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Abstract

These notes provide a brief introduction to topological groups with a special emphasis on Pontryagin-
van Kampen’s duality theorem for locally compact abelian groups. We give a completely self-contained
elementary proof of the theorem following the line from [36]. According to the classical tradition, the
structure theory of the locally compact abelian groups is built parallelly.

1 Introduction

Let L denote the category of locally compact abelian groups and continuous homomorphisms and let T = R/Z
be the unit circle group. For G ∈ L denote by Ĝ the group of continuous homomorphisms (characters) G→ T
equipped with the compact-open topology1. Then the assignment

G 7→ Ĝ

is a contravariant endofunctor ̂: L → L. The celebrated Pontryagin-van Kampen duality theorem ([82]) says

that this functor is, up to natural equivalence, an involution i.e., ̂̂
G ∼= G (see Theorem 7.36 for more detail).

Moreover, this functor sends compact groups to discrete ones and viceversa, i.e., it defines a duality between
the subcategory C of compact abelian groups and the subcategory D of discrete abelian groups. This allows for
a very efficient and fruitful tool for the study of compact abelian groups, reducing all problems to the related
problems in the category of discrete groups. The reader is advised to give a look at the Mackey’s beautiful
survey [75] for the connection of charactres and Pontryagin-van Kampen duality to number theory, physics and
elsewhere. This duality inspired a huge amount of related research also in category theory, a brief comment on
a specific categorical aspect (uniqueness and representability) can be found in §8.1 of the Appendix.

The aim of these notes is to provide a self-contained proof of this remarkable duality theorem, providing all
necessary steps, including basic background on topological groups and the structure theory of locally compact
abelian groups. Peter-Weyl’s theorem asserting that the continuous characters of the compact abelian groups
separate the points of the groups (see Theorem 6.4) is certainly the most important tool in proving the duality
theorem. The usual proof of Peter-Weyl’s theorem involves Haar integration in order to produce sufficiently
many finite-dimensional unitary representations. In the case of abelian groups the irreducible ones turn out the
be one-dimensional. i.e., charactres. We prefer here a different approach. Namely, Peter-Weyl’s theorem can be
obtained as an immediate corollary of a theorem of Følner (Theorem 5.12) whose elementary proof uses nothing
beyond elementary properties of the finite abelian groups, a local version of the Stone-Weierstraß approximation
theorem proved in §2 and the Stone-Čech compactification of discrete spaces. As another application of Følner’s
theorem we describe the precompact groups (i.e., the subgroups of the compact groups) as having a topology
generated by continuous characters. As a third application of Følner’s theorem one can obtain the existence of
the Haar integral on locally compact abelian groups for free (see [36, §2.4, Theorem 2.4.5]).

The notes are organized as follows. In Section 2 we recall basic results and notions on abelian groups and
general topology, which will be used in the rest of the paper. Section 3 contains background on topological
groups, starting from scratch. Various ways of introducing a group topology are considered (§3.2), of which the
prominent one is by means of characters (§3.2.3). In §3.6 we recall the construction of Protasov and Zelenyuk
[88] of topologies arising from a given sequence that is required to be convergent to 0. Connectedness and
related properties in topological groups are discussed in §3.5. In §3.7 the Markov’s problems on the existence
of non-discrete Hausdorff group topologies is discussed. In §3.7.1 we introduce two topologies, the Markov
topology and the Zariski topology, that allow for an easier understanding of Markov’s problems. In §3.7.2 we

1having as a base of the neighborhoods of 0 the family of sets W (K, U) = {χ ∈ Ĝ : χ(K) ⊆ U}, where K ⊆ G is compact and
U is an open neighborhood of 0 in T.
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describe the Markov topology of the infinite permutation groups, while §7.3.3 contains the first two examples
of non-topologizable groups, given by Shelah and Ol′shanskii, respectively. The problems arising in extension
of group topologies are the topic of §7.3.4. Several cardinal invariants (weight, character and density character)
are introduced in §3.8, whereas §3.9 discuses completeness and completions. Further general information on
topological groups can be found in the monographs or surveys [3, 26, 27, 28, 36, 70, 79, 82].

Section 4 is dedicated to specific properties of the (locally) compact groups used essentially in these notes.
The most important property we recall in §4.1 is the open mapping theorem In §4.2 we give an internal
description of the precompact groups using the notion of a big (large) set of the group. In §4.3 we recall
(with complete proofs) the structure of the closed subgroups of Rn as well as the description of the closure of an
arbitrary subgroup of Rn. These groups play an important role in the whole theory of locally compact abelian
groups. In §5 we expose the proof of Følner’s theorem (see Theorem 5.12). The proof, follows the line of [36].
An important ingredient of the proof is also the crucial idea, due to Prodanov, that consists in elimination of
all discontinuous characters in the uniform approximation of continuous functions via linear combinations of
characters obtained by means of Stone-Weierstraß approximation theorem (Prodanov’s lemma 5.10).

In Section 6 we give various applications of Følner’s theorem. The main one is an immediate proof of Peter-
Weyl’s theorem. In this chapter we give also several other applications of Følner’s theorem and Peter-Weyl’s
theorem: a description of the precompact group topologies of the abelian groups (§6.1) and the structure of
the compactly generated locally compact abelian groups (§6.3). Here we consider also a precompact version of
Protasov and Zelenyuk’s construction [88] of topologies making a fixed sequence converge to 0.

Section 7 is dedicated to Pontryagin-van Kampen duality. In §§7.1-7.3 we construct all tools for proving the
duality theorem 7.36. More specifically, §§7.1 and 7.2 contain various properties of the dual groups that allow
for an easier computation of the dual in many cases. Using further the properties of the dual, we see in §7.3 that

many specific groups G satisfy the duality theorem, i.e., G ∼= ̂̂
G. In §7.4 we stess the fact that the isomorphism

G ∼= ̂̂
G is natural by studying in detail the natural transformation ωG : G → ̂̂

G connecting the group with
its bidual. It is shown in several steps that ωG is an isomorphism, considering larger and larger classes of
locally compact abelian groups G where the duality theorem holds (elementary locally compact abelian groups,
compact abelian groups, discrete abelian groups, compactly generated locally compact abelian groups). The
last step uses the fact that the duality functor is exact, this permits us to use all previous steps in the general
case.

In the Appendix we dedicate some time to several topics that are not discussed in the main body of the
notes: uniqueness of the duality, dualities for non-abelian or non-locally compact-groups, some connection to
the topological properties of compact group and dynamical systems.

A large number of exercises is given in the text to ease the understanding of the basic properties of group
topologies and the various aspects of the duality theorem.

These notes are born out of two courses in the framework of the PhD programs at the Department of
Mathematics at Milan University and the Department of Geometry and Topology at the Complutense University
of Madrid held in April/May 2007. Among the participants there were various groups, interested in different
fields. To partially satisfy the interest of the audience I included various parts that can be eventually skipped,
at least during the first reading. For example, the reader who is not interested in non-abelian groups can skip
§§3.2.4, the entire §3.7 and take all groups abelian in §§3 and 4 (conversely, the reader interested in non-abelian
groups or rings may dedicate more time to §§3.2.4, 3.7 and consider the non-abelian case also in the first half of
§4.2, see the footnote at the beginning of §4.2). For the category theorists §§4.3, 5.1-5.3, 6.2–6.3 may have less
interest, compared to §§3.1–3.9, 4.2, 6.1, 7.1-7.4 and 8.1-8.2. Finally, those interested to get as fast as possible
to the proof of the duality theorem can skip §§3.2.3, 3.2.4 and 3.6-3.9 (in particular, the route §§5–7 is possible
for the reader with sufficient knowledge of topological groups).

Several favorable circumstances helped in creating these notes. My sincere thanks go to my colleagues V.
Zambelli, E. Mart́ın-Peinador, S. Kazangian, M. J. Chasco, M. G. Bianchi, L. Außenhofer, X. Domı́ngues,
M. Bruguera, S. Trevijano, and E. Pacifici who made this course possible. The younger participants of the
course motivated me with their constant activity and challenging questions. I thank them for their interst
and patience. I thank also my PhD student at Udine University Anna Giordano Bruno who prepared a very
preliminary version of these notes in 2005.

This notes are dedicated to the memory of Ivan Prodanov whose original contributions to Pontryagin-van
Kampen duality can hardly by overestimated. The line adopted here follows his approach from [84] and [36].

Madrid, June 19, 2007
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1

Notation and terminology

We denote by P, N and N+ respectively the set of primes, the set of natural numbers and the set of positive
integers. The symbol c stands for the cardinality of the continuum. The symbols Z, Q, R, C will denote the
integers, the rationals, the reals and the complex numbers, respectively.

The quotient T = R/Z is a compact divisible abelian group, topologically isomorphic to the unitary circle S
(i.e., the subgroup of all z ∈ C with |z| = 1). For S we use the multiplicative notation, while for T we use the
additive notation.

For an abelian group G we denote by Hom (G,T) the group of all homomorphisms from G to T written
additively. The multiplicative form G∗ = Hom (G,S) ∼= Hom (G,T) will be used when necessary (e.g., concerning
easier computation in C, etc.). We call the elements of Hom (G,T) ∼= Hom (G,S) characters.

For a topological group G we denote by c(G) the connected component of the identity 1 in G. If c(G) is
trivial, the group G is said to be totally disconnected. If M is a subset of G then 〈M〉 is the smallest subgroup
of G containing M and M is the closure of M in G. The symbol w(G) stands for the weight of G. Moreover G̃
stands for the completion of a Hausdorff topological abelian group G (see §3.9).

2 Background on topological spaces and abstract groups

2.1 Background on abelian groups

Generally a group G will be written multiplicatively and the neutral element will be denoted by eG or simply e
or 1 when there is no danger of confusion. For a subset A,A1, A2, . . . , An of a group G we write

A−1 = {a−1 : a ∈ A}, and A1A2 . . . An = {a1 . . . an : ai ∈ Ai, i = 1, 2, . . . , n} (∗)

and we write An for A1A2 . . . An if all Ai = A. Moreover, for A ⊆ G we denote by cG(A) the centralizer of A,
i.e., the subgroup {x ∈ G : xa = ax for every a ∈ A}.

We use additive notation for abelian groups, consequently 0 will denote the neutral element in such a case.
Clearly, the counterpart of (*) will be −A, A1 +A2 + . . .+An and nA.

A standard reference for abelian groups is the monograph [46]. We give here only those facts or definitions
that appear very frequently in the sequel.

For m ∈ N+, we use Zm or Z(m) for the finite cyclic group of order m. Let G be an abelian group. The
subgroup of torsion elements of G is t(G) and for m ∈ N+

G[m] = {x ∈ G : mx = 0} and mG = {mx : x ∈ G}.

For a family {Gi : i ∈ I} of groups we denote by
∏

i∈I Gi the direct product G of the groups Gi. The underlying
set of G is the Cartesian product

∏
i∈I Gi and the operation is defined coordinatewise. The direct sum

⊕
i∈I Gi

is the subgroup of
∏

i∈I Gi consisting of all elements of finite support. If all Gi are isomorphic to the same
group G and |I| = α, we write

⊕
αG (or G(α), or

⊕
I G) for the direct sum

⊕
i∈I Gi

A subset X of an abelian group G is independent, if
∑n

i=1 kixi = 0 with ki ∈ Z and distinct elements xi of
X, i = 1, 2, . . . , n, imply k1 = k2 = . . . = kn = 0. The maximum size of an independent subset of G is called
free-rank of G and denoted by r0(G). An abelian group G is free , if G has an independent set of generators X.
In such a case G ∼=

⊕
|X| Z.

For an abelian group G and a prime number p the subgroup G[p] is a vector space over the finite field Z/pZ.
We denote by rp(G) its dimension over Z/pZ and call it p-rank of G.

Let us start with the structure theorem for finitely generated abelian groups.

Theorem 2.1. If G is a finitely generated abelian group, then G is a finite direct product of cyclic groups.
Moreover, if G has m generators, then every subgroup of G is finitely generated as well and has at most m
generators.

Definition 2.2. An abelian group G is

(a) torsion if t(G) = G;

(b) torsion-free if t(G) = 0;

(c) bounded if mG = 0 for some m > 0;

(d) divisible if G = mG for every m > 0;
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(e) reduced if the only divisible subgroup of G is the trivial one.

Example 2.3. (a) The groups Z, Q, R, and C are torsion-free. The class of torsion-free groups is stable
under taking direct products and subgroups.

(b) The groups Zm Q/Z are torsion. The class of torsion groups is stable under taking direct sums, subgroups
and quotients.

(c) Letm1,m2, . . . ,mk > 1 be naturals and let α1, α2, . . . , αk be cardinal numbers. Then the group
⊕k

i=1 Z(αi)
mi

is bounded. According to a theorem of Prüfer every bounded abelian group has this form [46]. This gen-
eralizes the Frobenius-Stickelberger theorem about the structure of the finite abelian groups (see Theorem
2.1).

Example 2.4. (a) The groups Q, R, C, and T are divisible.

(b) For p ∈ P we denote be Z(p∞) the Prüfer group, namely the p-primary component of the torsion group
Q/Z (so that Z(p∞) has generators cn = 1/pn + Z, n ∈ N). The group Z(p∞) is divisible.

(c) The class of divisible groups is stable under taking direct products, direct sums and quotients. In partic-
ular, every abelian group has a maximal divisible subgroup d(G).

(d) [46] Every divisible group G has the form (
⊕

r0(G) Q)⊕ (
⊕

p∈P Z(p∞)(rp(G))).

If X is a set, a set Y of functions of X to a set Z separates the points of X if for every x, y ∈ X with x 6= y,
there exists f ∈ Y such that f(x) 6= f(y). Now we see that the characters separate the points of a discrete
abelian groups.

Theorem 2.5. Let G be an abelian group, H a subgroup of G and D a divisible abelian group. Then for every
homomorphism f : H → D there exists a homomorphism f : G→ D such that f �H= f .

If a ∈ G \H and D contains elements of arbitrary finite order, then f can be chosen such that f(a) 6= 0.

Proof. Let H ′ be a subgroup of G such that H ′ ⊇ H and suppose that g : H ′ → D is such that g �H= f . We
prove that for every x ∈ G, defining N = H ′ + 〈x〉, there exists g : N → D such that g �H′= g. There are two
cases.

If 〈x〉 ∩H ′ = {0}, then take any y ∈ D and define g(h+ kx) = g(h) + ky for every h ∈ H ′ and k ∈ Z. Then
g is a homomorphism. This definition is correct because every element of N can be represented in a unique way
as h+ kx, where h ∈ H ′ and k ∈ Z.

