−λ
λ

)
λ−

(
1 + 1−λ

2λ

) = λ,

in which case we have

D1,1(λ) := |fλ(t1, θ1)| =
∣∣∣−
√

1 + λ2
∣∣∣ =

√
1 + λ2.

Regarding t2 (λ), we obtain

tan θ2 =

(
1 +

√
4(λ−1)2

(3λ−1)2

)
λ− 1

(
1 + 2

√
4(λ−1)2

(3λ−1)2

)
λ−

(
1 +

√
4(λ−1)2

(3λ−1)2

) .

Since θ2 ∈
(
0, π4

)
, we need to guarantee 0 < tan θ2 < 1, and for this we need 0 < λ < 1

5 . Therefore

tan θ2 =
5λ− 1

7λ− 3

and in this case,

D1,2(λ) := |fλ(t2, θ2)|

=

∣∣∣∣
[

5λ2 + 2λ− 3

4(λ− 1)2
−
(

9λ2 − 6λ+ 1

4(λ− 1)2
+

3λ− 1

λ− 1

)
λ

]
3− 7λ√

74λ2 − 52λ+ 10

+

[(
3 +

9λ2 − 6λ+ 1

4(λ− 1)2
+

6λ− 2

λ− 1

)
λ−

(
9λ2 − 6λ+ 1

4(λ− 1)2
+

3λ− 1

λ− 1

)]
1− 5λ√

74λ2 − 52λ+ 10

∣∣∣∣

=

∣∣∣∣−
78λ4 − 208λ3 + 196λ2 − 80λ+ 14

4(λ− 1)2
√

74λ2 − 52λ+ 10

∣∣∣∣

=

∣∣∣∣−
39λ2 − 26λ+ 7

2
√

74λ2 − 52λ+ 10

∣∣∣∣

=
39λ2 − 26λ+ 7

2
√

74λ2 − 52λ+ 10
.
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(2) θ = 0,−1 ≤ t ≤ 1.

We have
fλ(t, 0) = t−

(
1 + t+ 2

√
1 + t

)
λ.

Then,
fλ(−1, 0) = −1,

fλ(1, 0) = 1− 2
(

1 +
√

2
)
λ,

and hence

|fλ(1, 0)| =
{

1− 2(1 +
√

2)λ if 0 ≤ λ <
√

2−1
2 ,

2
(
1 +
√

2
)
λ− 1 if

√
2−1
2 ≤ λ ≤ 1.

Working now on (−1, 1), since

f ′λ(t, 0) = 1−
(

1 +
1√

1 + t

)
λ,

the critical point of fλ(t, 0) is

t =
λ2

(1− λ)2
− 1.

Recall that we need to make sure that −1 < t < 1. Therefore, in this case we also need to ask

λ <

√
2

1 +
√

2
= 2−

√
2.

Plugging the critical point of fλ(t, 0) into fλ(t, 0), we obtain

fλ

(
λ2

(λ− 1)2
− 1, 0

)
=

λ2

(λ− 1)2
− 1−

[
λ2

(λ− 1)2
+

2λ

1− λ

]
λ =

λ2

λ− 1
− 1,

and hence ∣∣∣∣fλ
(

λ2

(λ− 1)2
− 1, 0

)∣∣∣∣ = 1 +
λ2

1− λ.

• Assume first 0 ≤ λ <
√

2−1
2 . Then,

sup
−1≤t≤1

|fλ(t, 0)| = max

{
1, 1− 2

(
1 +
√

2
)
λ, 1 +

λ2

1− λ

}
= 1 +

λ2

1− λ.

• Assume now
√

2−1
2 ≤ λ < 2−

√
2. Then,

sup
−1≤t≤1

|fλ(t, 0)| = max

{
1, 2

(
1 +
√

2
)
λ− 1, 1 +

λ2

1− λ

}
= 1 +

λ2

1− λ.

• Assume finally 2−
√

2 ≤ λ ≤ 1. Then,

sup
−1≤t≤1

|fλ(t, 0)| = max
{

1, 2
(

1 +
√

2
)
λ− 1

}
= 2

(
1 +
√

2
)
λ− 1.
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So, in conclusion,

sup
−1≤t≤1

|fλ(t, 0)| =

{
1 + λ2

1−λ if 0 ≤ λ < 2−
√

2,
(
2 + 2

√
2
)
λ− 1 if 2−

√
2 ≤ λ ≤ 1,

=:

{
D2,1(λ) if 0 ≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1.

(3) θ = π
4 and −1 ≤ t ≤ 1.

We have

fλ

(
t,
π

4

)
=

√
2

2

[
t−
(
1 + t+ 2

√
1 + t

)
λ+

(
4 + t+ 4

√
1 + t

)
λ−

(
1 + t+ 2

√
1 + t

)]

=

√
2

2

[(
3 + 2

√
1 + t

)
λ−

(
1 + 2

√
1 + t

)]
.

Again, we have

fλ

(
−1,

π

4

)
=

√
2

2
(3λ− 1) ,

fλ

(
1,
π

4

)
=

√
2

2

[(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)]
,

f ′λ
(
t,
π

4

)
=

√
2

2

[
λ√

1 + t
− 1√

1 + t

]
.

and f ′λ(t, π4 ) = 0 implies λ = 1 (in which case fλ(t, π4 ) =
√

2 for every t).

• Assume first 0 ≤ λ < 1
3 . Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ, 1− 3λ

}

=

√
2

2

[(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ
]

• Assume now 1
3 ≤ λ < 4

√
2− 5. Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{(
1 + 2

√
2
)
−
(

3 + 2
√

2
)
λ, 3λ− 1

}

=

{ √
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 1
3 ≤ λ < 2

√
2+1
7 ,√

2
2 (3λ− 1) if 2

√
2+1
7 ≤ λ < 4

√
2− 5.

• Assume finally 4
√

2− 5 ≤ λ ≤ 1. Then,

sup
−1≤t≤1

|fλ
(
t,
π

4

)
| =
√

2

2
max

{
3λ− 1,

(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)}

=

√
2

2
(3λ− 1).
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Hence, we can say that

sup−1≤t≤1 |fλ
(
t, π4
)
| =





√
2

2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2+1
7

√
2

2 (3λ− 1) if 2
√

2+1
7 ≤ λ ≤ 1.

=:





D3,1(λ) if 0 ≤ λ < 2
√

2+1
7

D3,2(λ) if 2
√

2+1
7 ≤ λ ≤ 1.

(4) t = −1, 0 ≤ θ ≤ π
4 .

Applying lemma 2.5.8, we obtain

sup
0≤θ≤π4

fλ(−1, θ) =





1 if 0 ≤ λ < 1+
√

2
3 ,

√
2

2 (3λ− 1) if 1+
√

2
3 ≤ λ ≤ 1.

=:





D4,1(λ) if 0 ≤ λ < 1+
√

2
3 ,

D4,2(λ) if 1+
√

2
3 ≤ λ ≤ 1.

(5) t = 1, 0 ≤ θ ≤ π
4 .

We use again lemma 2.5.8, with a = 1−
(
2 + 2

√
2
)
λ and b =

(
5 + 4

√
2
)
λ−
(
2 + 2

√
2
)
. Through

standard calculations, we see that b
a < 0 if and only if λ ∈

[
0,
√

2−1
2

)
∪
(

6−2
√

2
7 , 1

]
and b

a > 1 if and

only if
√

2−1
2 < λ < 3+4

√
2

23 . Therefore,

sup
0≤θ≤π4

|fλ(1, θ)|

=





max
{∣∣1−

(
2 + 2

√
2
)
λ
∣∣ ,
√

2
2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣
}

if 0 ≤ λ < 3+4
√

2
23 ,√(

1−
(
2 + 2

√
2
)
λ
)2

+
((

5 + 4
√

2
)
λ−

(
2 + 2

√
2
))2

if 3+4
√

2
23 ≤ λ < 6−2

√
2

7 ,

max
{∣∣1−

(
2 + 2

√
2
)
λ
∣∣ ,
√

2
2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣
}

if 6−2
√

2
7 ≤ λ ≤ 1.
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Since 0 ≤ λ <
√

2− 1 implies
∣∣1−

(
2 + 2

√
2
)
λ
∣∣ <

√
2

2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣, it follows that

sup
0≤θ≤π4

|fλ(1, θ)|

=





√
2

2

∣∣(3 + 2
√

2
)
λ−

(
1 + 2

√
2
)∣∣ if 0 ≤ λ < 3+4

√
2

23√
48
√

2λ2 − 56λ+ 69λ2 − 40
√

2λ+ 8
√

2 + 13 if 3+4
√

2
23 ≤ λ < 6−2

√
2

7∣∣1−
(
2 + 2

√
2
)
λ
∣∣ if 6−2

√
2

7 ≤ λ ≤ 1

=





√
2

2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 3+4
√

2
23√

48
√

2λ2 − 56λ+ 69λ2 − 40
√

2λ+ 8
√

2 + 13 if 3+4
√

2
23 ≤ λ < 6−2

√
2

7(
2 + 2

√
2
)
λ− 1 if 6−2

√
2

7 ≤ λ ≤ 1.

=:





D5,1(λ) if 0 ≤ λ < 3+4
√

2
23

D5,2(λ) if 3+4
√

2
23 ≤ λ < 6−2

√
2

7

D5,3(λ) if 6−2
√

2
7 ≤ λ ≤ 1.

Since (see Figures 2.13 and 2.14)

D1,1(λ) ≤
{

D2,1(λ) if 0 ≤ λ < 2−
√

2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1,

D1,2(λ) ≤ D3,1(λ) for 0 < λ < 1
5 ,

we can rule out case (1). Since

D3,1(λ) = D5,1(λ) for 0 ≤ λ ≤ 3+4
√

2
23 ,

D3,2(λ) = D4,2(λ) for 1+
√

2
3 ≤ λ ≤ 1,

we can directly rule out case (3). Since (see Figures 2.13 and 2.15)

D4,1(λ) = 1 ≤
{

D2,1(λ) if 0 ≤ λ < 2−
√

2,

D2,2(λ) if 2−
√

2 ≤ λ < 1+
√

2
3 ,

D4,2(λ) ≤ D2,2 for 1+
√

2
3 ≤ λ ≤ 1,

we can rule out case (4). Finally, since (see Figure 2.16)

D5,2(λ) ≤ D2,1(λ) for 3+4
√

2
23 ≤ λ < 6−2

√
2

7 ,

D5,3(λ) = D2,2(λ) for 2−
√

2 ≤ λ ≤ 1,

we can rule out the expressions D5,2(λ) and D5,3(λ) of case (5).
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√
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Figure 2.13: Graphs of the mappings D1,1(λ), D2,1(λ) and D2,2(λ).

Thus, putting all the above cases together, we may reach the conclusion

sup
(t,θ)∈C(1)

π
4

|fλ(t, θ)| =





D5,1(λ) if 0 ≤ λ < (2−3
√

2)
√

4
√

2+7+5
√

2+6
14 ,

D2,1(λ) if (2−3
√

2)
√

4
√

2+7+5
√

2+6
14 ≤ λ < 2−

√
2,

D2,2(λ) if 2−
√

2 ≤ λ ≤ 1,

=





√
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < (2−3
√

2)
√

4
√

2+7+5
√

2+6
14 ,

1 + λ2

1−λ if (2−3
√

2)
√

4
√

2+7+5
√

2+6
14 ≤ λ < 2−

√
2,(

2 + 2
√

2
)
λ− 1 if 2−

√
2 ≤ λ ≤ 1,

and hence

sup
−1≤t≤1

‖DPt(x, y)‖D(π4 ) = 2x sup
(t,θ)∈C(1)

π
4

|fλ(t, θ)|

=





√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < (2−3
√

2)
√

4
√

2+7+5
√

2+6
14 x,

2
(
x+ y2

x−y

)
if (2−3

√
2)
√

4
√

2+7+5
√

2+6
14 x ≤ y <

(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x,

assuming in every moment x 6= 0 (in order to illustrate the previous step, the reader can take a
look at Figure 2.17).

Let us deal now with the polynomials

Qs(x, y) = x2 + sy2 − 2
√

2(1 + s)xy, 1 ≤ s ≤ 5 + 4
√

2.