If C = 〈x〉 ∩ H ′ 6= {0}, then C is cyclic, being a subgroup of a cyclic group. So C = 〈lx〉 for some l ∈ Z.
In particular, lx ∈ H ′ and we can consider the element a = g(lx) ∈ D. Since D is divisible, there exists y ∈ D
such that ly = a. Now define g : N → D putting g(h + ky) = g(h) + ky for every h + kx ∈ N , where h ∈ H ′

and k ∈ Z. To see that this definition is correct, suppose that h + kx = h′ + k′x for h, h′ ∈ H ′ and k, k′ ∈ Z.
Then h− h′ = k′x− kx = (k′ − k)x ∈ C. So k − k′ = sl for some s ∈ Z. Since g : H ′ → D is a homomorphism
and lx ∈ H ′, we have

g(h)− g(h′) = g(h− h′) = g(s(lx)) = sg(lx) = sa = sly = (k′ − k)y = k′y − ky.

Thus, from g(h)− g(h′) = k′y − ky we conclude that g(h) + ky = g(h′) + k′y. Therefore g is correctly defined.
Moreover g is a homomorphism and extends g.

Let M be the family of all subgroups Hi of G such that H ≤ Hi and of all homomorphisms fi : Hi → D
that extend f : H → D. For (Hi, fi), (Hj , fj) ∈M put (Hi, fi) ≤ (Hj , fj) if Hi ≤ Hj and fj extends fi. In this
way (M,≤) is partially ordered. Let {(Hi, fi)}i∈I a totally ordered subset of (M,≤). Then H0 =

⋃
i∈I Hi is a

subgroup of G and f0 : H0 → D defined by f0(x) = fi(x) whenever x ∈ Hi, is a homomorphism that extends
fi for every i ∈ I. This proves that (M,≤) is inductive and so we can apply Zorn’s lemma to find a maximal
element (Hmax, fmax) of (M,≤). It is easy to see that Hmax = G.

Suppose now that D contains elements of arbitrary finite order. If a ∈ G \H, we can extend f to H + 〈a〉
defining it as in the first part of the proof. If 〈a〉 ∩H = {0} then f(h+ ka) = f(h) + ky for every k ∈ Z, where
y ∈ D \ {0}. If 〈a〉 ∩ H 6= {0}, since D contains elements of arbitrary order, we can choose y ∈ D such that
f(h+ ka) = f(h) + ky with y 6= 0. In both cases f(a) = y 6= 0.

Corollary 2.6. Let G be an abelian group and H a subgroup of G. If χ ∈ Hom (H,T) and a ∈ G \H, then χ
can be extended to χ ∈ Hom (G,T), with χ(a) 6= 0.
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Corollary 2.7. If G is an abelian group, then Hom (G,T) separates the points of G.

Corollary 2.8. If G is an abelian group and D a divisible subgroup of G, then there exists a subgroup B of G
such that G = D ×B.

Proof. Consider the homomorphism f : D → G defined by f(x) = x for every x ∈ D. By Theorem 2.5 we can
extend f to f : G → G. Then put B = ker f and observe that G = D + B and D ∩ B = {0}; consequently
G ∼= D ×B.

Corollary 2.9. Every abelian group G can be written as G = d(G)×R, where RT is a reduced subgroup of G.

Proof. By Corollary 2.8 there exists a subgroup R of G such that G = d(G)×R. To conclude that R is reduced
it suffices to apply the definition of d(G).

The ring of endomorphisms of the group Z(p∞) will be denoted by Jp, it is isomorphic the inverse limit
lim
←−

Z/pnZ, known also as the ring of p-adic integers. The field of quotients of Jp (i.e., the field of p-adic
numbers) will be denoted by Qp. Sometimes we shall consider only the underlying groups of these rings (and
speak of ”the group p-adic integers”, or ”the group p-adic numbers).

2.2 Background on topological spaces

We assume the reader is familiar with the basic definitions and notions related to topological spaces. For the
sake of completeness we recall here some frequently used properties related to compactness.

Definition 2.10. A topological space X is

• compact if for every open cover of X there exists a finite subcover;

• Lindelöff if for every open cover of X there exists a countable subcover;

• locally compact if every point of X has compact neighborhood in X;

• σ-compact if X is the union of countably many compact subsets;

• of first category, if X =
⋃∞

n=1An and every An is a closed subset of X with empty interior;

• of second category, if X is not of first category;

• connected if for every proper open subset of X with open complement is empty.

Here we recall properties of maps:

Definition 2.11. For a map f : (X, τ) → (Y, τ ′) between topological spaces and a point x ∈ X we say:

• f is continuous at x if for every neighborhood U of f(x) in Y there exists a neighborhood V of x in X
such that f(V ) ⊆ U ,

• f is open in x ∈ X if for every neighborhood V of x in X there exists a neighborhood U of f(x) in Y such
that f(V ) ⊇ U ,

• f is continuous (resp., open) if f is continuous (resp., open) at every point x ∈ X.

• f is closed if the subset f(A) of Y is closed for every closed subset A ⊆ X.

Some basic properties relating spaces to continuous maps are collected in the next lemma:

Lemma 2.12. • If f : X → Y is a continuous surjective map, then Y is compact (resp., Lindelöff, σ-
compact, connected) whenever X has the same property.

• If X is a closed subspace of a space Y , then X is compact (resp., Lindelöff, σ-compact, locally compact)
whenever Y has the same property.

• If X =
∏

i∈I Xi, then X is compact (resp., connected) iff every space Xi has the same property. If I is
finite, the same holds for local compactness and σ-compactness.
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A partially ordered set (A,≤) is directed if for every α, β ∈ A there exists γ ∈ A such that γ ≥ α and γ ≥ β.
A subset B of A is cofinal, if for every α ∈ A there exists β ∈ B with β ≥ α.

A net in a topological space X is a map from a directed set A to X. We write xα for the image of α ∈ A so
that the net can be written in the form N = {xα}α∈A. A subnet of a net N is S = {xβ}β∈B such that B is a
cofinal subset of A.

A net {xα}α∈A in X converges to x ∈ X if for every neighborhood U of x in X there exists β ∈ A such that
α ∈ A and α ≥ β implies α ∈ U .

Lemma 2.13. Let X be a topological space.

(a) If Z is a subset of X, then x ∈ Z if and only if there exists a net in Z converging to x.

(b) X is compact if and only if every net in X has a convergent subnet.

(c) A function f : X → Y (where Y is a topological space) is continuous if and only if f(xα) → f(x) in Y for
every net {xα}α∈A in X with xα → x.

(d) The space X is Hausdorff if and only if every net in X converges to at most one point in X.

Let us recall that the connected component of a point x in a topological space X is the largest connected
subset of X containing x. It is always a closed subset of X. The space X is called totally disconnected if all
connected components are singletons.

In a topological space X the quasi-component of a point x ∈ X is the intersection of all clopen sets of X
containing x.

Lemma 2.14. (Shura-Bura) In a compact space X the quasi-components and the connected components coin-
cide.

A topological space X zero-dimensional if X has a base of clopen sets. Zero-dimensional T2 spaces are totally
disconnected (as every point is an intersection of clopen sets).

Theorem 2.15. (Vedenissov) Every totally disconnected locally compact space is zero-dimensional.

By βX we denote the Čech-Stone compactification of a topological Tychonov space X, that is the compact
space βX together with the dense immersion i : X → βX, such that for every function f : X → [0, 1] there
exists fβ : βX → [0, 1] which extends f (this is equivalent to ask that every function of X to a compact space
Y can be extended to βX). Here βX will be used only for a discrete space X.

Theorem 2.16 (Baire category theorem). A Hausdorff locally compact space X is of second category.

Proof. Suppose that X =
⋃∞

n=1An and assume that every An is closed with empty interior. Then the sets
Dn = G \ An are open and dense in X. To get a contradiction, we show that

⋂∞
n=1Dn is dense, in particular

non-empty (so G 6=
⋃∞

n=1An, a contradiction).
We use the fact that a Hausdorff locally compact space is regular. Pick an arbitrary open set V 6= ∅. Then

there exists an open set U0 6= ∅ with U0 compact and U0 ⊆ V . Since D1 is dense, U0∩D1 6= ∅. Pick x1 ∈ U0∩D1

and an open set U1 3 x1 in X with U1 compact and U1 ⊆ U0 ∩D1 . Proceeding in this way, for every n ∈ N+

we can find an open set Un 6= ∅ in G with Un compact and Un ⊆ Un−1 ∩Dn. By the compactness of every Un

there exists a point x ∈
⋂∞

n=1 Un. Obviously, x ∈ V ∩
⋂∞

n=1Dn.

Lemma 2.17. If G is a locally compact σ-compact space, then G is a Lindelöff space.

Proof. Let G =
⋃

α∈I Uα. Since G is σ-compact, G =
⋃∞

n=1Kn where each Kn is a compact subset of G.
Thus for every n ∈ N+ there exists a finite subset Fn of I such that Kn ⊆

⋃
n∈Fn

Un. Now I0 =
⋃∞

n=1 Fn is a
countable subset of I and Kn ⊆

⋃
α∈I0

Uα for every N ∈ N+ yields G =
⋃

α∈I0
Uα.

Let X be a topological space. Let C(X,C) be the C-algebra of all continuous complex valued functions on
X. If f ∈ C(X,C) let

‖f‖∞ = sup{|f(x)| : x ∈ X}.

Theorem 2.18 (Stone-Weierstraß theorem). Let X be a compact topological space. A C-subalgebra A of
C(X,C) containing all constants and closed under conjugation is dense in C(X,C) for the norm ‖ ‖∞ if and
only if A separates the points of X.

We shall need in the sequel the following local form of Stone-Weierstraß theorem.
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Corollary 2.19. Let X be a compact topological space and f ∈ C(X,C). Then f can be uniformly approximated
by a C-subalgebra A of C(X,C) containing all constants and closed under the complex conjugation if and only
if A separates the points of X separated by f ∈ C(X,C).

Proof. Denote by G : X → CA the diagonal map of the family {g : g ∈ A}. Then Y = G(X) is a compact
subspace of CA and by the compactness of X, its subspace topology coincides with the quotient topology of
the map G : X → Y . The equivalence relation ∼ in X determined by this quotient is as follows: x ∼ y for
x, y ∈ X by if and only if G(x) = G(y) (if and only if g(x) = g(y) for every g ∈ A). Clearly, every continuous
function h : X → C, such that h(x) = h(y) for every pair x, y with x ∼ y, can be factorized as h = h ◦ q, where
h ∈ C(Y,C). In particular, this holds true for all g ∈ A and for f (for the latter case this follows from our
hypothesis). The C-subalgebra A ⊆ C(Y,C) is closed under the complex conjugation and contains all constants.
It is easy to see that it separates the points of Y . Hence we can apply Stone - Weierstraß theorem 2.18 to Y
and A to deduce that we can uniformly approximate the function f by functions of A. This produces uniform
approximation of the function f by functions of A.

3 General properties of topological groups

3.1 Definition of a topological group

Let us start with the following fundamental concept:

Definition 3.1. Let G be a group.

• A topology τ on G is said to be a group topology if the map f : G×G→ G defined by f(x, y) = xy−1 is
continuous.

• A topological group is a pair (G, τ) of a group G and a group topology τ on G.

If τ is Hausdorff (resp., compact, locally compact, connected, etc.), then the topological group (G, τ) is
called Hausdorff (resp., compact, locally compact, connected, etc.). Analogously, if G is cyclic (resp., abelian,
nilpotent, etc.) the topological group (G, τ) is called cyclic (resp. abelian, nilpotent, etc.). Obviously, a topology
τ on a group G is a group topology iff the maps

µ : G×G→ G and ι : G→ G

defined by µ(x, y) = xy and ι(x) = x−1 are continuous when G×G carries the product topology.
Here are some examples, starting with two trivial ones: for every group G the discrete topology and the

indiscrete topology on G are group topologies. Non-trivial examples of a topological group are provided by the
additive group R of the reals and by the multiplicative group S of the complex numbers z with |z| = 1, equipped
both with their usual topology. This extends to all powers Rn and Sn. These are abelian topological groups.
For every n the linear group GLn(R) equipped with the topology induced by Rn2

is a non-abelian topological
group. The groups Rn and GLn(R) are locally compact, while S is compact.

Example 3.2. For every prime p the group Jp of p-adic integers carries the topology induced by
∏∞

n=1 Z(pn),
when we consider it as the inverse limit lim

←−
Z/pnZ. The same topology can be obtained also when we consider Jp

as the ring of all endomorphims of the group Z(p∞). Now Jp embeds into the product Z(p∞)Z(p∞) carrying the
product topology, while Z(p∞) is discrete. We leave to the reader the verification that this is a compact group
topology on Jp. Basic open neighborhoods of 0 in this topology are the subgroups pnJp of (Jp,+) (actually,
these are ideals of the ring Jp) for n ∈ N. The field Qp becomes a locally compact group by declaring Jp open
in Qp (i.e., an element x ∈ Qp has as typical neighborhoods the cosets x+ pnJp, n ∈ N.

Other examples of group topologies will be given in §3.2.
If G is a topological group written multiplicatively and a ∈ G, then the translations x 7→ ax and x 7→ xa

as well as the internal automorphism x 7→ axa−1 are homeomorphisms. Consequently, the group G is discrete
iff the point 1 is isolated, i.e., the singleton {1} is open. In the sequel aM will denote the image of a subset
M ⊆ G under the (left) translation x 7→ ax, i.e., aM := {am : m ∈M}. This notation will be extended also to
families of subsets of G, in particular, for every filter F we denote by aF the filter {aF : F ∈ F}.

Making use of the homeomorphisms x 7→ ax one can prove:

Exercise 3.3. Let f : G → H be a homomorphism between topological groups. Prove that f is continuous
(resp., open) iff f is continuous (resp., open) at 1 ∈ G.
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For a topological group G and g ∈ G we denote by VG,τ (g) the filter of all neighborhoods of the element g
of G. When no confusion is possible, we shall write briefly also VG(g), Vτ (g) or even V(g). Among these filters
the filter VG,τ (1), obtained for the neutral element g = 1, plays a central role. It is useful to note that for every
a ∈ G the filter VG(a) coincides with aVG(1) = VG(1)a. More precisely, we have the following:

Theorem 3.4. Let G be a group and let V(1) be the filter of all neighborhoods of 1 in some group topology τ
on G. Then:

(a) for every U ∈ V(1) there exists V ∈ V(1) with V · V ⊆ U ;

(b) for every U ∈ V(1) there exists V ∈ V(1) with V −1 ⊆ U ;

(c) for every U ∈ V(1) and for every a ∈ G there exists V ∈ V(1) with aV a−1 ⊆ U.

Conversely, if V is a filter on G satisfying (a), (b) and (c), then there exists a unique group topology τ on
G such that V coincides with the filter of all τ -neighborhoods of 1 in G.

Proof. To prove (a) it suffices to apply the definition of the continuity of the multiplication µ : G×G→ G at
(1, 1) ∈ G × G. Analogously, for (b) use the continuity of the map ι : G → G at 1 ∈ G. For item (c) use the
continuity of the internal automorphism x 7→ axa−1 at 1 ∈ G.

Let V be a filter on G satisfying all conditions (a), (b) and (c). Let us see first that every U ∈ V contains 1.
In fact, take W ∈ V with W ·W ⊆ U and choose V ∈ V(1) with V ⊆W and V −1 ⊆W . Then 1 ∈ V ·V −1 ⊆ U .

Now define a topology τ on G whose open sets O are defined by the following property:

τ := {O ⊆ G : (∀a ∈ O)(∃U ∈ V) such that aU ⊆ O}.

It is easy to see that τ is a topology onG. Let us see now that for every g ∈ G the filter gV coincides with the filter
V(G,τ)(g) of all τ -neighborhoods of g in (G, τ). The inclusion gV ⊇ V(G,τ)(g) is obvious. Assume U ∈ V. To see
that gU ∈ V(G,τ)(g) we have to find a τ -open O ⊆ gU that contains g. Let O := {h ∈ gU : (∃W ∈ V) hW ⊆ gU}.
Obviously g ∈ O. To see that O ∈ τ pick x ∈ O. Then there exists W ∈ V with xW ⊆ gU . Let V ∈ V with
V · V ⊆W , then xV ⊆ O since xvV ⊆ gU for every v ∈ V .

We have seen that τ is a topology on G such that the τ -neighborhoods of any x ∈ G are given by the filter
xV. It remains to see that τ is a group topology. To this end we have to prove that the map (x, y) 7→ xy−1 is
continuous. Fix x, y and pick a U ∈ V. By (c) there exists a W ∈ V with Wy−1 ⊆ y−1U . Now choose V ∈ V
with V · V −1 ⊆ W . Then O = xV × yV is a neighborhood of (x, y) in G × G and f(O) ⊆ xV · V −1y−1 ⊆
xWy−1 ⊆ xy−1U .

In the above theorem one can take instead of a filter V also a filter base, i.e., a family V with the property

(∀U ∈ V)(∀V ∈ V)(∃W ∈ V)W ⊆ U ∩ V

beyond the proprieties (a)–(c).
A neighborhood U ∈ V(1) is symmetric, if U = U−1. Obviously, for every U ∈ V(1) the intersection

U ∩ U−1 ∈ V(1) is a symmetric neighborhood, hence every neighborhood of 1 contains a symmetric one.
Let {τi : i ∈ I} be a family of group topologies on a group G. Then their supremum τ = supi∈I τi is a group

topology on G with a base of neighborhoods of 1 formed by the family of all finite intersection U1∩U2∩ . . .∩Un,
where Uk ∈ Vτik

(1) for k = 1, 2, . . . , n and the n-tuple i1, i2, . . . , in runs over all finite subsets if I.

Exercise 3.5. If (an) is a sequence in G such that an → 1 for every member τi of a family {τi : i ∈ I} of group
topologies on a group G, then an → 1 also for the supremum supi∈I τi.

3.2 Examples of group topologies

Now we give several series of examples of group topologies, introducing them by means of the filter V(1) of
neighborhoods of 1 as explained above. However, in all cases we avoid the treat the whole filter V(1) and
we prefer to deal with an essential part of it, namely a base. Let us recall the precise definition of a base of
neighborhoods.

Definition 3.6. Let G be a topological group. A family B ⊆ V(1) is said to be a base of neighborhoods of 1 (or
briefly, a base at 1) if for every U ∈ V(1) there exists a V ∈ B contained in U (such a family will necessarily be
a filterbase).
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3.2.1 Linear topologies

Let V = {Ni : i ∈ I} be a filter base consisting of normal subgroups of a group G. Then V satisfies (a)–(c),
hence generates a group topology on G having as basic neighborhoods of a point g ∈ G the family of cosets
{gNi : i ∈ I}. Group topologies of this type will be called linear topologies. Let us see now various examples of
linear topologies.

Example 3.7. Let G be a group and let p be a prime:

• the pro-finite topology, with {Ni : i ∈ I} all normal subgroups of finite index of G;

• the pro-p-finite topology, with {Ni : i ∈ I} all normal subgroups of G of finite index that is a power of p;

• the p-adic topology, with I = N and for n ∈ N, Nn is the subgroup (necessarily normal) of G generated
by all powers {gpn

: g ∈ G}.

• the natural topology (or Z-topology), with I = N and for n ∈ N, Nn is the subgroup (necessarily normal)
of G generated by all powers {gn : g ∈ G}.

• the pro-countable topology, with {Ni : i ∈ I} all normal subgroups of at most countable index [G : Ni].

The next simple construction belongs to Taimanov. Now neighborhoods of 1 are subgroups, that are not
necessarily normal.

Exercise 3.8. Let G be a group with trivial center. Then G can be considered as a subgroup of Aut (G) making
use of the internal automorphisms. Identify Aut (G) with a subgroup of the power GG and equip Aut (G) with
the group topology τ induced by the product topology of GG, where G carries the discrete topology. Prove that:

• the filter of all τ -neighborhoods of 1 has as base the family of centralizers {cG(F )}, where F runs over all
finite subsets of G;

• τ is Hausdorff;

• τ is discrete iff there exists a finite subset of G with trivial centralizer.

3.2.2 Topologies generated by characters

Let G be an abelian group. A character of G is a homomorphism χ : G→ S. For characters χi, i = 1, . . . , n, of
G and δ > 0 let

UG(χ1, . . . , χn; δ) := {x ∈ G : |Arg (χi(x))| < δ, i = 1, . . . , n}, (1)

where the argument Arg (z) of a complex number z is taken in (−π, π].

Exercise 3.9. Let G be an abelian group and let H be a family of characters of G. Then the family

{UG(χ1, . . . , χn; δ) : δ > 0, χi ∈ H, i = 1, . . . , n}

is a filter base satisfying the conditions (a)–(c) of Theorem 3.4, hence it gives rise to a group topology TH on G
(this is the initial topology of the family H, i.e., the coarsest topology that makes continuous all the characters
of H).

We refer to the group topology TH as topology generated by the characters of H. The topology TG∗ , generated
by all characters of G, is called Bohr topology of G.

For an abelian group G some of the linear topologies on G are also generated by appropriate families of
characters.

Exercise 3.10. Let G be an abelian group.

1. Prove that the profinite topology of G is contained in the Bohr topology of G. Give an example of a group
G where these two topologies differ.

2. Let H be the family of all characters χ of G such that the subgroup χ(G) is finite. Prove that the topology
TH coincides with the pro-finite topology on G.

3. Let H be the family of all characters χ of G such that the subgroup χ(G) is finite and contained in the
subgroup Z(p∞) of T. Prove that the topology TH coincides with the pro-p-finite topology on G.
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This exercise suggests to call a character χ : G → T torsion is there exists n > 0 such that χ vanishes on
the subgroup nG := {nx : x ∈ G}. (Equivalently, the character n · χ coincides with the trivial character, where
the character n · χ : G→ T is defined by (n · χ)(x) := nχ(x).)

Exercise 3.11. Let G be an abelian group. Prove that:

1. if H is a family of characters of G, then the topology TH is contained in the pro-finite topology of G iff
every character of H is torsion.

2. if G is bounded, then the Bohr topology of G coincides with the profinite topology of G.

3. if the Bohr topology of G coincides with the profinite topology of G, then G is bounded.

3.2.3 Pseudonorms and pseudometrics in a group

According to Markov a pseudonorm in an abelian group G is a map ν : G→ R+ such that for every x, y ∈ G:

(1) ν(1) = 0;

(2) ν(x−1) = ν(x);

(3) ν(xy) ≤ ν(x) + ν(y).

The norms defined in a real vector space are obviously pseudonorms (with the additional property, in additive
notation, ν(0) = 0 iff x = 0).

Every pseudonorm ν generates a pseudometric dν on G defined by dν(x, y) := ν(x−1y). This pseudometric
is left invariant in the sense that dν(ax, ay) = dν(x, y) for every a, x, y ∈ G. Denote by τν the topology induced
on G by this pseudometric. A base of Vτν

(1) is given by the open balls {B1/n(1) : n ∈ N+}.
In order to build metrics inducing the topology of a given topological group (G, τ) we need the following

lemma (for a proof see [67, 8.2], [79]). We say that a pseudometric d onG is continuous if the map d : G×G→ R+

is continuous. This is equivalent to have the topology induced by the metric d coarser than the topology τ (i.e.,
every open set with respect to the metric d is τ -open).

Lemma 3.12. Let G be a topological group and let

U0 ⊇ U1 ⊇ . . . ⊇ Un ⊇ . . . (2)

be symmetric neighborhoods of 1 with U3
n ⊆ Un−1 for every n ∈ N. Then there exists a continuous left invariant

pseudometric d on G such that Un ⊆ B1/n(1) ⊆ Un−1 for every n.

Exercise 3.13. Prove that in the previous lemma H =
⋂∞

n=1 Un is a closed subgroup of G with the property
H = {x ∈ G : d(x, 1) = 0}. In particular, d is a metric iff H = {1}.

If the chain (2) has also the property xUnx
−1 ⊆ Un−1 for every x ∈ G and for every n, the subgroup H is

normal and d defines a metric on the quotient group letting d̃(xH, yH) := d(x, y). The metric d̃ induces the
quotient topology on G/H.

3.2.4 Permutation groups

Let X be an infinite set and let G briefly denotes the group S(X) of all permutations of X. A very natural
topology on G is defined by taking as filter of neighborhoods of 1 = idX the family of all subgroups of G of the
form

SF = {f ∈ G : (∀x ∈ F ) f(x) = x},

where F is a finite subset of X.
This topology can be described also as the topology induced by the natural embedding of G into the Cartesian

power XX equipped with the product topology, where X has the discrete topology.
This topology is also the point-wise convergence topology on G. Namely, if (fi)i∈I is a net in G, then fi

converges to f ∈ G precisely when for every x ∈ X there exists an i0 ∈ I such that for all i ≥ i0 in I one has
fi(x) = f(x).

Exercise 3.14. If Sω(X) denotes the subset of all permutations of finite support in S(X) prove that Sω is a
dense normal subgroup of G.

Exercise 3.15. Prove that S(X) has no proper closed normal subgroups.
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3.3 Subgroups and quotients of topological groups

Let G be a topological group and let H be a subgroup of G. Then H becomes a topological group when endowed
with the topology induced by G. Sometimes we refer to this situation by saying H is a topological subgroup of
G.

Let G and H be topological groups and let f : G→ H be a continuous homomorphism. If f is simultaneously
an isomorphism and a homeomorphism, then f is called a topological isomorphism. If f : G → f(G) ⊆ H is
a topological isomorphism, where f(G) carries the topology induced by H, then f is called topological group
embedding, or shortly embedding.

Proposition 3.16. Let G be a topological group and let H be a subgroup of G. Then:

(a) H is open in G iff H has a non-empty interior;

(b) if H is open, then H is also closed;

(c) if H is discrete and G is T1, then H is closed.

Proof. (a) Let ∅ 6= V ⊆ H be an open set and let h0 ∈ V . Then 1 ∈ h−1
0 V ⊆ H = h−1

0 H. Now U = h−1
0 V is

open, contains 1 and h ∈ hU ⊆ H for every h ∈ H. Therefore H is open.
(b) If H is open then every coset gH is open and consequently the complement G \ H is open. So H is

closed.
(c) Since H is discrete there exists U ∈ V(1) with U ∩H = {1}. Choose V ∈ V(1) with V −1 · V ⊆ U . Then

|xV ∩H| ≤ 1 for every x ∈ G, as h1 = xv1 ∈ xV ∩H and h2 = xv2 ∈ xV ∩H give h−1
1 h2 ∈ V −1 · V ∩H = {1},

hence h1 = h2. Therefore, if x 6∈ H one can find a neighborhood W ⊆ xV of x with W ∩H = ∅, i.e., x 6∈ H.
Indeed, if xV ∩H = ∅, just take W = xV . In case xV ∩H = {h} for some h ∈ H, one has h 6= x as x 6∈ H.
Then W = xV \ {x} is the desired neighborhood of x.

Exercise 3.17. Let H be a discrete non-trivial group and let G = H ×N , where N is an indiscrete non-trivial
group. Prove that H × {1} is a discrete non-closed subgroup of G.

Let us see now how the closure H of a subset H of a topological group G can be computed.

Lemma 3.18. Let H be a subset of G. Then with V = V(1) one has

(a) H =
⋂

U∈V UH =
⋂

U∈V HU =
⋂

U,V ∈V UHV ;

(b) if H is a subgroup of G, then H is a subgroup of G; if H a normal subgroup, then also H is normal subgroup;

(c) N = {1} is a closed normal subgroup.

Proof. (a) For x ∈ G one has x 6∈ H iff there exists U ∈ V such that xU ∩H = ∅ = Ux∩H. Pick a symmetric U ,
i.e., U = U−1. Then the latter property is equivalent to x 6∈ UH∪HU . This provesH =

⋂
U∈V UH =

⋂
U∈V HU .

To prove the last equality in (a) note that the already established equalities yield⋂
U,V ∈V

UHV =
⋂

U∈V
(

⋂
V ∈V

UHV ) =
⋂

U∈V
UH ⊆

⋂
U∈V

U2H =
⋂

W∈V
WH = H.

(b) Let x, y ∈ H. According to (a), to verify xy ∈ H it suffices to see that xy ∈ UHU for every U ∈ V. This
follows from x ∈ UH and y ∈ HU for every U ∈ V. If H is normal, then for every a ∈ G and for U ∈ V there
exists a symmetric V ∈ V with aV ⊆ Ua and V a−1 ⊆ a−1U . Now for every x ∈ H one has x ∈ V HV −1, hence
axa−1 ∈ aV HV −1a−1 ⊆ UaHa−1U ⊆ UHU . This proves axa−1 ∈ H according to (a).