Then,

∇Qs(x, y) =
(

2x− 2
√

2(1 + s)y, 2sy − 2
√

2(1 + s)x
)
,

‖DQs(x, y)‖D(π4 ) = sup
0≤θ≤π4

∣∣∣2x
[(

1−
√

2(1 + s)λ
)

cos θ +
(
sλ−

√
2(1 + s)

)
sin θ

]∣∣∣ ,
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Figure 2.14: Graphs of the mappings D1,2(λ) and D3,1(λ).
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Figure 2.15: Graphs of the mappings D2,2(λ) and D4,2(λ).
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Figure 2.16: Graphs of the mappings D2,1(λ) and D5,2(λ).
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Figure 2.17: Graphs of the mappings D2,1(λ), D2,2(λ) and D5,1(λ).

and thus
sup

1≤s≤5+4
√

2

‖DQs(x, y)‖D(π4 ) = 2x sup
(s,θ)∈C(2)

π
4

|gλ(s, θ)|,

with
gλ(s, θ) =

(
1−

√
2(1 + s)λ

)
cos θ +

(
sλ−

√
2(1 + s)

)
sin θ

and C
(2)
π
4

= [1, 5 + 4
√

2]× [0, π4 ]. Again, we have several cases:

(6) (s, θ) ∈ (1, 5 + 4
√

2)× (0, π4 ).

Let us first calculate the critical points of gλ over C
(2)
π
4

.

∂gλ
∂s

(s0, θ0) =
−λ√

2(1 + s0)
cos θ0 +

(
λ− 1√

2(1 + s0)

)
sin θ0,

∂gλ
∂θ

(s0, θ0) =
(
s0λ−

√
2(1 + s0)

)
cos θ0 −

(
1−

√
2(1 + s0)λ

)
sin θ0,

so, if Dgλ(s0, θ0) = 0, using the first expression, we obtain tan θ0 = λ√
2(1+s0)λ−1

, and, using the

second one, we obtain tan θ0 =
s0λ−
√

2(1+s0)

1−
√

2(1+s0)λ
.

Hence, we may say
s0λ−

√
2(1 + s0)

1−
√

2(1 + s0)λ
=

λ√
2(1 + s0)λ− 1

and thus

s0 =
2− λ2

λ2
.

Then, tan θ0 = λ and also, if we want to guarantee that 1 < s0 < 5 + 4
√

2, we need
√

2−1 < λ < 1.
In that case, sin θ0 = λ√

1+λ2
and cos θ0 = 1√

1+λ2
, and then

gλ(s0, θ0) =
−1√

1 + λ2
+

−λ2

√
1 + λ2

= −
√

1 + λ2,
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so
D6(λ) := |gλ(s0, θ0)| =

√
1 + λ2.

(7) s = 1, 0 ≤ θ ≤ π
4 .

Apply lemma 2.5.8 with a = 1 − 2λ and b = λ − 2. Using 0 ≤ λ ≤ 1, observe that we always

have b < 0 and b ≤ a. Also, a <
(
1−
√

2
)
b if and only if λ > 5−3

√
2

7 .
Putting everything together, we can say

sup
0≤θ≤π4

|gλ(1, θ)| =

{
1− 2λ if 0 ≤ λ < 5−3

√
2

7 ,√
2

2 (1 + λ) if 5−3
√

2
7 ≤ λ ≤ 1,

=:

{
D7,1(λ) if 0 ≤ λ < 5−3

√
2

7 ,

D7,2(λ) if 5−3
√

2
7 ≤ λ ≤ 1.

(8) s = 5 + 4
√

2, 0 ≤ θ ≤ π
4 .

Apply again lemma 2.5.8, this time to a = 1− 2
(
1 +
√

2
)
λ and b =

(
5 + 4

√
2
)
λ− 2

(
1 +
√

2
)
.

As usual, we notice that a < 0 if and only if λ >
√

2−1
2 , b < 0 if and only if λ < 6−2

√
2

7 and a < b if

and only if λ > 3+4
√

2
23 . All together, we can say that, for 3+4

√
2

23 < λ < 6−2
√

2
7 , we have

sup
0≤θ≤π4

|gλ(5 + 4
√

2, θ)| =
√
a2 + b2 =

√
13 + 8

√
2−

(
56 + 40

√
2
)
λ+

(
69 + 48

√
2
)
λ2.

Also, notice that, for any λ ∈ [0, 1], we are going to have b < −
(
1 +
√

2
)
a and a <

(
1−
√

2
)
b.

Hence,

sup
0≤θ≤π4

|gλ(5 + 4
√

2, θ)|

=





√
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 3+4
√

2
23 ,√

13 + 8
√

2−
(
56 + 40

√
2
)
λ+

(
69 + 48

√
2
)
λ2 if 3+4

√
2

23 ≤ λ < 6−2
√

2
7 ,

2
(
1 +
√

2
)
λ− 1 if 6−2

√
2

7 ≤ λ ≤ 1,

=:





D8,1(λ) if 0 ≤ λ < 3+4
√

2
23 ,

D8,2(λ) if 3+4
√

2
23 ≤ λ < 6−2

√
2

7 ,

D8,3(λ) if 6−2
√

2
7 ≤ λ ≤ 1.

(9) θ = 0, 1 ≤ s ≤ 5 + 4
√

2.

We have
gλ(s, 0) = 1−

√
2(1 + s)λ,

gλ(1, 0) = 1− 2λ,

gλ(5 + 4
√

2, 0) = 1− 2
(

1 +
√

2
)
λ,

g′λ(s, 0) = − λ√
2(1 + s)

6= 0 for λ 6= 0.
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Then,

sup
1≤s≤5+4

√
2

|gλ(s, 0)| = max
{
|1− 2λ|, |1− 2(1 +

√
2)λ|

}

=

{
1− 2λ if 0 ≤ λ < 2−

√
2

2 ,

2
(
1 +
√

2
)
λ− 1 if 2−

√
2

2 ≤ λ ≤ 1,

=:

{
D9,1(λ) if 0 ≤ λ < 2−

√
2

2 ,

D9,2(λ) if 2−
√

2
2 ≤ λ ≤ 1.

(10) θ = π
4 , 1 ≤ s ≤ 5 + 4

√
2.

We have

gλ

(
s,
π

4

)
=

√
2

2

[
1 + sλ−

√
2(1 + s)(1 + λ)

]
.

Then

gλ

(
1,
π

4

)
= −
√

2

2
(1 + λ),

gλ

(
5 + 4

√
2,
π

4

)
=

√
2

2

[(
3 + 2

√
2
)
λ−

(
1 + 2

√
2
)]
,

g′λ
(
s0,

π

4

)
= 0 if and only if s0 =

(1 + λ)2

2λ2
− 1

and since we need to ensure that 1 < s0 < 5 + 4
√

2, we need 2
√

2−1
7 < λ < 1. In that case,

gλ

(
s0,

π

4

)
= −
√

2(1 + 3λ2)

4λ
.

Hence,

sup
1≤s≤5+4

√
2

∣∣∣gλ
(
s.
π

4

)∣∣∣ =





√
2

2

[(
1 + 2

√
2
)
−
(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2−1
7 ,

√
2(1+3λ2)

4λ if 2
√

2−1
7 ≤ λ ≤ 1,

=:





D10,1(λ) if 0 ≤ λ < 2
√

2−1
7 ,

D10,2(λ) if 2
√

2−1
7 ≤ λ ≤ 1.

Since (the reader can take a look at Figure 2.18)

D6(λ) ≤





D8,2(λ) if
√

2− 1 < λ < 6−2
√

2
7 ,

D8,3(λ) if 6−2
√

2
7 ≤ λ < 1,

we can rule out case (6). Since (see Figures 2.19 and 2.20)

D7,1(λ) ≤ D10,1(λ) for 0 ≤ λ < 5−3
√

2
7

D7,2(λ) ≤





D10,1(λ) if 5−3
√

2
7 ≤ λ < 2

√
2−1
7 ,

D10,2(λ) if 2
√

2−1
7 ≤ λ ≤ 1,
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we can rule out case (7). Since

D8,1(λ) = D10,1(λ) for 0 ≤ λ < 2
√

2− 1

7

we can rule out the expression D8,1(λ) of case (8). Since

D9,1(λ) = D7,1(λ) for 0 ≤ λ < 5−3
√

2
7 ,

D9,2(λ) = D8,3(λ) for 6−2
√

2
7 ≤ λ ≤ 1,

we can directly rule out case (9). Furthermore, since (see Figure 2.21)

D8,2(λ) ≤ D10,2(λ) for 3+4
√

2
23 ≤ λ < 6−2

√
2

7 ,

D8,3(λ) ≤ D10,2(λ) for 6−2
√

2
7 ≤ λ ≤ (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 ,

we can conclude that

sup
(s,θ)∈C(2)

π
4

|gλ(s, θ)| =





D10,1(λ) if 0 ≤ λ < 2
√

2−1
7 ,

D10,2(λ) if 2
√

2−1
7 ≤ λ < (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 ,

D8,3(λ) if (4
√

2−5)
√

4
√

2+7+8−5
√

2
7 ≤ λ ≤ 1.

=





√
2

2

[
1 + 2

√
2−

(
3 + 2

√
2
)
λ
]

if 0 ≤ λ < 2
√

2−1
7 ,

√
2(1+3λ2)

4λ if 2
√

2−1
7 ≤ λ < (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 ,

2
(
1 +
√

2
)
λ− 1 if (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 ≤ λ ≤ 1,

and hence

sup
1≤s≤5+4

√
2

‖DQs(x, y)‖D(π4 )

=





√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7 x,

√
2(x2+3y2)

2y if 2
√

2−1
7 x ≤ y < (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 x,

4
(
1 +
√

2
)
y − 2x if (4

√
2−5)
√

4
√

2+7+8−5
√

2
7 x ≤ y ≤ x.

Finally, if we compare the results obtained with Pt and Qs, since
√

2(1+3λ2)
4λ ≥ 1+ λ2

1−λ whenever

λ ≤
√

2− 1, we obtain

Φπ/4(x, y) =





√
2
[(

1 + 2
√

2
)
x−

(
3 + 2

√
2
)
y
]

if 0 ≤ y < 2
√

2−1
7 x,√

2(x2+3y2)
2y if 2

√
2−1
7 x ≤ y <

(√
2− 1

)
x,

2
(
x+ y2

x−y

)
if
(√

2− 1
)
x ≤ y <

(
2−
√

2
)
x,

4
(
1 +
√

2
)
y − 2x if

(
2−
√

2
)
x ≤ y ≤ x.
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Figure 2.18: Graphs of the mappings D6(λ), D8,2(λ) and D8,3(λ).
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Figure 2.19: Graphs of the mappings D7,1(λ) and D10,1(λ).
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Figure 2.20: Graphs of the mappings D7,2(λ), D10,1(λ) and D10,2(λ).
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Figure 2.21: Graphs of the mappings D8,2(λ), D8,3(λ) and D10,2(λ).

We can see that Φπ/4(x, y) ≤ 4 +
√

2, for all (x, y) ∈ D
(
π
4

)
. Furthermore, the maximum is

attained by the polynomials

P1(x, y) = x2 +
(

5 + 4
√

2
)
y2 −

(
4 + 4

√
2
)
xy = Q5+4

√
2(x, y).

Corollary 2.5.10. Let P ∈ P
(

2D
(
π
4

))
. Then

‖P̌‖D(π4 ) ≤
(

2 +

√
2

2

)
‖P‖D(π4 ).

Moreover, equality is achieved for P1(x, y) = Q5+4
√

2(x, y) = x2 +
(
5 + 4

√
2
)
y2 −

(
4 + 4

√
2
)
xy.

Hence, the polarization constant of the polynomial space P
(

2D
(
π
4

))
is 2 +

√
2

2 .

2.5.4 Unconditional constant of P
(

2D
(
π
4

))
.

In this case, we obtain, again following the Krein-Milman Theorem,

Theorem 2.5.11 (G. Araújo, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda,
[1]). The unconditional constant of the canonical basis of P

(
2D
(
π
4

))
is 5 + 4

√
2. In other words,

the inequality
‖|P |‖D(π4 ) ≤ (5 + 4

√
2)‖P‖D(π4 ),

for all P ∈ P
(

2D
(
π
4

))
. Furthermore, the previous inequality is sharp and equality is attained for

the polynomials ±P1(x, y) = ±Q5+4
√

2(x, y) = ±
[
x2 + (5 + 4

√
2)y2 − (4 + 4

√
2)xy

]
.

Proof. We just need to calculate

sup
{
‖|P |‖D(π4 ) : P ∈ ext

(
BD(π4 )

)}
.

In order to calculate the above supremum we use the extreme polynomials described in Lemma
2.5.5. If we consider first the polynomials Pt, then |Pt| =

(
|t|, 4 + t+ 4

√
1 + t, 2 + 2t+ 4

√
1 + t

)
.
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Now, using Lemma 2.5.5 we have

sup
−1≤t≤1

‖|Pt|‖D(π4 ) = sup
−1≤t≤1

max

{
|t|, 1

2

(
|t+ 4 + t+ 4

√
1 + t+ 2 + 2t+ 4

√
1 + t

)}

= sup
−1≤t≤1

1

2

(
|t|+ 6 + 3t+ 8

√
1 + t

)
= 5 + 4

√
2.