(c) follows from (b) with H = {1}.

Exercise 3.19. Prove that:

• the subgroup H × {1} from Exercise 3.17 of G is dense.

• for every infinite set X and every group topology on the permutation group S(X) the subgroups Sx = {f ∈
S(X) : f(x) = x}, x ∈ X, are either closed or dense. (Hint. Prove that Sx is a maximal subgroup of
S(X), see Fact 3.56.)

Exercise 3.20. Prove that every proper closed subgroup of R is cyclic.
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(Hint. If H is a proper closed non-trivial subgroup of R prove that the set {h ∈ H : h > 0} has a greatest
lower bound h0 and conclude that H = 〈h0〉.)

Let G be a topological group and H a normal subgroup of G. Consider the quotient G/H with the quotient
topology, namely the finest topology on G/H that makes the canonical projection q : G → G/H continuous.
Since we have a group topology on G, the quotient topology consists of all sets q(U), where U runs over the
family of all open sets of G (as q−1(q(U)) is open in G in such a case). In particular, the canonical projection
q is open.

The next theorem is due to Frobenius.

Theorem 3.21. If G and H are topological groups, f : G→ H is a continuous surjective homomorphism and
q : G→ G/ ker f is the canonical homomorphism, then the unique homomorphism f1 : G/ ker f → H, such that
f = f1 ◦ q, is a continuous isomorphism. Moreover, f1 is a topological isomorphism iff f is open.

Proof. Follows immediately from the definitions of quotient topology and open map.

Independently on its simplicity, this theorem is very important since it produces topological isomorphisms.
Openness of the map f is its main ingredient, so from now on we shall be interested in providing conditions
that ensure openness (see also §4.1).

Lemma 3.22. Let X,Y be topological spaces and let ϕ : X → Y be a continuous open map. Then for every
subspace P of Y with P ∩ ϕ(X) 6= ∅ the restriction ψ : H1 → P of the map ϕ to the subspace H1 = ϕ−1(P ) is
open.

Proof. To see that ψ is open choose a point x ∈ H1 and a neighborhood U of x in H1. Then there exists a
neighborhood W of x in X such that U = H1∩W . To see that ψ(U) is a neighborhood of ψ(x) in P it suffices to
note that if ϕ(w) ∈ P for w ∈W , then w ∈ H1, hence w ∈ H1∩W = U . Therefore ϕ(W )∩P ⊆ ϕ(U) = ψ(U).

We shall apply this lemma when X = G and Y = H are topological group and ϕ = q : G → H is a
continuous open homomorphism. Then the restriction q−1(P ) → P of q is open for every subgroup P of H.
Nevertheless, even in the particular case when q is surjective, the restriction H1 → ϕ(H1) of q to an arbitrary
closed subgroup H1 of G need not be open.

In the next theorem we see some isomorphisms related the quotient groups.

Teoema 3.23. Let G be a topological group, let N be a normal closed subgroup of G and let p : G → G/N be
the canonical homomorphism.

(a) If H is a subgroup of G, then the homomorphism i : HN/N → p(H), defined by i(xN) = p(x), is a
topological isomorphism.

(b) If H is a closed normal subgroup of G with N ⊆ H, then p(H) = H/N is a closed normal subgroup of G/N
and the map j : G/H → (G/N)/(H/N), defined by j(xH) = (xN).(H/N), is a topological isomorphism.

(Both in (a) and (b) the quotient groups are equipped with the quotient topology.)

Proof. (a) As HN = p−1(p(H)) we can apply Lemma 3.22 and conclude that p′ is an open map. Now Theorem
3.21 applies to the restriction p′ : HN → p(H) of p.

(b) Since H = HN , item (a) implies that the induced topology of p(H) coincides with the quotient topology
of H/N . Hence we can identify H/N with the topological subgroup p(H) of G/N . Since H = HN , the set
(G/N) \ p(HN) = p(G \ HN) is open, hence p(H) is closed. Finally note that the composition f : G →
(G/N)/(H/N) of p with the canonical homomorphism G/N → (G/N)/(H/N) is open, being the latter open.
Applying to the open homomorphism f with ker f = H Theorem 3.21 we can conclude that j is a topological
isomorphism.

Exercise 3.24. Let G be an abelian group equipped with its Bohr topology and let H be a subgroup of G. Prove
that:

• H is closed in G;

• the topological subgroup topology of H coincides with its Bohr topology;

• the quotient topology of G/H coincides with the Bohr topology of G/H.

• ∗ G has no convergent sequences [36, §3.4].
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Exercise 3.25. Let H be a discrete subgroup of a topological group G. Prove that:

• H ∩ {1} = {1};

• H is isomorphic to the semi-direct product of H and {1}, carrying the product topology, where H is discrete
and {1} is indiscrete.

3.4 Separation axioms

Lemma 3.18 easily implies that every topological group is regular, hence:

Proposition 3.26. For a topological group G the following are equivalent:

(a) G is Hausdorff;

(b) G is T0.

(c) G is T3 (where T3 stands for ”regular and T1”).

(d) {1} = {1}.

A topological group G is monothetic if there exists x ∈ G with 〈x〉 dense in G.

Exercise 3.27. Prove that:

• a Hausdorff monothetic group is necessarily abelian.

• T is monothetic.

Is T2 monothetic? What about TN?

Now we relate proprieties of the quotient G/H to those of the subgroup H of G.

Lemma 3.28. Let G be a topological group and let H be a normal subgroup of G. Then:

(1) the quotient G/H is discrete if and only if H is open;

(2) the quotient G/H is Hausdorff if and only if H is closed.

Let us see now that every T0 topological group is also a Tychonov space.

Theorem 3.29. Every Hausdorff topological group is a Tychonov space.

Proof. Let F be a closed set with 1 6∈ F . Then we can find a chain (2) of open neighborhoods of 1 as in Lemma
3.12 such that F ∩ U0 = ∅. Let d be the pseudometric defined in Lemma 3.12 and let fF (x) = d(x, F ) be
the distance function from F . This function is continuous in the topology induced by the pseudometric. By
the continuity of d it will be continuous also with respect to the topology of G. It suffices to note now that
fF (F ) = 0, while fF (1) = 1. This proves that the space G is Tychonov, as the pseudometric is left invariant,
so the same argument provides separation of a generic point a ∈ G from a closed set F that does not contain
a.

Let G be an abelian group and let H be a family of characters of G. Then the characters of H separate the
points of G iff for every x ∈ G, x 6= 0, there exists a character χ ∈ H with χ(x) 6= 1.

Exercise 3.30. Let G be an abelian group and let H be a family of characters of G. Prove that the topology
TH is Hausdorff iff the characters of H separate the points of G.

Proposition 3.31. Let G be an infinite abelian group and let H = Hom(G,S). Then the following holds true:

(a) the characters of H separate the points of G,

(b) the Bohr topology TH is Hausdorff and non-discrete.

Proof. (a) This is Corollary 2.7.
(b) According to Exercise 3.30 item (a) implies that the topology TH is Hausdorff. Suppose, for a contradic-

tion, that TH is discrete. Then there exist χi ∈ H, i = 1, . . . , n and δ > 0 such that U(χ1, . . . , χn; δ) = {0}. In
particular, H =

⋂n
i=1 kerχi = {0}. Hence the diagonal homomorphism f = χ1 × . . .× χn : G→ Sn is injective

and f(G) ∼= G is an infinite discrete subgroup of Sn. According to Proposition 3.16 f(G) is closed in Sn and
consequently, compact. The compact discrete spaces are finite, a contradiction.
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Most often the topological groups in the sequel will be assumed to be Hausdorff.

Example 3.32. Contrary to what we proved in Theorem 3.29 Hausdorff topological groups need not be normal
as topological spaces (see Exercise 3.37). A nice “uniform” counter-example to this was given by Trigos: for
every uncountable group G the topological group G# is not normal as a topological space (countable groups are
ruled out since every every countable Hausdorff topological group is normal, being a regular Lindel̈ff space).

Theorem 3.33. (Birkhoff-Kakutani) A topological group is metrizable iff it has a countable base of neighbor-
hoods of 1.

Proof. The necessity is obvious as every point x in a metric space has a countable base of neighborhoods. Suppose
now that G has countable base of neighborhoods of 1. Then one can build a chain (2) of neighborhoods of 1 as
in Lemma 3.12 that form a base of V(1), in particular,

⋂∞
n=1 Un = {1}. Then the pseudometric produced by the

lemma is a metric that induces the topology of the group G because of the inclusions Un ⊆ B1/n ⊆ Un−1.

Exercise 3.34. Prove that subgroups and quotients of metrizable topological groups are metrizable.

Exercise 3.35. Prove that every topological abelian group admits a continuous isomorphism into a product of
metrizable abelian groups.

[Hint. For x ∈ G, x 6= 0 choose an open neighborhood U of 0 with x ∈ U . Build a sequence {Un} of
symmetric open neighborhoods of 0 with U0 ⊆ U and Un + Un ⊆ Un−1. Then HU =

⋂∞
n=1 Un is a closed

subgroup of G .Let τU be the group topology on the quotient G/HU having as a local base at 0 the family
{fU (Un)}, where fU : F → G/HU is the canonical homomorphism. Show that (G/H, τU ) is metrizable. Now
take the product of all groups (G/H, τU ). To conclude observe that the diagonal map of the family fU into the
product of all groups (G/H, τU ) is continuous and injective. ]

Exercise 3.36. Let G be a Hausdorff topological group. Prove that the centralizer of an element g ∈ G is a
closed subgroup. In particular, the center Z(G) is a closed subgroup of G.

Exercise 3.37. ∗ The group Zℵ1 equipped with the Tychonov topology (where Z is discrete) is not a normal
space [67].

Furstenberg used the natural topology ν of Z (see Example 3.7) to find a new proof of the infinitude of prime
numbers.

Exercise 3.38. Prove that there are infinitely many primes in Z using the natural topology ν of Z.

(Hint. If p1, p2, . . . , pn were the only primes, then consider the union of the open subgroups p1Z, . . . , pnZ
and use the fact that every integer n 6= 0,±1 has a prime divisor, so belongs to

⋃n
i=1 piZ.)

3.5 Connectedness in topological groups

For a topological group G we denote by c(G) the connected component of 1 and we call it briefly connected
component of G.

Before proving some basic facts about the connected component, we need an elementary property of the
connected sets in a topological groups.

Lemma 3.39. Let G be a topological group.

(a) If C1, C2, . . . , Cn are connected sets in G, then also C1C2 . . . Cn is connected.

(b) If C is a connected set in G, then the set C−1 as well as the subgroup generated by C are connected.

Proof. (a) Let us conisder the case n = 2, the general case easily follows from this one by induction. The
subset C1 × C2 of G × G is connected. Now the map µ : G × G → G defined µ(x, y) = xy is continuous and
µ(C1 × C2) = C1C2.

(a) For the first part it suffices to note that C−1 is a continuous image of C under the continuous map
x 7→ x−1.

To prove the second assertion consider the set C1 = CC−1. It is connected by the previous lemma and
obviously 1 ∈ C1. Moreover, C2

1 ⊇ C ∪ C−1. It remains to note now that the subgroup generated by C1

coincides with the subgroup generated by C. Since the former is the union of all sets Cn
1 , n ∈ N and each set

Cn
1 is connected by item (a), we are done.
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Proposition 3.40. The connected component c(G) a topological group G is a closed normal subgroup of G.
The connected component of an element x ∈ G is simply the coset xc(G) = c(G)x.

Proof. To prove that c(G) is stable under multiplication it suffices to note that c(G)c(G) is still connected
(applying item (a) of the above lemma) and contains 1, so must be contained in the connected component c(G).
Similarly, an application of item (b) implies that c(G) is stable also w.r.t. the operation x 7→ x−1, so c(G) is a
subgroup of G. Moreover, for every a ∈ G the image ac(G)a−1 under the conjugation is connected and contains
1, so must be contains in the connected component c(G). So c(G) is stable also under conjugation. Therefore
c(G) is a normal subgroup. The fact that c(G) is closed is well known.

To prove the last assertion it suffices to recall that the maps y 7→ xy and y 7→ yx are homeomorphisms.

Our next aim is to see that the quotient G/c(G) is totally disconnected. We need first to see that connect-
edness and total connectedness are properties stable under extension:

Proposition 3.41. Let G be a topological group and let N be a closed normal subgroup of G.

(a) If both N and G/N are connected, then also G is connected.

(b) If both N and G/N are totally disconnected, then also G is totally disconnected.

Proof. Let q : G→ G/N be the canonical homomorphism.
(a) Let A 6= ∅ be a clopen set of G. As every coset aN is connected, one has either aN ⊆ A or aN ∩A = ∅.

Hence, A = q−1(q(A)). This implies that q(A) is a non-empty clopen set of the connected group G/N . Thus
q(A) = G/N . Consequently A = G.

(b) Assume C is a connected set in G. Then q(C) is a connected set of G/N , so by our hypothesis, q(C)
is a singleton. This means that C is contained in some coset xN . Since xN is totally disconnected as well, we
conclude that C is a singleton. This proves that G is totally disconnected.

Lemma 3.42. If G is a topological group, then the group G/c(G) is totally disconnected.

Proof. Let q : G→ G/c(G) be the canonical homomorphism and let H be the inverse image of c(G/c(G)) under
q. Now apply Proposition 3.41 to the group H and the quotient group H/c(G) ∼= c(G/c(G)) to conclude that
H is connected. Since it contains c(G), we have H = c(G). Hence G/c(G) is totally disconnected.

For a topological group G denote by Q(G) the quasi-component of the neutral element 1 of G (i.e., the
intersection of all clopen sets of G containing 1) and call it quasi-component of G.

Proposition 3.43. For a topological group G the quasi-component Q(G) is a closed normal subgroup of G. The
quasi-component of x ∈ G coincides with the coset xQ(G) = Q(G)x.

Proof. Let x, y ∈ Q(G). To prove that xy ∈ Q(G) we need to verify that xy ∈ O for every clopen set O
containing 1. Let O be such a set, then x, y ∈ O. Obviously Oy−1 is a clopen set containing 1, hence x ∈ Oy−1.
This implies xy ∈ O. Hence Q(G) is stable under multiplication. For every clopen set O containing 1 the set
O−1 has the same propriety, hence Q(G) is stable also w.r.t. the operation a 7→ a−1. This implies that Q(G) is
a subgroup. Moreover, for every a ∈ G and for every clopen set O containing 1 also its image aOa−1 under the
conjugation is a clopen set containing 1. So Q(G) is stable also under conjugation. Therefore Q(G) is a normal
subgroup. Finally, as an intersection of closen sets, Q(G) is closed.