Notice that the above supremum is attained at t = 1. On the other hand, if we consider the

polynomials Qs, we have |Qs| =
(

1, s, 2
√

2(1 + s)
)

. Now, using Lemma 2.5.5 we have

sup
1≤s≤5+4

√
2

‖|Qs|‖D(π4 ) = sup
1≤s≤5+4

√
2

max

{
1,

1

2

(
1 + s+ 2

√
2(1 + s)

)}

= sup
1≤s≤5+4

√
2

1

2

(
1 + s+ 2

√
2(1 + s)

)
= 5 + 4

√
2.

Observe that the last supremum is now attained at s = 5 + 4
√

2.

2.6 The case of BD(π2 )

We shall study now the case of homogeneous polynomials of degree 2, but with the norm considered
over vectors on D

(
π
2

)
. As with the case of D

(
π
4

)
, we shall first study the geometry of BD(π2 ).

2.6.1 The geometry of BD(π
2 )

Theorem 2.6.1 (G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, [77]). The projec-
tion of SD(π2 ) over the ab-plane is [−1, 1]2.

Proof. Using the second formula in Theorem 2.5.1 we have that

‖(a, b, c)‖D(π2 ) ≥ max{|a|, |b|},

for all (a, b, c) ∈ R3. This shows right away that πab(SD(π2 )) ⊂ [−1, 1]2. In order to prove that

[−1, 1]2 ⊂ πab(SD(π2 )) take (a, b) ∈ R2 so that |a| ≤ 1 and |b| ≤ 1.

Then, using again the same formula, one shows easily that

∥∥(a, b, 2
√

(1− a)(1− b)
)∥∥
D(π2 )

= max

{
|a|, |b|, 1

2

∣∣∣a+ b+
√

(a− b)2 + 4(1− a)(1− b)
∣∣∣
}

= max

{
|a|, |b|, 1

2

∣∣∣a+ b+
√

(2− a− b)2
∣∣∣
}

= max {|a|, |b|, 1} = 1.
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Figure 2.22: SD(π2 ). The extreme points of BD(π2 ) are drawn with a thick line and dots.

Observe that, similarly,

∥∥∥
(
a, b,−2

√
(1 + a)(1 + b)

)∥∥∥
D(π2 )

= 1.

This concludes the proof.

Theorem 2.6.2 (G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, [77]). If we define
the mappings

G1(a, b) = 2
√

(1− a)(1− b)
and

G2(a, b) = −f+(−a,−b) = −2
√

(1 + a)(1 + b),

for every (a, b) ∈ [−1, 1]2 and the set

Υ = {(a, b, c) ∈ R3 : (a, b) ∈ ∂[−1, 1]2 and G2(a, b) ≤ c ≤ G1(a, b)},

where ∂[−1, 1]2 is the boundary of [−1, 1]2, then
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(a) SD(π2 ) = graph(G1) ∪ graph(G2) ∪Υ.

(b) The set ext(BD(π2 )) consists of the elements

±
(

1, t,−2
√

2(1 + t)
)
, ±

(
t, 1,−2

√
2(1 + t)

)
and ± (1, 1, 0),

with t ∈ [−1, 1].

Proof. As for part (a), we have already seen in the proof of Theorem 2.6.1 that

graph(G1) ∪ graph(G2) ⊂ S(π2 ).

Also, if (a, b, c) ∈ Υ, then G2(a, b) ≤ c ≤ G1(a, b) with max{|a|, |b|} = 1. Suppose a = −1. Then
0 ≤ c ≤ 2

√
2(1− b) with |b| ≤ 1 and

1

2

∣∣∣a+ b+ sign(c)
√

(a− b)2 + c2
∣∣∣ ≤ 1

2

∣∣∣−1 + b+
√

(1 + b)2 + 8(1− b)
∣∣∣

=
1

2

∣∣∣−1 + b+
√

(3− b)2
∣∣∣ = 1.

Hence using the second formula in Theorem 2.5.1 we see that ‖(−1, b, c)‖D(π2 ) = 1. With similar
considerations, we can see that the same holds if a = 1 or |b| = 1. Therefore

graph(G1) ∪ graph(G2) ∪Υ ⊂ S(π2 ).

On the other hand, suppose (a, b, c) /∈ graph(G1) ∪ graph(G2) ∪Υ. Obviously, (0, 0, 0) /∈ SD(π2 ), so
we can also assume that (a, b, c) 6= (0, 0, 0). The straight line {λ(a, b, c) : λ ∈ R} certainly meets the
set graph(G1)∪graph(G2)∪Υ as natural observations may entail. Put, (a, b, c) = λ0(a0, b0, c0) with
λ0 6= 0, 1 and (a0, b0, c0) ∈ graph(G1)∪graph(G2)∪Υ. Then ‖(a, b, c)‖D(π2 ) = λ0‖(a0, b0, c0)‖D(π2 ) =
λ0 6= 1, and therefore (a, b, c) /∈ S(π2 ). This concludes part (a).

Part (b) is an easy consequence of the fact that the sets graph(G1), graph(G2) and Υ are ruled
surfaces in R3. Actually Υ is contained in the four planes a = ±1 and b = ±1. Using this with
the help of Figure 2.22 the reader will soon arrive at the conclusion that the only possible extreme
points are contained in the intersections graph(G1)∩Υ, graph(G2)∩Υ and graph(G1)∩graph(G2).
The union of these three sets consists of the elements

±
(

1, t,−2
√

2(1 + t)
)
, ±

(
t, 1,−2

√
2(1 + t)

)
, (±1, t, 0), and (t,±1, 0),

with t ∈ [−1, 1]. Observe that (±1, t, 0) and (t,±1, 0) with |t| < 1 cannot obviously be extreme and

the point±(1,−1, 0) are already considered in the curves
(

1, t,−2
√

2(1 + t)
)

, ±
(
t, 1,−2

√
2(1 + t)

)

with t ∈ [−1, 1]. Hence the candidates to be extreme points of BD(π2 ) reduce to

±
(

1, t,−2
√

2(1 + t)
)
, ±

(
t, 1,−2

√
2(1 + t)

)
and ± (1, 1, 0),

with t ∈ [−1, 1]. Constructing a supporting hyperplane to each of the previous points is a straight-
forward exercise and it finishes the proof.

We shall also include a sketch of SD(π2 ) in Figure 2.22.
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2.6.2 Markov and Bernstein inequalities in P
(

2D
(
π
2

))
.

As before, we shall start first with a Bernstein type estimate:

Theorem 2.6.3 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda,
[64]). . For every (x, y) ∈ D

(
π
2

)
and P ∈ P

(
2D
(
π
2

))
we have that

‖∇P (x, y)‖2 ≤ Φπ/2(x, y)‖P‖D(π2 ),

with

Φπ/2(x, y) =





√
16(x− y)2 + 4(x2 + y2) if 0 ≤ y ≤ x

2 ,√
x4

y2 + 4(x2 + y2) if 0 < x
2 < y ≤ x,√

y4

x2 + 4(x2 + y2) if 0 < x < y ≤ 2x,√
16(y − x)2 + 4(x2 + y2) if 2x < y ≤ 1.

Proof. We want to calculate

sup
{
‖∇P (x, y)‖2 : P ∈ ext

(
BD(π2 )

)}
.

For P = (1, 1, 0), we have ‖∇P (x, y)‖22 = 4(x2 + y2).
For the rest of polynomials, the case xy = 0 is trivial, so assume that both x 6= 0 and y 6= 0. First,
consider Pt = (t, 1,−2

√
2(1 + t)). Then,

‖∇Pt(x, y)‖22 = 4t2x2 + 8(1 + t)y2 − 8t
√

2(1 + t)xy + 4y2 + 8(1 + t)x2 − 8
√

2(1 + t)xy.

Make now the change u =
√

2(1 + t) (so u ∈ [0, 2]) to have

gx,y(u) := ‖∇Pu(x, y)‖22 = x2u4 − 4xyu3 + 4y2u2 + 4(x2 + y2).

The critical points for gx,y are u = 0, u = 2y
x andu = y

x . Notice g′′x,y( 2y
x ) > 0, so we are in a relative

minimum and therefore this point shall not be taken into consideration. Also,

gx,y(0) = 4(x2 + y2),

gx,y

(y
x

)
=
y4

x2
+ 4(x2 + y2),

gx,y(2) = 16(x− y)2 + 4(x2 + y2).

Hence,

sup
{
‖∇Pt(x, y)‖22 : −1 ≤ t ≤ 1

}
=

{
max

{
gx,y(0), gx,y

(
y
x

)
, gx,y(2)

}
if 0 ≤ y

x ≤ 2 ,

max {gx,y(0), gx,y(2)} otherwise.

=

{
max

{
gx,y

(
y
x

)
, gx,y(2)

}
if 0 ≤ y

x ≤ 2 ,

gx,y(2) otherwise.

Since gx,y(2) ≤ gx,y
(
y
x

)
if 0 ≤ y

x ≤ 2, we conclude that

sup
{
‖∇Pt(x, y)‖22 : −1 ≤ t ≤ 1

}
=

{
y4

x2 + 4(x2 + y2) if 0 ≤ y
x ≤ 2 ,

16(x− y)2 + 4(x2 + y2) otherwise.
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Figure 2.23: Graph of the mapping Φπ/2(x, y)

Since Qt(x, y) = Pt(y, x), by symmetry, we obtain

sup
{
‖∇Qt(x, y)‖22 : −1 ≤ t ≤ 1

}
=

{
x4

y2 + 4(x2 + y2) if 0 ≤ x
y ≤ 2 ,

16(x− y)2 + 4(x2 + y2) otherwise.

Putting all together we have that sup
−1≤t≤1

{
‖∇Pt(x, y)‖22, ‖∇Qt(x, y)‖22

}
is given by





max
{
y4

x2 + 4(x2 + y2), 16(x− y)2 + 4(x2 + y2)
}

if 0 ≤ y
x ≤ 1

2 ,

max
{
y4

x2 + 4(x2 + y2), x
4

y2 + 4(x2 + y2)
}

if 1
2 ≤

y
x ≤ 2,

max
{
x4

y2 + 4(x2 + y2), 16(x− y)2 + 4(x2 + y2)
}

if 2 ≤ y
x .

Taking the latter into account, we can conclude that

‖∇P (x, y)‖2 ≤ Φπ/2(x, y)‖P‖D(π2 ),

for any P ∈ D(π2 ), where

Φπ/2(x, y) =





√
16(x− y)2 + 4(x2 + y2) if 0 ≤ y ≤ x

2 ,√
x4

y2 + 4(x2 + y2) if 0 < x
2 < y ≤ x,√

y4

x2 + 4(x2 + y2) if 0 < x < y ≤ 2x,√
16(y − x)2 + 4(x2 + y2) if 2x < y ≤ 1.
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Figure 2.24: Graph of the mapping Ψπ/2(x, y)

It may be interesting for the reader to take a look to the graph of the function Φπ/2 in Figure 2.23.
The different parts described by the different formulae are indicated by a thicker line.

Using the previous inequality we can derive the following Markov type estimate:

Corollary 2.6.4. For every (x, y) ∈ D
(
π
2

)
, we have

‖DP (x, y)‖2 ≤ 2
√

5‖P‖D(π2 ), (2.6.1)

with equality attained for ±P1(x, y) = ±Q1(x, y) = ±(x2 + y2 − 4xy).

Proof. It suffices to check that

max
(x,y)∈D(π2 )

Φπ/2(x, y) = 2
√

5,

being the maximum attained at the points (1, 0) and (0, 1). An inspection of the proof of Proposition
2.6.3 reveals that equality in (2.6.1) holds for the extreme polynomials ±P1 = ±Q1, or in other
words ±(x2 + y2 − 4xy).

2.6.3 Polarization constant of P
(

2D
(
π
2

))
.

To conclude the result on this issue, we shall first derive a Bernstein-type inequality. Same thing as
we did in the case of D

(
π
4

)
, for which we had to state first lemma 2.5.8, we state first the following

result that shall be useful for the proof of Theorem 2.6.6:
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Lemma 2.6.5. Let f(t) = a cos t+ b sin t be defined for 0 ≤ t ≤ π
2 and with ab 6= 0. Then,

max
0≤θ≤π2

|f(t)| =
{

max{|a|, |b|} if ab < 0,√
a2 + b2 otherwise.

Theorem 2.6.6 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda,
[64]). For every (x, y) ∈ D(π2 ) and P ∈ P(2D(π2 )) we have that

‖DP (x, y)‖D(π2 ) ≤ Ψπ/2(x, y)‖P‖D(π2 ), (2.6.2)

where

Ψπ/2(x, y) =





2(2x− y) if 0 ≤ y < x
2 ,

2
(
y + x2

2y

)
if x

2 ≤ y < x,

2
(
x+ y2

2x

)
if x ≤ y < 2x,

2(2y − x) if y ≥ 2x.

Moreover, inequality (2.6.2) is optimal for each (x, y) ∈ D(π2 ).

Proof. In order to calculate Ψπ/2(x, y) := sup{‖DP (x, y)‖D(π2 ) : ‖P‖D(π2 )) ≤ 1}, by the Krein-
Milman approach, it suffices to calculate

sup{‖DP (x, y)‖D(π2 ) : P ∈ ext(BD(π2 ))}.

Again, The easy case xy = 0 is trivial and shall not be taken into consideration, so assume that both
x 6= 0 and y 6= 0. Let us deal first with the polynomials Qt = (1, t,−2

√
2(1 + t)), with t ∈ [−1, 1].

Since Qt(x, y) = x2 + ty2 − 2
√

2(1 + t)xy, then

∇Qt(x, y) =
(

2x− 2
√

2(1 + t)y, 2ty − 2
√

2(1 + t)x
)
.

Therefore,

‖DQt(x, y)‖D(π2 ) = sup
(h,k)∈D(π2 )

∣∣∣
(

2x− 2
√

2(1 + t)y
)
h+

(
2ty − 2

√
2(1 + t)x

)
k
∣∣∣ .

In order to calculate the above supremum we can restrict attention to the extreme points of D
(
π
2

)

(except for the point (h, k) = (0, 0) that does not contribute anything to the supremum). Thus,
putting (h, k) = (cos θ, sin θ) with 0 ≤ θ ≤ π

2 and λ = y
x ,

sup
−1≤t≤1

‖∇Qt(x, y)‖D(π2 ) = 2x sup
(t,θ)∈Cπ

2

∣∣∣
(

1−
√

2(1 + t)λ
)

cos θ +
(
tλ−

√
2(1 + t)

)
sin θ

∣∣∣ ,

where Cπ
2

= [−1, 1]× [0, π2 ].
Define

fλ(t, θ) =
(

1−
√

2(1 + t)λ
)

cos θ +
(
tλ−

√
2(1 + t)

)
sin θ,

and consider the following cases:

• 0 < θ < π
2 , −1 < t < 1.



82 CHAPTER 2. INEQUALITIES IN THREE DIMENSIONAL POLYNOMIAL SPACES

The critical points of fλ in the interior of Cπ
2

are the solutions of the equations:

∂fλ
∂t

(t0, θ0) =
−
√

2λ

2
√

1 + t0
cos θ0 +

(
λ−

√
2

2
√

1 + t0

)
sin θ0 = 0, (2.6.3)

∂fλ
∂θ

(t0, θ0) = −
(

1−
√

2(1 + t0)λ
)

sin θ0 +
(
t0λ−

√
2(1 + t0)

)
cos θ0 = 0. (2.6.4)

Working with equation (2.6.3), we get to the next expression:

sin θ0 =

√
2

2
√

1+t0
λ

λ−
√

2
2
√

1+t0

cos θ0 =

√
2λ

2λ
√

1 + t0 −
√

2
cos θ0 (2.6.5)

and, plugging the expression in (2.6.5) into equation (2.6.4) we obtain



(
t0λ−

√
2(1 + t0)

)
−
√

2λ
(

1−
√

2(1 + t0)λ
)

2λ
√

1 + t0 −
√

2


 cos θ0 =

[
t0λ−

√
2(1 + t0) + λ

]
cos θ0 = 0.

Now, since 0 < θ0 <
π
2 we can have cos θ0 6= 0 and hence,

λ(1 + t0) =
√

2(1 + t0),

from which t0 = 2
λ2 − 1.

If we now apply the condition −1 < t0 < 1 we get the restriction λ > 1, that is, we will only
have critical points in the interior of Cπ

2
when y > x.

Now, plugging t0 in (2.6.5), we obtain tan θ0 = λ, from which

sin θ0 =
λ√

1 + λ2
and cos θ0 =

1√
1 + λ2

.

Then,

2x|fλ(t0, θ0)| = 2x

∣∣∣∣∣

(
1−

√
4

λ2
λ

)
1√

1 + λ2
+

[(
2

λ2
− 1

)
λ−

√
4

λ2

]
λ√

1 + λ2

∣∣∣∣∣

= 2x

∣∣∣∣
−1√

1 + λ2
− λ2

√
1 + λ2

∣∣∣∣ = 2x
√

1 + λ2 (2.6.6)

• t = −1 and 0 ≤ θ ≤ π
2 .

Using lemma 2.6.5, we may conclude that

2x max
0≤θ≤π2

|fλ(−1, θ)| = 2xmax{1, λ}. (2.6.7)

• t = 1, 0 ≤ θ ≤ π
2 .
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In this case we shall study the expression 2x|fλ(1, θ)| = 2x|(1− 2λ) cos θ+ (λ− 2) sin θ|. Again, by
lemma 2.6.5, we have the following:

max
0≤θ≤π2

2x|fλ(1, θ)| =
{

2xmax{|1− 2λ|, |λ− 2|} if 0 ≤ λ < 1
2 or λ > 2,

2x
√

(2λ− 1)2 + (2− λ)2 if 1
2 ≤ λ ≤ 2.

(2.6.8)

It can be easily checked that the expression we have arrived at in (2.6.8) is greater than (2.6.6).

• θ = 0, −1 ≤ t ≤ 1.

We need to calculate

2x max
−1≤t≤1

|fλ(t, 0)| = 2x max
−1≤t≤1

∣∣∣1−
√

2(1 + t)λ
∣∣∣ = 2xmax{1, |1− 2λ|}

=

{
2x if 0 ≤ λ < 1,

2x(2λ− 1) if λ ≥ 1.
(2.6.9)

Observe that the latter is always greater that (2.6.7).

• θ = π
2 , −1 ≤ t ≤ 1.

We have to calculate
2x max
−1≤t≤1

|tλ−
√

2(1 + t)|,

for which we define h(t) = tλ−
√

2(1 + t), for t ∈ [−1, 1]. The critical points of h satisfy

h′(t) = λ−
√

2

2
√

1 + t
= 0,

from which

t1 =
1

2λ2
− 1.

Observe that t0 ∈ [−1, 1] if and only if |λ| ≥ 1
2 .

To summarize we have equation

2x max
−1≤t≤1

|tλ−
√

2(1 + t)| =
{

2xmax {|h(−1)|, |h(1)|, |h(t1)|} if λ ≥ 1
2 ,

2xmax {|h(−1)|, |h(1)|} if 0 ≤ λ < 1
2 ,

=

{
2x
(
λ+ 1

2λ

)
if λ ≥ 1

2 ,

2x(2− λ) if 0 ≤ λ < 1
2 .

(2.6.10)

Since we have already discarded (2.6.6) and (2.6.7), putting together (2.6.8), (2.6.9) and (2.6.10)
we arrive at

2x sup
(t,θ)∈Cπ

2

|fλ(t, θ)| = 2x





max {|1− 2λ|, |2− λ|, 1} if 0 ≤ λ ≤ 1
2 ,

max
{√

(2λ− 1)2 + (2− λ)2, 1,
(
λ+ 1

2λ

)}
if 1

2 ≤ λ ≤ 1,

max
{√

(2λ− 1)2 + (2− λ)2, 2λ− 1,
(
λ+ 1

2λ

)}
if 1 ≤ λ ≤ 2,

max
{(
λ+ 1

2λ

)
, |1− 2λ|, |2− λ|

}
if λ ≥ 2.
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The only comparisons in the previous expression with some difficulty are

λ+
1

2λ
and

√
(2λ− 1)2 + (λ− 2)2.

Through standard calculations, we deduce that λ+ 1
2λ ≥

√
(2λ− 1)2 + (λ− 2)2 whenever λ ≤ 1+

√
2

2 .
Since we shall consider this situation when λ ≥ 1

2 , we conclude

sup
−1≤t≤1

‖∇Qt(x, y)‖D(π2 ) = Ψ1(x, y),

where

Ψ1(x, y) =





2(2x− y) if 0 ≤ y < x
2 ,

2
(
y + x2

2y

)
if x

2 ≤ y < 1+
√

2
2 x,

2
√

(2x− y)2 + (2y − x)2 if 1+
√

2
2 x ≤ y < 2x,

2(2y − x) if y ≥ 2x.

Using the symmetry Pt(x, y) = Qt(y, x), we may see

sup
−1≤t≤1

‖∇Pt(x, y)‖D(π2 ) = Ψ2(x, y),

where

Ψ2(x, y) = Ψ1(y, x) =





2(2x− y) if 0 ≤ y < x
2 ,

2
√

(2x− y)2 + (2y − x)2 if x
2 ≤ y <

(
2
√

2− 2
)
x,

2
(
x+ y2

2x

)
if
(
2
√

2− 2
)
x ≤ y < 2x,

2(2y − x) if y ≥ 2x.

Therefore, we conclude

Ψπ/2(x, y) = max {Ψ1(x, y),Ψ2(x, y)}

=





2(2x− y) if 0 ≤ y < x
2 ,

max
{

2
√

(2x− y)2 + (2y − x)2, 2
(
y + x2

2y

)}
if x

2 ≤ y ≤
(
2
√

2− 2
)
x,

max
{

2
(
y + x2

2y

)
, 2
(
x+ y2

2x

)}
if
(
2
√

2− 2
)
x ≤ y ≤ 1+

√
2

2 x,

max
{

2
(
x+ y2

2x

)
, 2
√

(2x− y)2 + (2y − x)2
}

if 1+
√

2
2 x ≤ y ≤ 2x,

2(2y − x) if y ≥ 2x.

=





2(2x− y) if 0 ≤ y < x
2 ,

2
(
y + x2

2y

)
if x

2 ≤ y < x,

2
(
x+ y2

2x

)
if x ≤ y < 2x,

2(2y − x) if y ≥ 2x.

As with the case of Φπ/2, we can take a look to the graph of Ψπ/2 in Figure 2.24, where we have
used a thicker line to indicate the different regions defined by the different formulae.
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Taking the maximum of Ψπ/2(x, y) with (x, y) ∈ D
(
π
2

)
we can obtain the polarization constant

of P
(

2D
(
π
2

))
:

Corollary 2.6.7. Let P ∈ P
(

2D
(
π
2

))
. Then

‖P̌‖D(π2 ) ≤ 2‖P‖D(π2 ).

Moreover, equality is achieved for ±P1(x, y) = ±(x2 + y2 − 4xy).

2.6.4 Unconditional constant of P
(

2D
(
π
2

))

Let us conclude finally with the unconditional constant for P
(

2D
(
π
2

))
.

Theorem 2.6.8 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda,
[64]). The unconditional constant of the canonical basis of the space P(2D(π2 )) is 3. In other words,
the inequality

‖|ax2 + by2 + cxy|‖D(π2 ) ≤ 3‖ax2 + by2 + cxy‖D(π2 ),

holds for all a, b, c ∈ R and 3 is optimal since equality is achieved for the polynomials ±(x2 + y2 −
4xy).

Proof. Observe that the extreme polynomials in the unit ball of P(2D(π2 )) are

Pt(x) = tx2 + y2 − 2
√

2(1 + t)xt,

Qt(x) = x2 + ty2 − 2
√

2(1 + t)xt,

with t ∈ [−1, 1]. If we plug these polynomials in Theorem 2.5.1, due to the symmetry of the problem
we end up with the maximum of

max

{
|t|, 1, 1

2

∣∣∣|t|+ 1 +
√

(|t| − 1)2 + 8(1 + t)
∣∣∣
}
.

The latter function attains its maximum at 1 and turns out to be 3.

.

2.7 Conclusions

If we put together all the constants that came out during all our calculations, we can derive the
following table:

P(2∆) P
(

2D
(
π
2

))
P(2�)

Markov constants 2
√

10 2
√

5
√

13

Polarization constants 3 2 3
2

Unconditional Constants 2 3 5
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Furthermore, all the constants appearing in the previous table are sharp. Actually, the extreme
polynomials where the constants are attained are the following:

1. ±(x2 + y2 − 6xy) for the simplex.

2. ±(x2 + y2 − 4xy) for the sector D
(
π
2

)
.

3. ±(x2 + y2 − 3xy) for the unit square.