Remark 3.44. It follows from Lemma 2.14 that c(G) = Q(G) for every compact topological group G. Actually,
this remains true also in the case of locally compact groups G (cf. 4.22).

In the next remark we discuss zero-dimensionality.

Remark 3.45. (a) It follows immediately from Proposition 3.16 that every linear group topology is zero-
dimensional; in particular, totally disconnected.

(b) Every countable Hausdorff topological group is zero-dimensional (this is true for topological spaces as
well).

We shall see in the sequel that for locally compact abelian groups or compact groups the implication from item
(a) can be inverted (see Theorem 4.18). On the other hand, the next example shows that local connectedness
is essential.

Example 3.46. The group Q/Z is zero-dimensional but has no proper open subgroups.
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3.6 Group topologies determined by sequences

Let G be an abelian group and let (an) be a sequence in G. The question of the existence of a Hausdorff group
topology that makes the sequence (an) converge to 0 is not only a mere curiosity. Indeed, assume that some
Hausdorff group topology τ makes the sequence (pn) of all primes converge to zero. Then pn → 0 would yield
pn − pn+1 → 0 in τ , so this sequence cannot contain infinitely many entries equal to 2. This would provide a
very easy negative solution to the celebrated problem of the infinitude of twin primes (actually this argument
would show that the shortest distance between two consecutive primes converges to ∞).

Definition 3.47. [89] A sequence A = {an}n in an abelian group G is called a T-sequence is there exists a
Hausdorff group topology on G such that an → 0. 2

Let (an) be a T-sequence in an abelian group G. Hence the family {τi : i ∈ I} of Hausdorff group topologies
on the group G such that an → 0 in τi is non-empty. Let τ = supi∈I τi, then by Exercise 3.5 an → 0 in τ as
well. Clearly, this is the finest group topology in which an converges to 0. This is why we denote it by τA or
τ(an).3

Before discussing the topology τ(an) and how T -sequences can be described in general we consider a couple
of examples:

Example 3.48. (a) Let us see that the sequences (n2) and (n3) are not a T -sequence in Z. Indeed, suppose
for a contradiction that some Hausdorff group topology τ on Z makes n2 converge to 0. Then (n + 1)2

converges to 0 as well. Taking the difference we conclude that 2n+1 converges to 0 as well. Since obviously
also 2n + 3 converges to 0, we conclude, after substraction, that the constant sequence 2 converges to 0.
This is a contradiction, since τ is Hausdroff. We leave the case (n3) as an exercise to the reader.

(b) A similar argument proves that the sequence Pd(n), where Pd(x) ∈ Z[x] is a fixed polynomial with
degPd = d > 0, is not a T -sequence in Z.

Protasov and Zelenyuk [88] established a number of nice properties of the finest group topology τ(an) on G
that makes (an) converge to 0.

For an abelian group G and subsets A1, . . . , An . . . of G we denote by ±A1 ± . . . ± An the set of all sums
g = g1 + . . .+ gn, where gi ∈ {0} ∪Ai ∪ −Ai for every i = 1, . . . , n. Let

±A1 ± . . .±An ± . . . =
∞⋃

n=1

±A1 ± . . .±An.

If A = {an}n is a sequence in G, for m ∈ N denote by Am the “tail” {am, am+1, . . .}. For k ∈ N let
A(k,m) = ±Am ± . . .±Am (k times).

Remark 3.49. The existence of a finest group topology τA on an abelian group G that makes an arbitrary
given sequence A = {an}n in G converge to 0 is easy to prove as far as we are not interested on imposing the
Hausdorff axiom. Indeed, as an converges to 0 in the indiscrete topology, τA is simply the supremum of all
group topologies τ on G such that an converges to 0 in τ . This gives no idea on how this topology looks like.
One can easily describe it as follows.

Let m1, . . . ,mn, . . . be a sequence of natural numbers. Denote by A(m1, . . . ,mn, . . .) the set

±Am1 ± . . .±Amn
± . . .

and by BA the family of all sets A(m1, . . . ,mn, . . .) when m1, . . . ,mn, . . . vary in NN. Then BA is a filter
base, satisfying the axioms of group topology. The group topology τ defined in this way satisfies the required
conditions. Indeed, obviously an → 0 in (G, τ) and τ contains any other group topology with this property.
Consequently, τ = τA.

Note that
A(k,m) ⊆ A(m1, . . . ,mn, . . .), (1)

for every k ∈ N, where m = max{m1, . . . ,mk}. The sets A(k,m), for k,m ∈ N, form a filter base, but the
filter they generate need not be the filter of neighborhoods of 0 in a group topology. The utility of this family
becomes clear now.

2We shall see below that the sequence (pn) of all primes is not a T -sequence in the group Z (see Exercise 4.32). So the above
mentioned possibility to resolve the problem of the infinitude of twin primes does not work.

3To simplify things we consider only sequences without repetition, hence the convergence to zero an → 0 depends only on the
set A = {an}n, it does not depend on the enumeration of the sequence.
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Theorem 3.50. A sequence A = {an}n in an abelian group G is a T-sequence iff

∞⋂
m=1

A(k,m) = 0 for every k ∈ N. (2)

Proof. Obviously the sequence A = {an}n is a T-sequence iff the topology τA is Hausdorff. Clearly, τA is
Hausdorff iff

⋂∞
m1,...,mn,...A(m1, . . . ,mn, . . .) = 0. If τA is Hausdorff, then (2) holds by (1). It remains to see that

(2) implies
⋂∞

m1,...,mn,...A(m1, . . . ,mn, . . .) = 0. First of all note that A(m1, . . . ,mn, . . .) ⊇ A(m∗
1, . . . ,m

∗
n, . . .),

where m∗
n = max{m1, . . . ,mn}. Moreover, the sequence (m∗

n) is increasing. Hence

∞⋂
m1,...,mn,...

A(m1, . . . ,mn, . . .) =
∞⋂

m∗1 ,...,m∗n,...

A(m∗
1, . . . ,m

∗
n, . . .),

where the second intersection is taken only over the increasing sequences (m∗
n). Obviously, for every increasing

sequence (m∗
n) one has

A(m∗
1, . . . ,m

∗
n, . . .) ⊆

∞⋃
k=1

A(k,m∗
1).

This yields
∞⋂

m∗1 ,...,m∗n,...

A(m∗
1, . . . ,m

∗
n, . . .) ⊆

∞⋂
m∗1=1

∞⋃
k=1

A(k,m∗
1) =

∞⋃
k=1

∞⋂
m∗1=1

A(k,m∗
1) = 0.

Since every infinite abelian group G admits a non-discrete metrizable group topology, there exist non-trivial
(i.e., having all members non-zero) T -sequences.

A notion similar to T -sequence, but defined with respect to only topologies induced by characters, will be
given in §6.2. From many points of view it turns out to be easier to deal with than T -sequence. In particular,
we shall see easy sufficient condition for a sequence of integers to be a T -sequence.

We give without proof the following technical lemma that will be useful in §6.2.

Lemma 3.51. [89] For every T -sequence A = {an} in Z there exists a sequence {bn} in Z such that for every
choice of the sequence (en), where en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a
T -sequence.

Exercise 3.52. (a)∗ Prove that there exists a T -sequence (an) in Z with limn
an+1
an

= 1 [89] (see also Example
6.12).

(b)∗ Every sequence (an) in Z with limn
an+1
an

= +∞ is a T -sequence [89, 7] (see Theorem 6.11).

(c)∗ Every sequence (an) in Z such that limn
an+1
an

∈ R is transcendental is a T -sequence [89].

3.7 Markov’s problems

3.7.1 The Zariski topology and the Markov topology

Let G be a Hausdorff topological group, a ∈ G and n ∈ N. Then the set {x ∈ G : xn = a} is obviously closed
in G. This simple fact motivated the following notions due to to Markov [76].

A subset S of a group G is called:

(a) elementary algebraic if there exist an integer n > 0, a1, . . . , an ∈ G and ε1, . . . , εn ∈ {−1, 1} such that

S = {x ∈ G : xε1a1x
ε2a2 . . . an−1x

εn = an},

(b) algebraic if S is an intersection of finite unions of elementary algebraic subsets,

(c) unconditionally closed if S is closed in every Hausdorff group topology of G.
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Since the family of all finite unions of elementary algebraic subsets is closed under finite unions and contains
all finite sets, it is a base of closed sets of some T1 topology ZG on G, called the Zariski topology4. Clearly, the
ZG-clsoed sets are precisely the algebraic sets in G.

Analogously, the family of all unconditionally closed subsets of G coincides with the family of closed subsets
of a T1 topology MG on G, namely the infimum (taken in the lattice of all topologies on G) of all Hausdorff group
topologies on G. We call MG the Markov topology of G. Note that (G,ZG) and (G,MG) are quasi-topological
groups, i.e., the inversion and translations are continuous. Nevertheless, when G is abelian (G,ZG) and (G,MG)
are not group topologies unless they are discrete.

Since an elementary algebraic set of G must be closed in every Hausdorff group topology on G, one always
has ZG ⊆ MG. In 1944 Markov [76] asked if the equality ZG = MG holds for every group G. He himself showed
that the answer is positive in case G is countable [76]. Moreover, in the same manuscript Markov attributes to
Perel’man the fact that ZG = MG for every Abelian group G (a proof has never appeared in print until [37]).
An example of a group G with ZG 6= MG was given by Gerchard Hesse [66].

Exercise 3.53. Show that if (G, ·) is an abelian group, then every elementary algebraic set of G has the form
{x ∈ G : xn = a}, a ∈ G.

3.7.2 The Markov topology of the symmetric group

Let X be an infinite set. In the sequel we denote by τX the pointwise convergence topology of the infinite
symmetric group S(X) defined in §3.2.4. It turns out that the Markov topology of S(X) coincides with τX :

Theorem 3.54. Then Markov topology on S(X) coincides with the topology τX of pointwise convergence of
S(X).

This theorem follows immediately from the following old result due to Gaughan.

Theorem 3.55. ([36]) Every Hausdorff group topology of the infinite permutation group S(X) contains the
topology τX .

The proof of this theorem follows more or less the line of the proof exposed in [36, §7.1] with several
simplifications. The final stage of the proof is preceded by a number of claims (and their corollaries) and two
facts about purely algebraic properties of the group S(X) (3.56 and 3.59). The claims and their corollaries are
given with complete proofs. To give an idea about the proofs of the two algebraic facts, we prove the first one;
the proof of the second one can be found in [36, Lemmas 7.1.4, 7.1.8] (actually, only a fragment of the proof of
[36, Lemmas 7.1.8] is needed for the proof of item (b) of Fact 3.59).

We say for a subset A of S(X) that A is m-transitive for some positive integer m if for every Y ⊆ X of
size at most m and every injection f : Y → X there exists a ∈ A that extends f . 5 The leading idea is that a
transitive subset A of S(X) is placed “generically” in S(X), whereas a non-tranisitve one is a subset of some
subgroup of S(X) that is a direct product S(Y ) × S(X \ Y ). (Here and in the sequel, for a subset Y of X
we tacitly identify the group S(Y ) with the subgroup of S(X) consisting of all permutations of S(X) that are
identical on X \ Y .)

The first fact concerns the stabilizers Sx = S{x} = {f ∈ S(X) : f(x) = x} of points x ∈ X. They consitute
a prebase of the filter of neighborhoods of idX in τX .

Fact 3.56. For every x ∈ X the subgroup Sx of S(X) is maximal.

Proof. Assume H is a subgroup of S(X) properly containing Sx. To show that H = S(X) take any f ∈ S(X).
If y = f(x) coincides with x, then f ∈ Sx ⊆ H and we are done. Assume y 6= x. Get h ∈ H \ Sx. Then
z = h(x) 6= x, so x 6∈ {z, y}. There exists g ∈ S(X) such that g(x) = x, g(y) = z and g(z) = y. Then
g ∈ Sx ⊆ H and f(x) = g(h(x)) = y, so h−1g−1f(x) = x and h−1g−1f ∈ Sx ∩G ⊆ H. So f ∈ ghH = H.

Claim 3.57. Let T be a Hausdorff group topology on S(X). If a subgroups of S(X) of the form Sx is T -closed,
then it is also T -open.

Proof. As Sx is T -closed, for every fixed y 6= x the set Vy = {f ∈ S(X) : f(x) 6= y} is T -open and contains 1.
So there exists a symmetric neighborhood W of 1 in T such that W.W ⊆ Vy. By the definition of Vy this gives
Wx ∩Wy = ∅. Then either |X\Wx| = |X| or |X\Wy| = |X|. Suppose this occurs with x, i.e., |X\Wx| = |X|.

4Some authors call it also the verbal topology [20], we prefer here Zariski topology coined by most authors [10].
5Note that a countable subset H of S(X) cannot be transitive unless X itself is countable.
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Then one can find a permutation f ∈ S(X) that sends Wx \ {x} to the complement of Wx and f(x) = x. Such
an f satisfies:

fWf−1 ∩W ⊆ Sx

as fWf−1(x) meets Wx precisely in the singleton {x} by the choice of f . This proves that Sx is T -open.
Analogous argument works for Sy when |X\Wy| = |X|.

Corollary 3.58. If T be a Hausdorff group topology on S(X) that does not contain τX , then all subgroups of
S(X) of the form Sx are T -dense.

Proof. Since the subgroups Sx of S(X) form a prebase of the filter of neighborhoods of idX in S(X), out
hypothesis implies that some subgroup Sx is not T -open. By Claim 3.57 Sx is not T -closed either. By Fact
3.56 Sx is T -dense. Since all subgroups of the form Sy are conjugated, this implies that stabilizers Sy are
T -dense.

This was the first step in the proof. The next step will be establishing that Sx,y are never dense in any
Hausdorff group topology on S(X) (Corollary 3.62).

In the sequel we need the subgroup S̃x,y := Sx,y × S({x, y}) of S(X) that contains Sx,y as a subgroup of
index 2. Note that S̃x,y is precisely the subgroup of all permutations in S(X) that leave the doubleton {x, y}
set-wise invariant.

Fact 3.59. For any doubleton x, y in X the following holds true:

(a) the subgroup S̃x,y of S(X) is maximal;

(b) every proper subgroup of S(X) properly containing Sx,y coincides with one of the subgroups Sx, Sy or S̃x,y.

Claim 3.60. Let T be a Hausdroff group topology on S(X), then there exists a T -nbd of 1 that is not 2-transitive.