Remark also that Markov and Polarization constants (where the comparison between the norms of
a polynomial and its differential lies beneath) seem to happen decreasingly with the factor p in the
space `2p, while the unconditional constant seems to happen increasingly. The question that arises
now, and that may constitute an interesting way for research, is whether this behavior translates
to the general case when the unit ball is the intersection of the unit ball of `2p (for 1 < p < ∞)
with the first quadrant. Furthermore, we shall wonder whether all the three constants, Markov’s,
Polarization and Unconditional, happens to turn into equality for the same polynomial.



Chapter 3

The Bohnenblust-Hille inequality

While in the previous chapter we stressed the existence of bounds between the operator norm (or
the euclidean length) of the differential of a polynomial and the operator norm of the polynomial
itself, in this chapter we shall study how a polynomial behaves when applied different norms. More
concretely, if P (x) =

∑
|α|=m aαx

α is a homogeneous polynomial of degree m defined over Kn,

(K = R or C) we define

|P |p =


 ∑

|α|=m
|aα|p




1
p

.

We know that, working over Rn (endowed with the infinite norm), the polynomial norm ‖ · ‖ (still
defined as supremum over the unit ball) and the `p norm | · |p (p ≥ 1) are equivalent, and therefore
there exist constants k(m,n),K(m,n) > 0 such that

k(m,n)|P |p ≤ ‖P‖ ≤ K(m,n)|P |p, (3.0.1)

for all P ∈ P(mRn). The latter inequalities may provide a good estimate on ‖P‖ (which usually
is hard to compute) as long as we know the exact value of the best possible constants k(m,n) and
K(m,n) appearing in (3.0.1).
The problem presented above is an extension of the the well known polynomial Bohnenblust-Hille
inequality (polynomial BH inequality for short). It was proved in [22] that there exists a constant
Dm ≥ 1 such that for every P ∈ P(m`n∞) we have

|P | 2m
m+1
≤ Dm‖P‖. (3.0.2)

Observe that (3.0.2) coincides with the first inequality in (3.0.1) for p = 2m
m+1 except for the fact that

Dm in (3.0.2) can be chosen in such a way that it is independent from the dimension n. Actually
Bohnenblust and Hille showed that 2m

m+1 is optimal in (3.0.2) in the sense that for p < 2m
m+1 , any

constant D fitting in the inequality

|P |p ≤ D‖P‖,
for all P ∈ P(m`n∞) depends necessarily on n.
The best constants in (3.0.2) may depend on whether we consider the real or the complex version

87
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of `n∞, which motivates the following definition

DK,m := inf
{
D > 0 : |P | 2m

m+1
≤ D‖P‖, for all n ∈ N and P ∈ P(m`n∞)

}

If we restrict attention to a certain subset E of P(m`n∞) for some n ∈ N, then we define

DK,m(E) := inf
{
D > 0 : |P | 2m

m+1
≤ D‖P‖ for all P ∈ E

}
.

For simplicity we will often use the notation DK,m(n) instead of DK,m(P(m`n∞)). Note that
DK,m(n) ≤ DK,m for all n ∈ N.

Definition 3.0.1. The asymptotic hypercontractivity constant of the real polynomial BH inequality
is

H∞,R := lim sup
m

m
√
DR,m.

Similarly, if we restrict attention to polynomials in n variables then we define

H∞,R(n) := lim sup
m

m

√
DR,m(n).

Of course H∞,R(n) ≤ H∞,R, for all n ∈ N.

In Section 3.1 we show that H∞,R is finite (in fact later we will show that its precise value is 2);
observe that for every ε > 0 there exists Nε ∈ N such that DR,m ≤ (H∞,R + ε)m for all m ≥ Nε and
H∞,R is optimal having this property. Hence H∞,R is a sharp measure of the asymptotic growth of
the constants DR,m. Exactly the same thing happens with the constants H∞,R(n).

It was recently shown in [35] that the complex polynomial Bohnenblust–Hille inequality is, at
most, hypercontractive, that is, we can take C > 1 so that DC,m ≤ Cm for every natural number
m.

The multilinear Bohnenblust–Hille inequality asserts that there is a constant CK,m (depending
only on m and K) such that




n∑

i1,...,im=1

|L(ei1 , . . . , eim)| 2m
m+1




m+1
2m

≤ C ‖L‖ ,

for all positive integers n and all L ∈ L(m`n∞). Observe that the left hand side of the previous
inequality is the ` 2m

m+1
-norm of the vector (L(ei1 , . . . , eim))

n
i1,...,im=1 of the coefficients of L, which

we denote by |L| 2m
m+1

. Thus, the multilinear Bohnenblust-Hille constant CK,m (multilinear BH

constant for short) is defined as

CK,m := inf
{
C > 0 : |L| 2m

m+1
≤ C‖L‖, for all n ∈ N and L ∈ L(m`n∞)

}
.

The polynomial and multilinear Bohnenblust–Hille inequalities have important applications in
different fields of Mathematics and Physics, such as Operator Theory, Fourier and Harmonic Anal-
ysis, Complex Analysis, Analytic Number Theory and Quantum Information Theory. Since its
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appearance in 1931, in the Annals of Mathematics (intended to solve Bohr’s famous absolute con-
vergence problem within the theory of Dirichlet series) it has proved to be a field of study that
has provided interesting results (see [22, 21]), but it has been in the last few years, with works
of A. Defant, L. Frerick, J. Ortega-Cerdá, M. Ounäıes, D. Popa, U. Schwarting, K. Seip, among
others (see, e.g., [42, 45, 34, 75, 85, 92, 83, 46, 76, 84, 86]), where its most fruitful facet has been
shown. Remark that the study of the applications of the Bohnenblust-Hille inequality for solving
Bohr’s problem has being recently explored by several authors (see [17, 27, 36, 38, 39, 40, 42] and
references therein).

The main motivation of this chapter are the following open problems:

(I) Is the real polynomial BH inequality hypercontractive?

(II) What is the optimal growth of the real polynomial BH inequality?

(III) Can we make some links between what happens with the real case and what happens in
the complex case?

The chapter is arranged as follows. In Sections 3.1 and 3.2 we give an answer to questions (I) and
(II), showing that the real polynomial BH inequality is hypercontractive and the hypercontractivity
is actually optimal (in fact exponential). More concretely, after the results shown in those first
sections we will be able to conclude

lim sup
m
D

1/m
R,m = 2.

In the final part of the chapter we will deal with the connections between real and complex
Bohnenblust-Hille inequalities. First, we will stress the existing differences between both problems,
and how results obtained in the real case may not work in the complex setting. After that, we
shall employ some results on the geometry of spaces of polynomials in order to provide the exact
value for DC,2(2). To finish, we will use a similar technique to find the exact value of DR,2(2) and
we shall also provide lower estimates for DR,m(2) for higher values of m and HR,∞(2) by means of
numerical calculus.

3.1 The upper estimate

The proof of the subexponentiality of the complex BH inequality given in [14] lies heavily in argu-
ments restricted to complex scalars (it uses, for instance estimates from [13] for complex scalars);
so a simple adaptation for the real case does not work. The calculation of the upper estimate of
the BH inequality is quite simplified by the use of complexifications of polynomials. In particular
we are interested in the following deep result due to Visser [97], which generalizes and old result of
Chebyshev:

Theorem 3.1.1 (Visser, [97]). Let

P (y1, . . . , yn) =
∑

|α|≤m
aαy

α1
1 · · · yαnn ,
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with α = (α1, . . . , αn), |α| = α1 + · · · + αn, be a polynomial of total degree at most m ∈ N in the
variables y1, . . . , yn and with real coefficients aα. Suppose 0 ≤ k ≤ m and Pk is the homogeneous
polynomial of degree k defined by

Pk(y1, . . . , yn) =
∑

|α|=k
aαy

α1
1 · · · yαnn .

Then we have

max
z1,...,zn∈D

|Pm(z1, . . . , zn)| ≤ 2m−1 · max
x1,...,xn∈[−1,1]

|P (x1, . . . , xn)|,

where D stands for the closed unit disk in C. In particular, if P is homogeneous, then

max
z1,...,zn∈D

|P (z1, . . . , zn)| ≤ 2m−1 · max
x1,...,xn∈[−1,1]

|P (x1, . . . , xn)|.

Moreover, the constant 2m−1 cannot be replaced by any smaller one.

Let P : `n∞ (R)→ R be an m-homogeneous polynomial

P (x) =
∑
|α|=m

aαx
α

and consider the complexification PC : `n∞ (C)→ C of P given by

PC(z) =
∑

|α|=m
aαz

α.

From Theorem 3.1.1 above we know that

‖PC‖ ≤ 2m−1 ‖P‖ . (3.1.1)

Thus, since the complex polynomial Bohnenblust–Hille inequality is subexponential (see [14]), for
all ε > 0 there exists Cε > 1 such that

|P | 2m
m+1

= |PC| 2m
m+1
≤ Cε (1 + ε)

m ‖PC‖ (3.1.2)

and combining (3.1.1) and (3.1.2) we conclude that

lim sup
m
D

1/m
R,m ≤ 2.

As we mentioned earlier, Bayart et al. proved, recently, that the complex polynomial Bohnenblust–
Hille inequality is subexponential (see [14]). The following result shows that the exponential growth
of the real polynomial BH inequality is sharp in a very strong way: the exponential bound can not
be reduced in any sense, i.e., there is an exponential lower bound for DR,m which holds for every
m ∈ N.
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Theorem 3.1.2 (J.R. Campos, P. Jiménez-Rodŕıguez, G-A Muñoz-Fernández, D. Pellegrino, J.B.
Seoane-Sepúlveda, [28]).

DR,m >

(
2 4
√

3√
5

)m
> (1.17)

m

for all positive integers m > 1.

Proof. Let m be an even integer. Consider the m-homogeneous polynomial

Rm(x1, . . . , xm) =
(
x2

1 − x2
2 + x1x2

) (
x2

3 − x2
4 + x3x4

)
· · ·
(
x2
m−1 − x2

m + xm−1xm
)
.

Since ‖R2‖ = 5/4, it is simple to see that

‖Rm‖ = (5/4)
m/2

.

From the BH inequality for Rm we have


 ∑

|α|=m
|aα|

2m
m+1




m+1
2m

≤ DR,m ‖Rm‖ ,

that is,

DR,m ≥
(
3
m
2

)m+1
2m

(
5
4

)m
2
≥
(√

3
)m+1

2

(
5
4

)m
2

>

(
2 4
√

3√
5

)m
.

Now let us suppose that m is odd. Keeping the previous notation, consider the m homogeneous
polynomial

Rm (x1, ..., x2m) = (x2m + x2m−1)Rm−1 (x1, ..., xm−1) + (x2m − x2m−1)Rm−1 (xm, ..., x2m−2) .

So we have

DR,m ≥

(
4 · 3m−1

2

)m+1
2m

2 ·
(

5
4

)m−1
2

> 2m−1+ 1
m

(
4
√

3√
5

)m−1

>

(
2 4
√

3√
5

)m−1

.

3.2 The lower estimate

Using our previous results, in order to show that lim supmD
1/m
R,m = 2, we just need the following

theorem:

Theorem 3.2.1 (J.R. Campos, P. Jiménez-Rodŕıguez, G-A Muñoz-Fernández, D. Pellegrino, J.B.
Seoane-Sepúlveda, [28]). If k ∈ N is fixed, then

lim sup
m
D

1/m
R,m (2k) ≥ 21−2−k .

Therefore,

lim sup
m
D

1/m
R,m ≥ 2.
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Proof. Consider the sequence of polynomials (with norm 1) defined recursively by

Q2(x1, x2) = x2
1 − x2

2,

Q2m(x1, . . . , x2k) = Q2m−1(x1, . . . , x2m−1)2 −Q2m−1(x2m−1+1, . . . , x2m)2.

Let us show (by induction on m) that

|Qn2m |∞ ≥
(

2n

n+ 1

)2m−1

(3.2.1)

for every natural number n. The case m = 1 comes from the fact that, since

2n =

n∑

k=0

(
n

k

)
≤ (n+ 1) max

0≤k≤n

(
n

k

)
,

the 2n-homogeneous polynomial Qn2 admits the following estimate:

|Qn2 | 4n
2n+1

≥ |Qn2 |∞ = max
0≤k≤n

(
n

k

)
≥ 2n

n+ 1
. (3.2.2)

Let us now suppose that equation (3.2.1) holds for some m, and notice that

Qn2m+1(x1, x2, . . . , x2m+1) =

n∑

k=0

(
n

k

)
(−1)n−kQ2k

2m(x1, . . . , x2m)Q
2(n−k)
2m (x2m+1, . . . , x2m+1).

(3.2.3)
The coefficient of maximal absolute value in a product of polynomials in disjoint sets of variables
is the product of the respective maximal coefficients, thus

|Qn2m+1|∞ = max
0≤k≤n

(
n

k

)
|Q2k

2m |∞|Q2(n−k)
2m |∞ ≥ max

0≤k≤n

(
n

k

)(
22n

(2k + 1)(2n− 2k + 1)

)2m−1

by the induction hypothesis. However, (2k + 1)(2n− 2k + 1) ≤ (n+ 1)2 when 0 ≤ k ≤ n; thus

|Qn2m+1 |∞ ≥
(

2n

n+ 1

)2m+1−2

max
0≤k≤n

(
n

k

)
≥
(

2n

n+ 1

)2m+1−1

,

by equation (3.2.2). Therefore, the formula given in (3.2.1) holds for every positive integer m.
Next, every n-homogeneous polynomial P admits the clear estimate given by

|P | 2n
n+1
≥ |P |∞,

from which equation (3.2.1) yields that

DR,n2m(2m) ≥
(

2n

n+ 1

)2m−1

,

and the proof follows straightforwardly.
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3.3 Contractivity in finite dimensions: complex versus real
scalars

Let us first give the following result for the complex polynomial Bohnenblust-Hille constants for
polynomials on Cn, with n ∈ N fixed.

Proposition 3.3.1. For all n ≥ 2 the complex polynomial BH inequality is contractive in P(m`n∞),that
is, for all fixed n ∈ N, there are constants Dm, with limm→∞Dm = 1, so that

|P | 2m
m+1
≤ Dm‖P‖

for all P ∈ P(m`n∞).

Proof. Let P (z) =
∑
|α|=m cαz

α and f(t) = P (eit1 , . . . , eitn) =
∑
|α|=m cαe

iαt, where t = (t1, . . . , tn) ∈
Rn α ∈ (N ∪ {0})n and αt = α1t1 + · · · + αntn. . Observe that if ‖f‖ denotes the sup norm of f
on [−π, π], by the Maximum Modulus Principle ‖f‖ = ‖P‖. Also, due to the orthogonality of the
system {eiks : k ∈ Z} in L2([−π, π]) we have

‖P‖2 = ‖f‖2 ≥ 1

2π

∫ π

−π
|f(t)|2dt =

∑

|α|=m
|cα|2 = |P |22,

from which |P |2 ≤ ‖P‖. On the other hand it is well known that in Kd we have

| · |q ≤ | · |p ≤ d
1
p− 1

q | · |q, (3.3.1)

for all 1 ≤ p ≤ q. Since the dimension of P(m`n∞) is
(
m+n−1
n−1

)
, the result follows from |P |2 ≤ ‖P‖

by setting in the equation (3.3.1) p = 2m
m+1 , q = 2 and d =

(
m+n−1
n−1

)
. So Dm =

(
m+n−1
n−1

) 1
2m and

since

lim
m→∞

(
m+ n− 1

n− 1

) 1
2m

= 1,

the proof is done.

The next result shows that the real version of Proposition 3.3.1 is not valid; we stress that
Theorem 3.1.2 cannot be used here since it uses polynomials in a growing number of variables.

Proposition 3.3.2. For all fixed positive integer N ≥ 2, the exponentiality of the real polynomial
Bohnenblust-Hille inequality in P(m`N∞) cannot be improved. More precisely,

lim sup
m
D

1/m
R,m (N) ≥ 8

√
27 ≈ 1.5098

for all N ≥ 2.

Proof. If suffices to set N = 2 and prove that, for m = 4n,

DR,4n (2) ≥ 4

√
4

mπ

(
8
√

27
)m

.
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Consider the 4-homogeneous polynomial given by

P4(x, y) = x3y − xy3 = xy(x2 − y2).

A straightforward calculation shows that P4 attains its norm at ±(± 1√
3
, 1) and ±(1,± 1√

3
) and that

‖P4‖ = 2
√

3
9 . On the other hand ‖Pn4 ‖ =

(
2
√

3
9

)n
and

P4(x, y)n = xnyn
n∑

k=0

(
n

k

)
(−1)kx2ky2(n−k).

Hence, if a is the vector of the coefficients of P4, using the fact that | · | 8n
4n+1

≥ | · |2 (notice that

here | · |2 is the Euclidean norm), we have

DR,4n(2) ≥
|a| 8n

4n+1

‖P4‖n
=

[∑n
k=0

(
n
k

) 8n
4n+1

] 4n+1
8n

(
2
√

3
9

)n

≥

[∑n
k=0

(
n
k

)2] 1
2

(
2
√

3
9

)n =

√(
2n
n

)
(

2
√

3
9

)n =

√
(2n)!(

2
√

3
9

)n
n!
. (3.3.2)

Above we have used the well known formula

n∑

k=0

(
n

k

)2

=

(
2n

n

)
.

Using Stirling’s approximation formula

n! ∼
√

2πn
(n
e

)n

in (3.3.2) we have, for m = 4n,

DR,m(2) = DR,4n(2) ≥
√

(2n)!(
2
√

3
9

)n
n!
∼

√
2
√
nπ
(

2n
e

)2n
(

2
√

3
9

)n√
2πn

(
n
e

)n =
4

√
4

mπ

(
8
√

27
)m

.

3.4 The exact value of DC,2(2)

Throughout this section we will often identify, similarly as we did in chapter 2, any two-variable
polynomial az2 + bwz + cw2 or any one-variable polynomial aλ2 + bλ+ c, for a, b, c ∈ K, with the
vector (a, b, c) ∈ K3. Also, we will consider the norm ‖az2 + bwz + cw2‖D for the supremum of
|az2 + bwz + cw2| for z, w in the unit disk D of C. In a similar fashion, ‖aλ2 + bλ+ c‖D stands for
the supremum of |aλ2 + bλ+ c| for λ ∈ D. Observe that

‖az2 + bwz + cw2‖D = ‖aλ2 + bλ+ c‖D = max
|λ|=1

|aλ2 + bλ+ c|,
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being the last of the latter equalities due to the Maximum Modulus Principle.
The main result of this section depends upon the following lemma, which is of independent

interest.

Lemma 3.4.1. Let a, b, c ∈ C. There exist a′, b′, c′ ∈ R such that

‖az2 + bwz + cw2‖D ≥ ‖a′z2 + b′zw + c′w2‖D and ‖(a, b, c)‖ 4
3

= ‖(a′, b′, c′)‖ 4
3
.

Proof. If we perform the change of variables

z 7→ ze−
i arg(a)

2 and w 7→ we−
i arg(c)

2 ,

in ‖az2 +bzw+cw2‖D, we can assume (without loss of generality) that a, c ≥ 0. We can also assume
that a ≥ c by swapping z and w. We have:

|aλ2 + bλ+ c|2 =
(
aλ2 + bλ+ c

) (
aλ2 + bλ+ c

)

= a2 + acλ2 + abλ+ acλ2 + c2 + cbλ+ abλ+ bcλ+ |b|2

= a2 + c2 + |b|2 + 2
[
acRe(λ2) + aRe(bλ) + cRe(bλ)

]

= a2 + c2 + |b|2 + 2
[
acRe(λ2) + (a+ c)Re(b)Re(λ) + (a− c)Im(b)Im(λ)

]
.

Similarly, if a′, b′, c′ are real numbers, then:

|a′λ2 + b′λ+ c′|2 = a′2 + c′2 + |b′|2 + 2
[
a′c′Re(λ2) + (a′ + c′)b′Re(λ)

]
.

1. Assume first a ≥ c ≥ |b|. Then, choose

a′ =
(c

4
3 + |b| 43 )

3
4

2
3
4

, c′ = −a′, b′ = a.

Then, ‖(a, b, c)‖ 4
3

= ‖(a′, b′, c′)‖ 4
3
. On the other hand,

a′2 + c′2 + |b′|2 + 2
[
a′c′Re(λ2) + (a′ + c′)Re(λ)

]
= 2a′2 + a2 − 2a′2Re(λ2),

so that it is easy to see

‖(a′, b′, c′)‖2D = 4a′2 + a2 =
√

2(c
4
3 + |b| 43 )

3
2 + a2.

Also, giving the value λ = 1 (if Re(b) ≥ 0) or λ = −1 (if Re(b) ≤ 0), we can see that

‖az2 + cw2 + bzw‖2D ≥ a2 + c2 + |b|2 + 2ac.

Now, we want √
2(c

4
3 + |b| 43 )

3
2 + a2 ≤ a2 + c2 + |b|2 + 2ac,

that is,

c2 + |b|2 + 2ac√
2(c

4
3 + |b| 43 )

3
2

≥ 1.
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Figure 3.1: Graph of the mapping H1(x, y) on 0 ≤ y ≤ x ≤ 1

Divide both, numerator and denominator, by a2 in order to convert the problem in having to
achieve

H1(x, y) :=
x2 + y2 + 2x√
2(x

4
3 + y

4
3 )

3
2

≥ 1,

for 0 ≤ y ≤ x ≤ 1.
We can find a sketch of the function H1 over the set 0 ≤ y ≤ x ≤ 1 in Figure 3.1.

2. Assume next a ≥ |b| ≥ c. In this second part of the proof we shall need to employ a couple of
real valued functions that will come in handy to achieve our purpose. Let us first focus our
attention on the choice of the constants a′, b′, c′, as before,

a′ =

(
|c| 43 + |b| 43

) 3
4

2
3
4

, c′ = −a′, b′ = a.

In this case, choose

λ = sign(Re(b))

√
1

2
+ isign(Im(b))

√
1

2
.

Then,
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Figure 3.2: Graph of the mapping H2(x, y) on 0 ≤ x ≤ y ≤ 1

‖(a, b, c)‖D ≥ a2 + c2 + |b|2 + 2

[√
1

2
(a+ c)|Re(b)|+

√
1

2
(a− c)|Im(b)|

]

≥ a2 + c2 + |b|2 +
√

2|b|(a− c).

Hence, we will achieve the desired result if we can guarantee

√
2
(
|c| 43 + |b| 43

) 3
2

+ a2 ≤ a2 + c2 + |b|2 +
√

2(a− c)|b|,

in other words,

1 ≤ Φ1(x, y) :=
x2 + y2 +

√
2(1− x)y

√
2
(
x

4
3 + y

4
3

) 3
2

,

where 0 ≤ x ≤ y ≤ 1.

Let us focus now in another choice of constants a′, b′, c′:

a′ =

(
|a| 43 + |c| 43 + |b| 43

) 3
4

(2 + k4/3)
3
4

, c′ = −a′, b′ = ka,
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where k has been chosen so that ‖(a, b, c)‖ 4
3

= ‖(a′, b′, c′)‖ 4
3
. It can be proved that k ≈ 2.828.

Still giving the value λ = sign(Re(b))

‖(a, b, c)‖D ≥ a2 + c2 + |b|2 + 2ac,

and again we guarantee that we achieve what we are searching for if we get

4a′2 + b′2 =

(
|a| 43 + |c| 43 + |b| 43

) 3
2

(2 + k4/3)
3
2

(4 + k2) ≤ a2 + c2 + |b|2 + 2ac,

in other words,

1 ≤ Ψ1(x, y) :=

(
1 + x2 + y2 + 2yx

)
(2 + k4/3)

3
2

(4 + k2)
(
y

4
3 + x

4
3 + 1

) 3
2

,

with 0 ≤ x ≤ y ≤ 1.

It is easy to check using elementary calculus (take a look to Figure 3.2) that, if

H2(x, y) := max{Φ1(x, y), Ψ1(x, y)},

then

1 ≤ H2(x, y) for every 0 ≤ x ≤ y ≤ 1.

3. Assume finally |b| ≥ a ≥ c. Then, we may choose

a′ =

(
|a| 43 + |c| 43 + |b| 43

) 3
4

(2 + k4/3)
3
4

, c′ = −a′, b′ = ka,

where k is chosen as in the previous case. For λ = sign(Re(b)), we still need to make sure
that

1 ≤ Φ2(x, y) :=
(1 + x2 + y2 + 2xy)(2 + k4/3)

3
2

(4 + k2)(x4/3 + y4/3 + 1)
3
2

.

For λ = sign(Re(b))
√

1
2 + isign(Im(b))

√
1
2 , we need to make sure that

1 ≤ Ψ2(x, y) :=
(1 + x2 + y2 +

√
2(y − x)(2 + k4/3)

3
2

(4 + k2)(x4/3 + y4/3 + 1)
3
2

.

Next, choose

a′ =
(|a|4/3 + |c|4/3)3/4

23/4
, c′ = −a′ and b′ = |b|,

such that

‖(a′, b′, c′)‖2D = 4
(|a|4/3 + |c|4/3)3/2

23/2
+ |b|2,
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and

λ = sign(Re(b))

√
1−

(
a− c
|b|

)2

+ i sign(Im(b))
a− c
|b| .