Proof. Assume for a contradiction that all T -neighborhoods of idX that are 2-transitive. Fix distinct u, v, w ∈
X. We show now that the 3-cycle (u, v, w) ∈ V for every arbitrarily fixed T -neighborhood of idX . Indeed,
choose a symmetric T -neighborhood W of idX such that W 2 ⊆ V . Let f be the transposition (uv). Then
U = fWf ∩W ∈ T is a neighborhood of 1 and fUf = U . Since U is 2-transitive there exists g ∈ U such that
g(u) = u and g(v) = w. Then (u, v, w) = gfg−1f ∈W · (fUf) ⊆W 2 ⊆ V .

Claim 3.61. Let T be a group topology on S(X). Then

(a) every T-nbd V of idX in S(X) is transitive iff every stabilizer Sx is T-dense;

(b) every T -nbd V of idX in S(X) is m-transitive iff every stabilizer SF with |F | ≤ m is T -dense.

Proof. Assume that some (hence all) Sz is T -dense in S(X). To prove that V is transitive consider a pair
x, y ∈ X. Let t = (xy). By the T -density of Sx the T -nbd t−1V of t−1 meets Sx, i.e., for some v ∈ V one has
t−1v ∈ Sx. Then v ∈ tSx obviously satisfies vx = y.

A similar argument proves that transitivity of each T-nbd of 1 entails that every stabilizer Sx is T -dense.
(b) The proof in the case m > 1 is similar.

What we really need further on (in particular, in the next corollary) is that the density of the stabilizers
Sx,y imply that every T -nbd V of idX in S(X) is 2-transitive.

Corollary 3.62. Let T be a Hausdroff group topology on S(X). Then Sx,y is T -dense for no pair x, y in X.

Proof. Follows from claims 3.60 and 3.61

Proof of Theorem 3.55. Assume for a contradiction that T is a Hausdroff group topology on S(X) that does
not contain τX . Then by corollaries 3.58 and 3.62 all subgroups of the form Sx are T -dense and no subgroup
of the form Sx,y is T -dense. Now fix a pair x, y ∈ X and let Gx,y denote the T -closure of Sx,y. Then Gx,y is a
proper subgroup of S(X) containing Sx,y. Since Sx is dense, Gx,y cannot contain Sx, so Sx ∩Gx,y is a proper
subgroup of Sx containing Sx,y. By Claim 3.56 applied to Sx = S(X \{x}) and its subgroup Sx,y (the stabilizer
of y in Sx), we conclude that Sx,y is a maximal subgroup of Sx. Therefore, Sx ∩Gx,y = Sx,y. This shows that
Sx,y is a T -closed subgroup of Sx. By Claim 3.57 applied to Sx = S(X \{x}) and its subgroup Sx,y, we conclude
that Sx,y is a T -open subgroup of Sx. Since Sx is dense in S(X), we can claim that Gx,y is a T -open subgroup
of S(X). Since Sx is a proper dense subgroup of S(X), it is clear that Sx cannot contain Gx,y. Analogously, Sy
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cannot contain Gx,y either. So Gx,y 6= Sx,y is a proper subgroup of S(X) containing Sx,y that does not coincide
with Sx or Sy. Therefore Gx,y = S̃x,y by Fact 3.59. This proves that S̃x,y is T -open. Since all subgroups of the
form S̃x,y are pairwise conjugated, we can claim that all subgroups S̃x,y is T -open.

Now we can see that the stabilizers SF with |F | > 2 are T-open, as

SF =
⋂
{S̃x,y : x, y ∈ F, x 6= y}.

This proves that all basic neighborhoods SF of 1 in τX are T -open. In particular, also the subgroups Sx are
T -open, contrary to our hypothesis.

3.7.3 Existence of Hausdorff group topologies

According to Proposition 3.31 every infinite abelian group admits a non-discrete Hausdorff group topology, for
example the Bohr topology. This gives immediately the following

Corollary 3.63. Every group with infinite center admits a non-discrete Hausdorff group topology.

Proof. The center Z(G) of the group G has a non-discrete Hausdorff group topology τ by the above remark.
Now consider the family B of all sets of the form aU , where a ∈ G and U is a non-empty τ -subset of Z(G). It
is easy to see that it is a base of a non-discrete Hausdorff group topology on G.

In 1946 Markov set the problem of the existence of a (countably) infinite group G that admits no Hausdorff
group topology beyond the discrete one. Let us call such a group a Markov group. Obviously, G is a Markov
group precisely when MG is discrete. A Markov group must have finite center by Corollary 3.63.

According to Proposition 3.26, the closure of the neutral element of every topological group is always a
normal subgroup of G. Therefore, a simple topological group is either Hausdorff, or indiscrete. So a simple
Markov group G admits only two group topologies, the discrete and the indiscrete ones.

The equality ZG = MG established by Markov in the countable case was intended to help in finding a
countably infinite Markov group G. Indeed, a countable group G is Markov precisely when ZG is discrete.
Nevertheless, Markov failed in building a countable group G with discrete Zariski topology; this was done much
later, in 1980, by Ol′shanskii [78] who made use of the so called Adian groups A = A(m,n) (constructed by
Adian to negatively resolve the famous 1902 Burnside problem on finitely generated groups of finite exponent).
Let us sketch here Ol′shanskii’s elegant short proof.

Example 3.64. [78] Let m and n be odd integers ≥ 665, and let A = A(m,n) be Adian’s group having the
following properties

(a) A is generated by n-elements;

(b) A is torsion-free;

(c) the center C of A is infinite cyclic.

(d) the quotient A/C is infinite, of exponent m, i.e., ym ∈ C for every y ∈ A.6

By (a) the group A is countable. Denote by Cm the subgroup {cm : c ∈ C} of A. Let us see that (b), (c) and
(d) jointly imply that the Zariski topology of the infinite quotient G = A/Cm is discrete (so G is a countably
infinite Markov group). Let d be a generator of C. Then for every x ∈ A\C one has xm ∈ C\Cm. Indeed, if
xm = dms, then (xd−s)m = 1 for some s ∈ Z, so xd−s = 1 and x ∈ C by (b). Hence

for every u ∈ G\{1} there exists a ∈ C\Cm, such that either u = a or um = a. (3)

As |C/Cm| = m, every u ∈ G\{1} is a solution of some of the 2(m− 1) equations in (3). Thus, G\{e} is closed
in the Zariski topology ZG of G. Therefore, ZG is discrete.

Now we recall an example, due to Shelah [92], of an uncountable group which is non-topologizable. It
appeared about a year or two earlier than the ZFC-example of Ol′shanskii exposed above.

Example 3.65. [92] Under the assumption of CH there exists a group G of size ω1 satisfying the following
conditions (a) (with m = 10000) and (b) (with n = 2):

(a) there exists m ∈ N such that Am = G for every subset A of G with |A| = |G|;
6i.e., the finitely generated infinite quotient A/C negatively resolves Burnside’s problem.
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(b) for every subgroup H of G with |H| < |G| there exist n ∈ N and x1, . . . , xn ∈ G such that the intersection⋂n
i=1 x

−1
i Hxi is finite.

Let us see thatG is a Markov group (i.e., MG is discrete)7. Assume T be a Hausdorff group topology onG. There
exists a T -neighbourhood V of eG with V 6= G. Choose a T -neighbourhood W of eG with Wm ⊆ V . Now V 6= G
and (a) yield |W | < |G|. Let H = 〈W 〉. Then |H| = |W | ·ω < |G|. By (b) the intersection O =

⋂n
i=1 x

−1
i Hxi is

finite for some n ∈ N and elements x1, . . . , xn ∈ G. Since each x−1
i Hxi is a T -neighbourhood of eG, this proves

that eG ∈ O ∈ T . Since T is Hausdorff, it follows that {eG} is T -open, and therefore T is discrete.

One can see that even the weaker form of (a) (with m depending on A ∈ [G]|G|), yields that every proper
subgroup of G has size < |G|. In the case |G| = ω1, the groups with this property are known as Kurosh groups (in
particular, this is a Jonsson semigroup of size ω1, i.e., an uncountable semigroup whose proper subsemigroups
are countable).

Finally, this remarkable construction from [92] furnished also the first consistent example to a third open
problem. Namely, a closer look at the above argument shows that the group G is simple. As G has no maximal
subgroups, it shows also that taking Frattini subgroup8 “does not commute” with taking finite direct products
(indeed, Fratt(G) = G, while Fratt(G×G) = ∆G the “diagonal” subgroup of G×G).

3.7.4 Extension of group topologies

The problem of the existence of (Hausdorff non-discrete) group topologies can be considered also as a problem
of extension of (Hausdorff non-discrete) group topologies.

The theory of extension of topological spaces is well understood. If a subset Y of a set X carries a topology
τ , then it is easy to extend τ to a topology τ∗ on X such that (Y, τ) is a subspace of (X, τ∗). The easiest way
to do it is to consider X = Y ∪ (X \ Y ) as a partition of the new space (X, τ∗) into clopen sets and define
the topology of X \ Y arbitrarily. Usually, one prefers to define the extension topology τ∗ on X in such a way
to have Y dense in X. In such a case the extensions of a given space (Y, τ) can be described by means of
appropriate families of open filters of Y (i.e., filters on Y having a base of τ -open sets).

The counterpart of this problem for groups and group topologies is much more complicated because of the
presence of group structure. Indeed, let H be a subgroup of a group G and assume that τ is a group topology
of H. Now one has to build a group topology τ∗ on G such that (H, τ) is a topological subgroup of (G, τ∗).
The first idea to extend τ is to imitate the first case of extension considered above by declaring the subgroup H
a τ∗-open topological subgroup of the new topological group (G, τ∗). Let us note that this would immediately
determine the topology τ∗ in a unique way. Indeed, every coset gH of H must carry the topology transported
from H to gH by the translation x 7→ gx, i.e., the τ∗-open subsets of gH must have the form gU , where U is
an open subset of (H, τ). In other words, the family {gU : ∅ 6= U ∈ τ} is a base of τ∗. This idea has worked in
the proof of Corollary 3.63 where H was the center of G. Indeed, this idea works in the following more general
case.

Lemma 3.66. Let H be a subgroup of a group G such that G = HcG(G). Then for every group topology τ on
H the above described topology τ∗ is a group topology of G such that (H, τ) is a topological subgroup of (G, τ∗).

Proof. The first two axioms on the neighborhood base are easy to check. For the third one pick a basic τ∗-
neighborhood U of 1 in G. Since H is τ∗-open, we can assume wlog that U ⊆ H, so U is a τ -neighborhood of
1. Let x ∈ G. We have to produce a τ∗-neighborhood V of 1 in G such that x−1V x ⊆ U . By our hypothesis
there exist h ∈ H, z ∈ cG(G), such that x = hz. Since τ is a group topology on H there exist V ∈ VH,τ (1) such
that h−1V h ⊆ U . Then

x−1V x = z−1h−1V hz ⊆ z−1Uz = U

as z ∈ cG(G). This proves that τ∗ is a group topology of G .

Clearly, the condition G = HcG(G) is satisfied when H is a central subgroup of G. It is satisfied also when
H is a direct summand of G. On the other hand, subgroups H satisfying G = HcG(G) are normal.

Two questions are in order here:

• is the condition G = HcG(G) really necessary for the extension problems;

• is it possible to definite the extension τ∗ in a different way in order to have always the possibility to
extend a group topology?

7Hesse [66] showed that the use of CH in Shelah’s construction of a Markov group of size ω1 can be avoided.
8the Frattini subgroup of a group G is the intersection of all maximal subgroups of G.
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Our next theorem shows that the difficulty of the extension problem are not hidden in the special features
of the extension τ∗.

Theorem 3.67. Let H be a normal subgroup of the group G and let τ be a group topology on H. Then the
following are equivalent:

(a) the extension τ∗ is a group topology on G;

(b) τ can be extended to a group topology of G;

(c) for every x ∈ G the automorphism of H induced by the conjugation by x is τ -continuous.

Proof. The implication (a) → (b) is obvious, while the implication (b) → (c) follows from the fact that the
conjugations are continuous in any topological group. To prove the implication (c) → (a) assume now that
all automorphisms of N induced by the conjugation by elements of G are τ -continuous. Take the filter of all
neighborhoods of 1 in (H, τ∗) as a base of neighborhoods of 1 in the group topology τ∗ of G. This works since
the only axiom to check is to find for every x ∈ G and every τ∗-nbd U of 1 a τ∗-neighborhood V of 1 such that
V x := x−1V x ⊆ U . Since we can choose U, V contained in H, this immediately follows from our assumption of
τ -continuity of the restrictions to H of the conjugations in G.

Now we give an example showing that the extension problem cannot be resolved for certain triples G,H, τ
of a group G, its subgroup H and a group topology τ on H.

Example 3.68. In order to produce an example when the extension is not possible we need to produce a triple
G,H, τ such that at least some conjugation by an element of G is not τ -continuous when considered as an
automorphism of H. The best tool to face this issue is the use of semi-direct products.

Let us recall that for groups K, H and a group homomorphism θ : K → Aut(H) one defines the semi-direct
product G = HoθK, where we shall identify H with the subgroup H×{1} of G. In such a case, the conjugation
in G by an element k of K restricted to H is precisely the automorphism θ(k) of H. Now consider a group
topology τ on H. According to Theorem 3.67 τ can be extended to a group topology of G iff for every k ∈ K
the automorphism θ(k) of H is τ -continuous. (Indeed, every element x ∈ G has the form x = hk, where h ∈ H
and k ∈ K; hence it remains to note that the conjugation by x is composition of the (continuous) conjugation
by h and the conjugation by k. )

In order to produce the required example of a triple G,H, τ such that τ cannot be extended to G it suffices
to find a group K and a group homomorphism θ : K → Aut(H) such that at least one of the automorphisms
θ(k) of H is τ -discontinuous. Of course, one can simplify the construction by taking the cyclic group K1 = 〈k〉
instead of the whole group K, where k ∈ K is chosen such that the automorphisms θ(k) of H is τ -discontinuous.
A further simplification can be arranged by taking k in such a way that the automorphism f = θ(k) of H is
also an involition, i.e., f2 = idH . Then H will be an index two subgroup of G.

Here is an example of a topological abelian group (H, τ) admitting a τ -discontuous involition f . Then the
triple G,H, τ such that τ cannot be extended to G is obtained by simply taking G = Ho〈f〉, where the involition
f acts on H. Take as (H, τ) the torus group T with the usual topology. Then T is algebraically isomorphic to
(Q/Z)⊕c

⊕
Q, so T has 2c many involutions. Of these only the involutions ±idT of T are continuous.