In that case,

‖(a, b, c)‖D ≥ a2 + c2 + |b|2 + 2
[
acRe(λ2) + (a+ c)Re(b)Re(λ) + (a− c)Im(b)Im(λ)

]

= a2 + c2 + |b|2 + 2


ac

(
1− 2

(
a− c
|b|

)2
)

+ (a+ c)|Re(b)|
√

1−
(
a− c
|b|

)2

+(a− c)|Im(b)|a− c|b|

]
.

Assume first |Im(b)| ≥
√

2
2 . Then,

‖(a, b, c)‖D ≥ a2 + c2 + |b|2

+ 2

[
ac

(
1− 2

(
a− c
|b|

)2
)

+ (a− c)
√

2

2
|b|a− c|b|

]
.

Hence, we will achieve what we are searching for if we can assure that

1 ≤ Ω
(1)
2 (x, y) :=

x2 + y2 + 2xy(1− 2(y − x)2) +
√

2(y − x)2

√
2(x4/3 + y4/3)

3
2

.

On in on, we need to prove

1 ≤ H3(x, y) := max{Φ2(x, y), Ψ2(x, y), Ω
(1)
2 (x, y)},

for 0 ≤ x ≤ y ≤ 1. This can be done by means of elementary calculus (take a look to the first
sketch considered in Figure 3.3).

On the other hand if, instead, we have |Re(b)| ≥
√

2
2 , then

‖(a, b, c)‖D ≥ a2 + c2 + |b|2

+ 2


ac

(
1− 2

(
a− c
|b|

)2
)

+ (a+ c)

√
2

2
|b|
√

1−
(
a− c
|b|

)2

 ,

and (in this case) we will be working with the condition

1 ≤ Ω
(2)
2 (x, y) :=

x2 + y2 + 2xy(1− 2(y − x)2) +
√

2(y + x)
√

1− (y − x)2

√
2(x4/3 + y4/3)

3
2

,

and, in conclusion, we shall need to guarantee that

1 ≤ H4(x, y) := max{Φ2(x, y), Ψ2(x, y), Ω
(2)
2 (x, y)},

for 0 ≤ x ≤ y ≤ 1 (again, we gather a representation for the function H4(x, y) over 0 ≤ x ≤
y ≤ 1 in Figure 3.3).
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Figure 3.3: Graphs of the mappings H3(x, y) and H4(x, y) on 0 ≤ x ≤ y ≤ 1
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Figure 3.4: Graph of the mapping Φ(x, y)

And, with this last case, the proof is complete.

In order to prove that DC,2(2) = 4

√
3
2 we will also need the following description of the extreme

points of the unit ball of R3 endowed with the norm

‖(a, b, c)‖D := sup{|az2 + bz + c| : |z| ≤ 1}

for a, b, c ∈ R. This norm has been studied by Aron and klimek in [8], where they denote it by
‖ · ‖C. Observe, once again that

‖(a, b, c)‖D = ‖az2 + bwz + cz2‖D.

Theorem 3.4.2 (Aron and Klimek, [8]). Let ER be the real subspace of P(2`2∞(C)) given by {az2 +
bwz + cw2 : (a, b, c) ∈ R3}. Then

ext(BER) =

{(
s,

√
4|s||t|

(
1

(|s|+ |t|)2
− 1

)
, t

)
: (s, t) ∈ G

}
,

where ext(BER) is the set of extreme points of the unit ball of ER, namely BER and G = {(s, t) ∈
R2 : |s|+ |t| < 1 and |s+ t| ≤ (s+ t)2} ∪ {±(1, 0),±(0, 1)}.
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Theorem 3.4.3 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, M. Murillo-Arcila, J.B. Seoane-Sepúlveda,
[63]). The optimal complex polynomial Bohnenblust-Hille constant for polynomials in ER, which we

denote by DC,2(ER), is given by DC,2(ER) = 4

√
3
2 . Moreover,

DC,2(2) =
4

√
3

2
≈ 1.1066.

Proof. Using convexity we have

DC,2(ER) = sup{‖(a, b, c)‖ 4
3

: ‖az2
1 + bz1z2 + cz2

2‖ ≤ 1}
= sup{‖(a, b, c)‖ 4

3
: ‖(a, b, c)‖C ≤ 1}

= sup{‖(a, b, c)‖ 4
3

: (a, b, c) ∈ ext(BER)},

Hence

DC,2(ER) = sup





(
|s| 43 + |t| 43 +

[
4|s||t|

(
1

(|s|+ |t|)2
− 1

)] 2
3

) 3
4

: (s, t) ∈ G



 .

If Φ(s, t) =

(
|s| 43 + |t| 43 +

[
4|s||t|

(
1

(|s|+|t|)2 − 1
)] 2

3

) 3
4

for (s, t) ∈ G, one can prove using elementary

calculus that Φ attains its maximum on G at ±
(√

3
6 ,−

√
3

6

)
and Φ

(√
3

6 ,−
√

3
6

)
= 4

√
3
2 . Finally, from

Lemma 3.4.1 we also obtain that DC,2(2) = 4

√
3
2 ≈ 1.1066.

To help the intuition behind the elementary calculus that should rise in this last result, we can
find a sketh of the graph of Φ on the part of G containued in the second quadrant in Figure 3.4.

3.5 The exact value of DR,2(2) and lower bounds for DR,m(2)

In [28] it is proved that the asymptotic hypercontractivity constant of the real polynomial BH
inequality is exactly 2. Is it true thatHR,∞(2) = 2? The results presented here suggest that, perhaps
HR,∞(2) < 2. In this section, as we did in the previous ones, we will also identify polynomials with
the vector of its coefficients.

Remark 3.5.1. Throughout this section we will compute several times norms of polynomials on
the real line numerically. This is done by using Matlab. In particular, if P (x) is a real polynomial
on R, we apply the predefined Matlab function roots.m to P ′ in order to obtain an approximation
of all the critical points of P . If x1, . . . , xk are all the roots of P ′ in [−1, 1], then we approach the
norm of P as

‖P‖ := max{|P (x)| : x ∈ [−1, 1]} = max{|P (xi)|, |P (±1)| : i = 1, . . . , k}.

Another Matlab predefined function, namely conv.m, is used in order to to multiply polynomials.
This is done to obtain Figure 3.8.
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3.5.1 The exact calculation of DR,2(2)

The value of the constant DR,2(2) can be obtained using the geometry of the unit ball of P(`2∞(R))
described in [30]. We state the result we need for completeness:

Theorem 3.5.2. [Choi, Kim [30]] The set ext(BP(2`2∞(R))) of extreme points of the unit ball of
P(2`2∞(R)) is given by

ext(BP(2`2∞(R))) = {±x2, ±y2, ±(tx2 − ty2 ± 2
√
t(1− t)xy) : t ∈ [1/2, 1]}.

As a consequence of the previous result, we obtain the following:

Theorem 3.5.3 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, M. Murillo-Arcila, J.B. Seoane-Sepúlveda,
[63]). Let f be the real valued function given by

f(t) =
[
2t

4
3 + (2

√
t(1− t)) 4

3

] 3
4

.

We have that DR,2(2) = f(t0) ≈ 1.837373, where

t0 =
1

36

(
2

3

√
107 + 9

√
129 +

3

√
856− 72

√
129 + 16

)
≈ 0.867835.

The exact value of f(t0) is given by


(
2

3
√

107+9
√

129+
3
√

856−72
√

129+16
)4/3

18 62/3
+ 1

9

− 3

−2
3
√

107+9
√

129+(107+9
√

129)2/3−2
3
√

107−9
√

129+(107−9
√

129)2/3−60

2/3


3/4

,

Moreover, the following normalized polynomials are extreme for this problem:

P2(x, y) = ±(t0x
2 − t0y2 ± 2

√
t0(1− t0)xy).

Proof. Let

f(t) =
[
2t

4
3 + (2

√
t(1− t)) 4

3

] 3
4

.

We just have to notice that due to the convexity of the `p-norms and Theorem 3.5.2 we have

DR,2(2) = sup{|a| 4
3

: a ∈ BP(2`2∞R)}
= sup{|a| 4

3
: a ∈ ext(BP(2`2∞R))} = sup

t∈[1/2,1]

f(t).

Some calculations will show that the last supremum is attained at t = t0, concluding the proof.

Now, if an is the vector of the coefficients of Pn2 for each n ∈ N, then we know that

DR,2n(2) ≥
|an| 4n

2n+1

‖P2‖n
. (3.5.1)

Since ‖P2‖ = 1, then (3.5.1) with n = 300 (see also Figure 3.8) proves that

DR,600(2) ≥ (1.36117)600,

providing numerical evidence showing that

HR,∞(2) ≥ 1.36117.
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3.5.2 Educated guess for the exact calculation of DR,3(2)

To my knowledge, the calculation of ‖P‖ is, in general, far from being easy. However there is a way
to compute ‖P‖ for specific cases. For instance Grecu, Muñoz and Seoane prove in [52, Lemma
3.12] the following formula:

Lemma 3.5.4. If for every a, b ∈ R we define Pa,b(x, y) = ax3 + bx2y + bxy2 + ay3 then

‖Pa,b‖ =





∣∣∣∣a− b2

3a + 2b3

27a2 + 2a
27

(
− 3b
a + b2

a2

) 3
2

∣∣∣∣ if a 6= 0 and b1 <
b
a < 3− 2

√
3,

|2a+ 2b| otherwise,

where

b1 =
3

7

(
3− 2 3

√
9

3
√
−12 + 7

√
3

+ 2
3

√
−36 + 21

√
3

)
≈ −1.6692.

From Lemma 3.5.4 we have the following sharp polynomial Bohnenblust-Hille type constant:

Theorem 3.5.5 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, M. Murillo-Arcila, J.B. Seoane-Sepúlveda,
[63]). Let Pa,b(x, y) = ax3 + bx2y + bxy2 + ay3 for a, b ∈ R and consider the subset of P(3`2∞(R))
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given by E = {Pa,b : a, b ∈ R}. Then

|(a, b, b, a)| 3
2

‖Pa,b‖
=





27a2
(

2|a| 32 +2|b| 32
) 2

3∣∣∣27a3−9ab2+2b3+2 sign(a)(−3ab+b2)
3
2

∣∣∣ , if a 6= 0 and b1 <
b
a < 3− 2

√
3,

(
2|a| 32 +2|b| 32

) 2
3

2|a+b| , otherwise

where b1 was defined in Lemma 3.5.4. Moreover, the above function attains its maximum when
b
a = b1, which implies that

DR,3(E) =

(
2 + 2|b1|

3
2

) 2
3

2|1 + b1|
≈ 2.5525

There is numerical evidence to state that

DR,3(2) = DR,3(E).

Moreover, one polynomial for which DR,3(2) would be attained is

P3(x, y) = x3 + b1x
2y + b1xy

2 + y3,

where b1 ≈ −1.6692 is as in Lemma 3.5.4. It can be proved from Lemma 3.5.4 that

‖P3‖ ≈ 1.33848,

up to 5 decimal places. If an is the vector of the coefficients of P3(x, y)n and we use the fact that

DR,3n(2) ≥
|an| 6n

3n+1

‖P3‖n
, (3.5.2)

then putting n = 200 in (3.5.2) we obtain, for instance,

DR,600(2) ≥ (1.42234)600,

which provides numerical evidence showing that

HR,∞(2) ≥ 1.42234.

3.5.3 Educated guess for the exact calculation of DR,4(2)

We have numerical evidence that an extremal polynomial for the Bohnenblust-Hille inequality for
P(2`2∞(R)) may be of the form

Ra,b(x, y) = ax3y + bxy3

(remark the similarities with the polynomial P4 = R1,−1 defined in proposition 3.3.2). More
concretely, we are going to have the following:

Proposition 3.5.6. Let
Ra,b(x, y) = ax3y + bxy3.

Then,

max

{ |Ra,b|8/5
‖Ra,b‖

: a, b ∈ R
}

=
|R1,−1|8/5
‖R1,−1‖
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Proof. First of all, we need to come out with a formula for ‖Ra,b‖. Some elementary calculations
provide

‖Ra,b‖ = max
(x,y)∈∂[−1,1]2

|ax3y + bxy3| =





2|b|
3
√

3

√∣∣ b
a

∣∣ if b
a ∈ (−3,−1),

2|a|
3
√

3

√∣∣a
b

∣∣ if b
a ∈ [−1,−1/3),

|a+ b| otherwise.

After that, we only need to study the function

|Ra,b|8/5
‖Ra,b‖

=





3
√

3(|a|8/5+|b|8/5)5/8

2|b|

√∣∣a
b

∣∣ if b
a ∈ (−3,−1),

3
√

3(|a|8/5+|b|8/5)5/8

2|a|

√∣∣ b
a

∣∣ if b
a ∈ [−1,−1/3),

(|a|8/5+|b|8/5)5/8

|a+b| otherwise.