Let us conclude now with a series of examples when the extension problem has always a positive solution.

Example 3.69. Let p be a prime number. If the group of p-adic integers N = Zp is a normal subgroup of
some group G, then the p-adic topology of N can be extended to a group topology on G. Indeed, it suffices to
note that if ξ : N → N is an automorphism of N , then ξ(pnN) = pnN . Since the subgroups pnN define the
topology of N , this proves that every automorphism of N is continuous. Now Theorem 3.67 applies.

Clearly, the p-adic integers can be replaced by any topological group N such that every automorphism of N
is continuous (e.g., products of the form

∏
p Zkp

p × Fp, where kp < ω and Fp is a finite abelian p-group).

3.8 Cardinal invariants of topological groups

Here we shall be interested in measuring the minimum size of a base (of neighborhoods of 1) in a topological
group H, as well as other cardinal functions related to H.

It is important to relate the bases (of neighborhoods of 1) in H to those of a subgroup G of H.

Exercise 3.70. If G is a subgroup of a topological group H and if B is a base (of neighborhoods of 1) in H then
a base (of neighborhoods of 1) in G is given by {U ∩G : U ∈ B}.
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Now we consider the case when G is a dense subgroup of H.

Lemma 3.71. If G is a dense subgroup of a topological group H and B is a base of neighborhoods of 1 in G,
then {UH

: U ∈ B} is a base of neighborhoods of 1 in H.

Proof. Since the topological group H is regular, the closed neighborhoods form a base at 1 in H. Hence for
a neighborhood V 3 1 in H one can find another neighborhood V0 3 1 such that V0 ⊆ V . Since G ∩ V0 is a
neighborhood of 1 in G, there exists U ∈ B such that U ⊆ G ∩ V0. There exists also an open neighborhood W
of 1 in H such that U = W ∩G. Obviously, one can choose W ⊆ V0. Hence U

H
= W as G is dense in H and

W is open in H. Thus U
H

= W ⊆ V 0 ⊆ V is a neighborhood of 1 in H.

Lemma 3.72. Let G be a dense subgroup of a topological group H and let B be a base of neighborhoods of 1 in
H. Then {gU : U ∈ B, g ∈ G} is a base of the topology of H.

Proof. Let x ∈ H and let x ∈ O be an open set. Then there exists a U ∈ U symmetric with xU2 ⊆ O. Pick a
g ∈ G ∩ xU . Then x ∈ gU ⊆ O.

For a topological group G set d(G) = min{|X| : X is dense in G},

w(G) = min{|B| : B is a base of G} and χ(G) = min{|B| : B a base of neighborhoods of 1 in G}.

Lemma 3.73. Let H be a subgroup of a topological group G. Then:

(a) w(H) ≤ w(G) and χ(H) ≤ χ(G);

(b) if H is dense in G, then w(G) = w(H) and χ(G) = χ(H).

Lemma 3.74. w(G) = χ(G) · d(G) for every topological group G.

Proof. The inequality w(G) ≥ χ(G) is obvious. To see that w(G) ≥ d(G) choose a base B of size w(G) and for
every U ∈ B pick a point dU ∈ U . Then the set D = {dU : U ∈ B} is dense in G and |D| ≤ w(G). This proves
the inequality w(G) ≥ χ(G) · d(G).

The inequality w(G) ≤ χ(G) · d(G) follows from the previous lemma.

The cardinal invariants of the topological groups are cardinal numbers, say ρ(G), associated to every topo-
logical group G such that if G is topologically isomorphic to the topological group H, then ρ(G) = ρ(H). For
example, the size |G| is the simplest cardinal invariant of a topological group, it does not depend on the topology
of G. Other cardinal invariants are the weight w(G), the character χ(G) and the density character d(G) defined
above. Beyond the equality w(G) = χ(G) · d(G) proved in Lemma 3.74, one has also the following inequalities:

Lemma 3.75. Let G be a topological group. Then:

(a) d(G) ≤ w(G) ≤ 2d(G);

(b) |G| ≤ 2w(G) if G is Hausdorff.

Proof. (a) d(G) ≤ w(G) has already been proved in Lemma 3.74 (a). To prove w(G) ≤ 2d(G) note that G is
regular, hence every open base B on G contains a base Br of the same size consisting of regular open sets9.
Let B be a base of G of regular open sets and let D be a dense subgroup of G of size d(G). If U, V ∈ B, with
U ∩ D = V ∩ D, then U = U ∩D = V ∩D = V . Being U and V regular open, the equality U = V implies
U = V . Hence the map U 7→ U ∩D from B to the power set P (D) is injective. Therefore w(G) ≤ 2d(G).

(b) To every point x ∈ G assign the set Ox = {U ∈ B : x ∈ U}. Then the axiom T2 guarantees that map
x 7→ Ox from G to the power set P (B) is injective. Therefore, |G| ≤ 2w(G).

Remark 3.76. Two observations related to item (b) of the above lemma are in order here.

• The equality in item (b) can be attained (see Theorem 4.46).

• One cannot remove Hausdorffness in item (b) (any large indiscrete group provides a counter-example).
This dependence on separation axioms is due to that the presence of the size of the group in (b). We see
in the next exercise that the Hausdorff axiom is not relevant as far as the other cardinal invariants are
involved.

9an open set is said to be regular open if it coincides with the interior of its closure.
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Exercise 3.77. Let G be a topological group. Prove that:

• w(G) = w(G/{1}), χ(G) = χ(G/{1}) and d(G) = d(G/{1});

• d(U) = D(G) for every non-empty open set U , if G is Lindelöff;

• w(G) = χ(G) if locally compact and σ-compact.

3.9 Completeness and completion

A net {gα}α∈A in a topological group G is a Cauchy net if for every neighborhood U of 1 in G there exists
α0 ∈ A such that g−1

α gβ ∈ U and gβg
−1
α ∈ U for every α, β > α0.

Exercise 3.78. Let G be a dense subgroup of a topological group H. If (gα) is a net in G that converges to
some element h ∈ H, then (gα) is a Cauchy net.

By the previous exercise, the convergent nets are Cauchy nets. A topological group G is complete (in the
sense of Răıkov) if every Cauchy net in G converges in G. We omit the tedious proof of the next theorem.

Theorem 3.79. For every topological Hausdorff group G there exists a complete topological group G̃ and a
topological embedding i : G → G̃ such that i(G) is dense in G̃. Moreover, if f : G → H is a continuous
homomorphism and H is a complete topological group, then there is a unique continuous homomorphism f̃ :
G̃→ H with f = f̃ ◦ i.

Therefore every Hausdorff topological abelian group has a unique, up to topological isomorphisms, (Răıkov-
)completion (G̃, i) and we can assume that G is a dense subgroup of G̃.

Definition 3.80. A net {gα}α∈A in G is a left [resp., right] Cauchy net if for every neighborhood U of 1 in G
there exists α0 ∈ A such that g−1

α gβ ∈ U [resp., gβg
−1
α ∈ U ] for every α, β > α0.

Lemma 3.81. Let G be a Hausdorff topological group. Every left (resp., right) Cauchy net in G with a
convergent subnet is convergent.

Proof. Let {gα}α∈A be a left Cauchy net in G and let {gβ}β∈B be a subnet convergent to x ∈ G, where B is a
cofinal subset of A. Let U be a neighborhood of 1 in G and V a symmetric neighborhood of 1 in G such that
V V ⊆ U . Since gβ → x, there exists β0 ∈ B such that gβ ∈ xV for every β > β0. On the other hand, there
exists α0 ∈ A such that α0 ≥ β0 and g−1

α gγ ∈ V for every α, γ > α0. With γ = β0 we have gα ∈ xV V ⊆ xU for
every α > α0, that is gα → x.

A topological group G is complete in the sense of Weil if every left Cauchy net converges in G.
Every Weil-complete group is also complete, but the converse does not hold in general. It is possible to

define the Weil-completion of a Hausdorff topological group in analogy with the Răıkov-completion.

Exercise 3.82. Prove that if a Hausdorff topological group G admits a Weil-completion, then in G the left
Cauchy and the right Cauchy nets coincide.

Exercise 3.83. Let X be an infinite set and let G = S(X) equipped with the topology described in §3.2.4. Prove
that:

(a) a net {fα}α∈A in G is left Cauchy iff there exists f ∈ XX so that fα → f in XX , prove that such an f
must necessarily be injective;

(b) a net {fα}α∈A in G is right Cauchy iff there exists g ∈ XX so that f−1
α → g in XX ;

(c) the group S(X) admits no Weil-completion. (Hint. Build a left Cauchy net in S(X) that is not right
Cauchy and use items (a) and (b), as well as the previous exercise.)

(d) S(X) is Răıkov-complete. (Hint. Use items (a) and (b).)

Exercise 3.84. (a) Let G be a linearly topologized group and let {Ni : i ∈ I} be its system of neighborhoods
of 1 consisting of open normal subgroups. Then the completion of G is isomorphic to the inverse limit
lim
←−

G/Ni of the discrete quotients G/Ni.

(b) Show that the completion in (a) is compact iff all Ni have finite index in G.
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(c) Let p be a prime number. Prove that the completion of Z equipped with the p-adic topology (see Example
3.7) is the compact group Jp of p-adic integers.

(d) Prove that the completion of Z equipped with the natural topology (see Example 3.7) is isomorphic to∏
p Jp.

Exercise 3.85. Let p be a prime number. Prove that:

(a) Z admits a finest group topology τ such that pn converges to 0 in τ (this is τ(pn) in the notation of §3.4);

(b) ∗ [89, 88] (Z, τ) is complete;

(c) conclude that τ is not metrizable.

Exercise 3.86. Let G be a Hausdroff topologized group. Call a filter F on G Cauchy if for every U ∈ VG(1)
there exists g ∈ G such that gU ∈ F . Prove that:

(a) a filter F on G Cauchy iff for every U ∈ VG(1) there exists g ∈ G such that Ug ∈ F .

(b) if F is a Cauchy filter on G and xF ∈ F for every F ∈ F , then the net {xF : F ∈ F} is a Cauchy net
(here F is considered as a directed partially ordered set w.r.t. inclusion);

(c) if {xi : i ∈ I} is a Cauchy net in G and Fi = {xj : j ∈ I, j ≥ i}, then the family {Fi : i ∈ I} is a filter
base of a Cauchy filter on G;

(d) G is complete iff every Cauchy filter in G converges.

4 Compactness and local compactness in topological groups

Clearly, a topological group G is locally compact if there exists a compact neighborhood of eG in G (compare
with Definition 2.10). We shall assume without explicitly mentioning it, that all locally compact groups are
Hausdorff.

As an immediate consequence of Tychonov’s theorem of compactness of products we obtain the following
the first example of a compact abelian group (it will become clear with the duality theorem that this is the
most general one).

Remark 4.1. Let us see that for every abelian group G the group G∗ = Hom (G,S) is closed in the product
SG, hence G∗ is compact. Consider the projections πx : SG → T for every x ∈ G and the following equalities

G∗ =
⋂

h,g∈G

{f ∈ SG : f(h+ g) = f(h)f(g)} =
⋂

h,g∈G

{f ∈ SG : πh+g(f) = πh(f)πg(f)}

=
⋂

h,g∈G

{f ∈ SG : (π−1
h+gπhπg)(f) = 1} =

⋂
h,g∈G

ker(π−1
h+gπhπg).

Since πx is continuous for every x ∈ G and {1} is closed in S, then all ker(π−1
h+gπhπg) are closed; so Hom (G,S)

is closed too.

The next lemma contains a well known useful fact – the existence of a “diagonal subnet”.

Lemma 4.2. Let G be an abelian group and let N = {χα}α be a net in G∗. Then there exist χ ∈ G∗ and a
subnet S = {χαβ

}β of N such that χαβ
(x) → χ(x) for every x ∈ G.

Proof. By Tychonov’s theorem, the group SG endowed with the product topology is compact. Then N has a
convergent (to χ) subnet S. Therefore χαβ

(x) → χ(x) for every x ∈ G and χ ∈ G∗, because G∗ is closed in SG

by 4.1.

4.1 Specific properties of (local) compactness

Here we shall see the impact of local compactness in various directions (the open mapping theorem, properties
related to connectedness, etc.).

Lemma 4.3. Let G be a topological group and let C and K be closed subsets of G:
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(a) if K is compact, then both CK and KC are closed;

(b) if both C and K are compact, then CK and KC are compact;

(c) if K is contained in an open subset U of G, then there exists an open neighborhood V of 1 such that
KV ⊆ U .

Proof. (a) Let {xα}α∈A be a net in CK such that xα → x0 ∈ G. It is sufficient to show that x0 ∈ CK. For
every α ∈ A we have xα = yαzα, where yα ∈ C and zα ∈ K. Since K is compact, then there exist z0 ∈ K
and a subnet {zαβ

}β∈B such that zαβ
→ z0. Thus (xαβ

, zαβ
)β∈B is a net in G×G which converges to (x0, z0).

Therefore yαβ
= xαβ

z−1
αβ

converges to x0z
−1
0 because the function (x, y) 7→ xy−1 is continuous. Since yαβ

∈ C

for every β ∈ B and C is closed, x0z
−1
0 ∈ C. Now x0 = (x0z

−1
0 )z0 ∈ CK. Analogously it is possible to prove

that KC is closed.
(b) The product C × K is compact by the Tychonov theorem and the function (x, y) 7→ xy is continuous

and maps C ×K onto CK. Thus CK is compact.
(c) Let C = G \U . Then C is a closed subset of G disjoint with K. Therefore, for the compact subset K−1

of G one has 1 6∈ K−1C. By (a) K−1C is closed, so there exists a symmetric neighborhood V of 1 that misses
K−1C. Then KV misses C and consequently KV is contained in U .

Compactness of K cannot be omitted in item (a). Indeed, K = Z and C = 〈
√

2〉 are closed subgroups of
G = R but the subgroup K + C of R is dense (see Exercie 3.20 or Proposition 4.45).

Lemma 4.4. Let G be a topological group and K a compact subgroup of G. Then the canonical projection
π : G→ G/K is closed.

Proof. Let C be a closed subset of G. Then CK is closed by Lemma 4.3 and so U = G \CK is open. For every
x 6∈ CK, that is π(x) 6∈ π(C), π(U) is an open neighborhood of π(x) such that π(U) ∩ π(C) is empty. So π(C)
is closed.