A look to figure 3.6 may hint us that the polynomial P4 = R1,−1 from Proposition 3.3.2 is indeed
extremal for the Bohnenblust-Hille inequality, and result follows.

With the observation we made at the beginning of this subsection, we are confident to guess
that, going beyond from the estimate obtained in 3.3.2

DR,4(2) =
|R1,−1|8/5
‖Ra,b‖

≈ 4.00678.
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3.5.4 Numerical calculation of DR,5(2)

Let us define the polynomial

P5(x, y) = ax5 − bx4y − cx3y2 + cx2y3 + bxy4 − ay5,

with

a = 0.19462,

b = 0.66008,

c = 0.97833.

The norm of P5 can be calculated numerically (using Remark 3.5.1), and it turns out to be

‖P5‖ = 0.28617,

up to 5 decimal places. We have numerical evidence showing that

DR,5(2) ≈ 6.83591.

In any case we have

DR,5(2) ≥
|(a,−b,−c, c, b,−a)| 5

3

‖P5‖
≈ 6.83591.

It is interesting to observe that we can improve numerically the estimate H∞,R(2) ≥ 8
√

27 ≈ 1.50980
(see [28, Theorem 4.2]) by considering polynomials of the form Pn5 . Indeed, if an is the vector of
the coefficients of Pn5 for each n ∈ N, then we know that

DR,5n(2) ≥
|an| 10n

5n+1

‖P5‖n
, (3.5.3)

Using (3.5.3) with n = 120 we obtain, in particular (see also Figure 3.8)

DR,600(2) ≥ (1.54987)600,

providing numerical evidence showing that

HR,∞(2) ≥ 1.54987.

3.5.5 Educated guess for the exact calculation of DR,6(2)

We have numerical evidence pointing to the fact that an extreme polynomial in the Bohnenblust-
Hille inequality for polynomials in P(6`2∞(R)) may be of the form

Qa,b(x, y) = ax5y + bx3y3 + axy5.

This motivates a deeper study of this type of polynomials, which we do in the following result.
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Theorem 3.5.7 (P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández, M. Murillo-Arcila, J.B. Seoane-Sepúlveda,
[63]). Let Qa,b(x, y) = ax5y + bx3y3 + axy5 for a, b ∈ R and consider the subspace of P(6`2∞(R))
given by F = {Qa,b : a, b ∈ R}. Suppose λ0 < λ1 are the only two roots of the equation

|3λ2 − 20 + λ
√

9λ2 − 20|
25

√
−3λ−

√
9λ2 − 20

10
= |2 + λ|.

Then if λ = b
a we have

|(0, a, 0, b, 0, a, 0)| 12
7

‖Qa,b‖
=





25
√

10
(

2+|λ| 127
) 12

7

|3λ2−20+λ
√

9λ2−20|
√
−3λ−

√
9λ2−20

, if a 6= 0 and λ0 <
b
a < λ1,(

2+|λ| 127
) 7

12

|2+λ| , otherwise.

Observe that λ0 ≈ −2.2654, λ1 ≈ −1.6779 and the above function attains its maximum when
b
a = λ0 (see Figure 3.7), which implies that

DR,6(F ) =

(
2 + |λ0|

12
7

) 12
7

|2 + λ0|
≈ 10.7809.

Proof. We do not lose generality by considering only polynomials of the form Q1,λ, in which case

‖Q1,λ‖ = sup{|x5 + λx3 + x| : x ∈ [0, 1]}.

The polynomial qλ(x) := x5 + λx3 + x has no critical points if λ > − 2
√

5
3 , otherwise it has the

following critical points in [0, 1]:

x0 :=

√
−3λ−

√
9λ2 − 20

10
and x1 :=

√
−3λ+

√
9λ2 − 20

10
if −2 ≤ λ ≤ −2

√
5

3
,

and x0 if λ ≤ −2. Notice that

qλ(x0) =
−3λ2 + 20− λ

√
9λ2 − 20

20
x0

qλ(x1) =
−3λ2 + 20 + λ

√
9λ2 − 20

20
x1.

It is easy to check that |qλ(x0)| ≥ |qλ(x1)| for −2 ≤ λ ≤ − 2
√

5
3 , which implies that

‖Q1,λ‖ =

{
max{|2 + λ|, |qλ(x0)|} if −2 ≤ λ ≤ − 2

√
5

3 ,

|2 + λ| otherwise.

The equation |2 + λ| = |qλ(x0)| turns out to have only two roots, namely λ0 ≈ −2.2654 and

λ1 ≈ −1.6779. By continuity, it is easy to prove that |2 + λ| ≤ |qλ(x0)| only if −2 ≤ λ ≤ − 2
√

5
3 ,

which concludes the proof.
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As mentioned above, we have numerical evidence showing that

DR,6(2) = DR,6(F ) =

(
2 + |λ0|

12
7

) 12
7

|2 + λ0|
≈ 10.7809.

In any case we do have that
DR,6(2) ≥ 10.7809.

As we did in the previous cases, it would be interesting to know if we can improve numerically
our best lower bound on HR,∞ by considering powers of

P6(x, y) = Q1,λ0
(x, y) = x5y + λ0x

3y3 + xy5,

with λ0 as in Theorem 3.5.7 (λ0 ≈ −2.2654). If an is the vector of the coefficients of Pn6 for each
n ∈ N, then we know that

DR,6n(2) ≥
|an| 12n

6n+1

‖P6‖n
. (3.5.4)

Using (3.5.4) with n = 100 and estimating ‖P6‖ according to Remark 3.5.1 we obtain

DR,600(2) ≥ (1.58432)600,

which suggests that (see Figure 3.8)

H∞,R(2) ≥ 1.58432.
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3.5.6 Numerical calculation of DR,7(2)

Let us define the polynomial

P7(x, y) = −ax7 + bx6y + cx5y2 − dx4y3 − dx3y4 + cx2y5 + bxy6 − ay7,

with

a = 0.05126,

b = 0.22070,

c = 0.50537,

d = 0.71044.

It can be proved numerically (using Remark 3.5.1) that

‖P7‖ ≈ 0.07138,

up to 5 decimal places. We have numerical evidence showing that

DR,7(2) ≈
|(−a, b, c,−d,−d, c, b,−a)| 7

4

‖P7‖
≈ 19.96308.

If an is the vector of the coefficients of Pn7 for each n ∈ N, then we know that

DR,7n(2) ≥
|an| 14n

7n+1

‖P7‖n
. (3.5.5)

Moreover, if we put n = 86 in (3.5.5) we obtain

DR,602(2) ≥ (1.61725)602,

suggesting that

HR,∞(2) ≥ 1.61725.

3.5.7 Numerical calculation of DR,8(2)

Let us define the polynomial

P8(x, y) = −ax7y + bx5y3 − bx3y5 + axy7,

with

a = 0.15258,

b = 0.64697.

It can be established numerically (see Remark 3.5.1) that

‖P8‖ ≈ 0.02985,
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up to 5 decimal places. We have numerical evidence showing that

DR,8(2) ≈
|(0,−a, 0, b, 0,−b, 0, a, 0)| 16

9

‖P8‖
≈ 33.36323.

If an is the vector of the coefficients of Pn8 for each n ∈ N, then we know that

DR,8n(2) ≥
|an| 16n

8n+1

‖P8‖n
. (3.5.6)

Moreover, using (3.5.6) with n = 75 we obtain

DR,600(2) ≥ (1.64042)600,

which suggests that
HR,∞(2) ≥ 1.64042.

3.5.8 Numerical calculation of DR,10(2)

In this case our numerical estimates show that there exists an extreme polynomial in the Bohnenblust-
Hille polynomial inequality in P(10`2∞(R)) of the form

P10(x, y) = ax9y + bx7y3 + x5y5 + bx3y7 + axy9,

with

a = 0.0938,

b = −0.5938.

It can be computed numerically (see Remark 3.5.1) that

‖P10‖ ≈ 0.01530,

up to 5 decimal places. We have numerical evidence showing that

DR,10(2) ≈
|(0, a, 0, b, 0, 1, 0, b, 0, a, 0)| 20

11

‖P10‖
≈ 90.35556.

If an is the vector of the coefficients of Pn10 for each n ∈ N, then we know that

DR,10n(2) ≥
|an| 20n

10n+1

‖P10‖n
. (3.5.7)

If we set n = 60 in (3.5.7) then we obtain

DR,600(2) ≥ (1.65171)600,

which suggests that
HR,∞(2) ≥ 1.65171.

We have sketched in Figure 3.8 a summary of the numerical results obtained in this section.
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Figure 3.8: Graphs of the estimates on m
√
DR,m(2) obtained by using (3.5.1) through (3.5.7).

Let us notice that in these final results, there are some symbolical and numerical calculations
performed. We shall give in the following lines some more details about how we obtained the
modeled graphs above:

We would use the program Matlab to perform those symbolic calculations and to have an
approximate graph to obtain the extremal polynomial for the lower estimate. To this end, we will
use one auxiliar function:

function resultado=bh pol 6 intervalo(a1,a2,b1,b2,c1,c2,d1,d2,e1,e2,f1,f2,g1,g2,n)
resultado=[0,0,0,0,0,0,0,0];
ha=(a2-a1)/n;
hb=(b2-b1)/n;
hc=(c2-c1)/n;
hd=(d2-d1)/n;
he=(e2-e1)/n;
hf=(f2-f1)/n;
hg=(g2-g1)/n;
for a=a1:ha:a2
for b=b1:hb:b2
for c=c1:hc:c2
for d=d1:hd:d2
for e=e1:he:e2
for f=f1:hf:f2
for g=g1:hg:g2
norma polynomial=max([pol norm([a,b,c,d,e,f,g]),pol norm([g,f,e,d,c,b,a])]);
norma 127=normp([a,b,c,d,e,f,g],12/7);
if (norma polynomial = 0)
cociente= norma 127/norma polynomial;
if cociente>=resultado(8)
resultado=[a,b,c,d,e,f,g,cociente];
end
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end
end
end
end
end
end
end
end

and we will use it in the code to search for the extremal polynomial of degree n (which, without
losing of generality after normalization, we may assume has sup norm less than or equal to 1). For
it, we will consider some lattice (not necessarily very fine) and once we have obtained our candidate
for extremal polynomial, we will consider a finer lattice, but centred in the candidate to extremal
polynomial (so that we do not need to consider the finer lattice in the whole cube [−1, 1]n+1). We
will iterate the process several times, considering in each step a finer lattice:

function resultado=bh pol 6(m,n)
ti=cputime;
intervalos=bh pol 6 intervalo(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,n);
disp([’El tiempo invertido en el paso 1 es: ’,num2str(cputime-ti)])
if m==1
disp(m);
resultado=intervalos;
else
for k=2:m
h=1/2k̂;
ti=cputime;
a1=max([-1,intervalos(1)-h]);
a2=min([1,intervalos(1)+h]);
b1=max([-1,intervalos(2)-h]);
b2=min([1,intervalos(2)+h]);
c1=max([-1,intervalos(3)-h]);
c2=min([1,intervalos(3)+h]);
d1=max([-1,intervalos(4)-h]);
d2=min([1,intervalos(4)+h]);
e1=max([-1,intervalos(5)-h]);
e2=min([1,intervalos(5)+h]);
f1=max([-1,intervalos(6)-h]);
f2=min([1,intervalos(6)+h]);
g1=max([-1,intervalos(7)-h]);
g2=min([1,intervalos(7)+h]);
intervalos=bh pol 6 intervalo(a1,a2,b1,b2,c1,c2,d1,d2,e1,e2,f1,f2,g1,g2,n);
disp([’El tiempo invertido en el paso ’,num2str(k),’ es: ’,num2str(cputime-ti)])
end
resultado=intervalos;
end
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Finally, we will use the following code to perform the estimates that we have been obtaining
throughout all this last section:

function resultado=multiples 6(n)
format long;
L0=-2.2654;
resultado=zeros(2,n);
p =[0,1,0,L0,0,1,0];
q=p;
N=pol norm(p);
for k=1:n
resultado(1,k)=normp(q,12*k/(6*k+1))/N∧k;
resultado(2,k)=exp((log(resultado(1,k)))/(6*k));
q=conv(p,q);
end
disp(resultado(1,n))
disp(resultado(2,n))

Remark that in all the previous samples, we have been working for finding the estimates for the
homogeneous polynomials of degree 6.
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dimensional poly- disk is equivalent to

√
(logn)/n , Adv. Math. 264 (2014) 726–746,

http://dx.doi.org/10.1016/j.aim.2014.07.029.
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