Lemma 4.5. Let G be a topological group and let H be a closed subgroup of G.

(1) If G is compact, then G/H is compact.

(2) If H and G/H are compact, then G is compact.

Proof. (1) is obvious.
(2) Let F = {Fα : α ∈ A} be a family of closed sets of G with the finite intersection property. If π : G→ G/H

is the canonical projection, π(F) is a family of closed subsets with the finite intersection property in G/H by
Lemma 4.4. By the compactness of G/H there exists π(x) ∈ π(Fα) for every α ∈ A. So x ∈

⋂
α∈A FαH. Let

x = fαhα with hα ∈ H and fα ∈ Fα. It is not restrictive to assume that F is closed for finite intersections.
Define a partial order on A by α ≤ α′ if Fα ⊇ Fα′ . Then (A,≤) is a right-filtered partially ordered set and so
{fα}α∈A is a net in G. By the compactness of H we can assume wlog that hα converges to h ∈ H (otherwise
pass to a convergent subnet). But then fα = xh−1

α → xh−1. Since fα is contained definitively in Fα, also the
limit xh−1 ∈ Fα. So the intersection of all Fα is not empty.

Lemma 4.6. Let G be a locally compact group, H be a closed subgroup of G and π : G→ G/H be the canonical
projection. Then:

(a) G/H is locally compact too;

(b) If C is a compact subset of G/H, then there exists a compact subset K of G such that π(K) = C.

Proof. Let U be an open neighborhood of 1 in G with compact closure. Consider the open neighborhood π(U)
of 1 in G/H. Then π(U) ⊆ π(U) by the continuity of π. Now π(U) is compact in G/H, which is Hausdorff,
and so π(U) is closed. Since π(U) is dense in π(U), we have π(U) = π(U) = π(U). So G/H is locally compact.

(b) Let U be an open neighborhood of 1 in G with compact closure. Then {π(sU) : s ∈ G} is an open
covering of G/H. Since C is compact, a finite subfamily {π(siU) : i = 1, . . . ,m} covers C. Then we can take
K = (s1U ∪ · · · ∪ smU) ∩ π−1(C).

Lemma 4.7. A locally compact group is Weil-complete.
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Proof. Let U be a neighborhood of 1 in G with compact closure and let {gα}α∈A be a left Cauchy net in G.
Then there exists α0 ∈ A such that g−1

α gβ ∈ U for every α, β ≥ α0. In particular, gβ ∈ gα0U for every β > α0.
By the compactness of gα0U , we can conclude that there exists a convergent subnet {gβ}β∈B (for some cofinal
B ⊆ A) such that gβ → g ∈ G. Then also gα converges to g by Lemma 3.81.

Lemma 4.8. A locally compact countable group is discrete.

Proof. By the Baire category theorem 2.16 G is of second category. Since G = {g1, . . . , gn, . . . } =
⋃∞

n=1{gn},
there exists n ∈ N+ such that Int {gn} is not empty and so {gn} is open.

Now we prove the open mapping theorem for topological groups.

Theorem 4.9 (Open mapping theorem). Let G and H be locally compact topological groups and let f be a
continuous homomorphism of G onto H. If G is σ-compact, then f is open.

Proof. Let U be an open neighborhood of 1 in G. There exists an open symmetric neighborhood V of 1 in
G such that V V ⊆ U and V is compact. Since G =

⋃
x∈G xV and G is Lindelöff by Lemma 2.17, we have

G =
⋃∞

n=1 xnV . ThereforeH =
⋃∞

n=1 h(xnV ), because h is surjective. Put yn = h(xn), henceH =
⋃∞

n=1 ynh(V )
where each h(V ) is compact and so closed in H. Since H is locally compact, Theorem 2.16 yields that there
exists n ∈ N+ such that Inth(V ) is not empty. So there exists a non-empty open subset W of H such that
W ⊆ h(V ). If w ∈W , then w ∈ h(V ) and so w = h(v) for some v ∈ V = V

−1
. Hence

1 ∈ w−1W ⊆ w−1h(V ) = h(v−1)h(V ) ⊆ h(V V ) ⊆ h(U)

and this implies that h(U) is an open neighborhood of 1 in H.

The following immediate corollary is frequently used:

Corollary 4.10. If f : G → H is a continuous surjective homomorphism of Hausdorff topological groups and
G is compact, then f is open.

Now we introduce a special class of σ-compact groups that will play an essential role in determining the
structure of the locally compact abelian groups.

Definition 4.11. A group G is compactly generated if there exists a compact subset K of G which generates
G, that is G = 〈K〉 =

⋃∞
n=1(K ∪K−1)n.

Lemma 4.12. If G is a compactly generated group then G is σ-compact.

Proof. By the definition G =
⋃∞

n=1(K ∪K−1)n, where every (K ∪K−1)n is compact, since K is compact.

It should be emphasized that while σ-compactness is a purely topological property, being compactly gener-
ated involves essentially the algebraic structure of the group.

Exercise 4.13. (a) Give examples of σ-compact groups that are not compactly generated.

(b) Show that every connected locally compact group is compactly generated.

Lemma 4.14. Let G be a locally compact group.

(a) If K a compact subset of G and U an open subset of G such that K ⊆ U , then there exists an open
neighborhood V of 1 in G such that (KV ) ∪ (V K) ⊆ U and (KV ) ∪ (V K) is compact.

(b) If G is compactly generated, then there exists an open neighborhood U of 1 in G such that U is compact
and U generates G.

Proof. (a) By Lemma 4.3 (c) there exists an open neighborhood V of 1 in G such that (KV ) ∪ (V K) ⊆ U .
Since G is locally compact, we can choose V with compact closure. Thus KV is compact by Lemma 4.3. Since
KV ⊆ KV , then KV ⊆ KV and so KV is compact. Analogously V K is compact, so (KV ) ∪ (V K) = KV ∪V K
is compact.

(b) Let K be a compact subset of G such that K generates G. So K ∪{1} is compact and by (a) there exists
an open neighborhood U of 1 in G such that U ⊇ K ∪ {1} and U is compact.

In the case of first countable topological groups Fujita and Shakmatov [49] have described the precise
relationship between σ-compactness and the property of being compactly generated.
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Theorem 4.15. A metrizable topological group G is compactly generated if and only if G is σ-compact and, for
every open subgroup H of G, there exists a finite set F ⊆ G such that F ∪H algebraically generates G [49].

This gives the following:

Corollary 4.16. A σ-compact metrizable group G is compactly generated in each of the following cases (for the
definition of total boundedness see Definition 4.25):

• G has no open subgroups

• the completion G̃ is connected;

• G is totally bounded.

Moreover,

Theorem 4.17. A countable metrizable group is compactly generated iff it is algebraically generated by a
sequence (possibly eventually constant) converging to its neutral element.

Examples showing that the various conditions above cannot be omitted can be found in [49].
The question when will a topological group contain a compactly generated dense subgroup is considered in

[50].
Now we see that linearity and total disconnectedness of group topologies coincide for compact groups and

for locally compact abelian groups.

Theorem 4.18. Every locally compact totally disconnected group has a base of neighborhoods of 1 consisting
of open subgroups. In particular, a locally compact totally disconnected group that is either abelian or compact
has linear topology.

This can be derived from the followis more precise result:

Theorem 4.19. Let G be a locally compact topological group and let C = c(G). Then :

(a) C coincides with the intersection of all open subgroups of G;

(b) if G is totally disconnected, then every neighborhoodof 1 contains an open subgroup of G.

If G is compact, then the open subgroups in items (a) and (b) can be chosen normal.

Proof. (a) follows from (b) as G/C is totally disconnected hence the neutral element of G/C is intersection of
open (resp. open normal) subgroups of G/C. Now the intersection of the inverse images, w.r.t. the canonical
homomorphism G→ G/C, of these subgroups coincides with C.

(b) Let G be a locally compact totally disconnted group. By Vedenissov’s Theorem G has a base O of clopen
symmetric compact neighborhoods of 1. Let U ∈ O. The U = U =

⋂
V ∈O UV . Then every set U ·V is compact

by Lemma 4.3, hence closed. According to Lemma 2.14 there exist V1, . . . , Vn ∈ O such that U =
⋂n

k=1 UVk.
Then for V := U ∩

⋂n
k=1 Vk one has UV = U . This implies also V V ⊆ U , V V V ⊆ U etc. Since V is symmetric,

the subgroup H = 〈V 〉 is contained in U as well. From V ⊆ H one can deduce that H is open (cf. 3.16). In
case G is compact, note that the heart HG =

⋂
x∈G x

−1Hx of H is an open normal subgroup as the number of
all conjugates x−1Hx of H is finite (being equal to [G : NG(H)] ≤ [G : H] <∞). Hence HG is an open normal
subgroup of G contained in H, hence also in U .

Corollary 4.20. The quotient of a locally compact totally disconnected group is totally disconnected.

Proof. Let G be a locally compact totally disconnected group and let N be a closed normal subgroup of G. It
follows from the above theorem that G has a linear topology. This yields that the quotient G/N has a linear
topology too. Thus G/N is totally disconnected.

Corollary 4.21. The continuous homomorphic images of compact totally disconnected groups are totally dis-
connected.

Proof. Follows from the above corollary and the open mapping theorem.

According to Example 3.46 none of the items (a) and (b) of the theorem remain true without the hypothesis
“locally compact”.

Corollary 4.22. Let G be a locally compact group. Then Q(G) = c(G).

Proof. By item (a) of the above theorema C(G) is an intersection of open subgroups, that are clopen being open
subgroups (cf. Proposizione 3.16). Hence c(G) contains Q(G) which in turn coincides with the intersection of
all clopen sets of G containing 1. The inclusion C(G) ⊆ Q(G) is always true.
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4.2 Subgroups of the compact groups

For a subset E of an abelian group G we set E(2) = E−E, E(4) = E−E+E−E, E(6) = E−E+E−E+E−E
and so on.

A subset X of an abelian group (G,+) is big10 if there exists a finite subset F of G such that G = X + F .
Obviously, every non-empty set of a finite group is big; on the other hand, every big set in an infinite group is
necessarily infinite.

Exercise 4.23. Let B be an infinite subset of Z. Show that B is big iff the following two conditions hold:

(a) B is unbounded from above and from below;

(b) if B = {bn}∞n=−∞ is a one-to-one monotone enumeration of B then the differences bn+1− bn are bounded.

Exercise 4.24. (a) Assume Bν is a big set of the group Gν for ν = 1, 2, . . . , n. Prove that B1 × . . .× Bn is
a big set of G1 × . . .×Gn.

(b) if f : G→ H is a surjective group homomorphism and B is a big subset of H, then f−1(B) is a big subset
of G.

Definition 4.25. A topological group G is totally bounded if every open non-empty subset U of G is big. A
Hausdorff totally bounded group will be called precompact .

Clearly, compact groups are precompact.
Note that if f in item (b) of 4.24 is not surjective, then the property may fail. The next proposition gives

an easy remedy to this.

Proposition 4.26. Let A be an abelian group and let B be a big subset of A. Then (B − B) ∩H is big with
respect to H for every subgroup H of A.

If a ∈ A then there exists a sufficiently large positive integer n such that na ∈ B −B.

Proof. There exists a finite subset F of A such that B + F = A. For every f ∈ F , if (B + f) ∩H is not empty,
choose af ∈ (B + f) ∩ H, and if (B + f) ∩ H is empty, choose an arbitrary af ∈ H. On the other hand, for
every x ∈ H there exists f ∈ F such that x ∈ B + f ; since af ∈ B + f , we have x − af ∈ B − B and so
H ⊆ (B −B) ∩H + {af : f ∈ F}, that is (B −B) ∩H is big in H.

For the last assertion it suffices to take H = 〈a〉. If H is finite, then there is nothing to prove as 0 ∈ B −B.
Otherwise H ∼= Z so the first item of Exercise 4.23 applies.

Combining this proposition with item (b) of 4.24 we get:

Corollary 4.27. For every group homomorphism f : G→ H and every big subset B of H, the subset f−1(B−B)
of G is a big.

Here comes the most important consequence of the above proposition.

Corollary 4.28. Subgroups of precompact groups are precompact. In particular, all subgroups of compact groups
are precompact.

One can show that the precompact groups are precisely the subgroups of the compact groups. This requires
two steps as the next theorem shows:

Theorem 4.29. (a) A group having a dense precompact subgroup is necessarily precompact.

(b) The compact groups are precisely the complete precompact groups.

Proof. (a) Indeed, assume that H is a dense precompact subgroup of a group G. Then for every U ∈ VG(0)
choose an open V ∈ VG(0) with V + V ⊆ U . By the precompactness of H there exists a finite set F ⊆ H such
that H = F + V ∩H. Then

G = V +H ⊆ V + F + V ∩H ⊆ F + V + V ⊆ F + U.

10Some authors use also the terminology large, relatively dense, or syndetically dense. This notion can be given for non-abelian
groups as well, but then both versions, left large and right large, do not coincide. This creates some technical difficulties that we
prefer to avoid since the second part of this section is relevant only for abelian groups. The first half, including the characterization
4.29, remains valid in the non-abelian case as well (since, fortunately, the “left” and “right” versions of total boundedness coincide).
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(b) Compact groups are complete and precompact. To prove the other implication take a complete precom-
pact group G. To prove that G is compact it sufficies to prove that every ultrafilre on G converges. Assume
U is such an ultrafiler. We show first that it is a Cauchy filter. Indeed, if U ∈ VG(0), then U is a big set of G
so there exists g1, g2, . . . , gn ∈ G such that G =

⋃n
i=1 gi + U . Since U is an ultrafilter, gi + U ∈ U for some i.

Hence U is a is a Cauchy filter. According to Exercise 3.86 U converges.

In this way we have described the precompact groups internally (as the Hausdorff topological groups having
big non-empty open sets), or externally (as the subgroups of the compact groups).

Now we adopt a different approach to describe the precompact groups, based on the use of characters. Our
first aim will be to see that the topologies induced by characters are always totally bounded.

Proposition 4.30. If A is an abelian group, δ > 0 and χ1, . . . , χs ∈ A∗ (s ∈ N+), then U(χ1, . . . , χs; δ) is big in
A. Moreover for every a ∈ A there exists a sufficiently large positive integer n such that na ∈ U(χ1, . . . , χs; δ).

Proof. Define h : A→ Ts such that h(x) = (χ1(x), . . . , χs(x)) and

B =
{

(z1, . . . , zn) ∈ Ss : |Arg zi| <
δ

2
for i = 1, . . . , s

}
=

{
z ∈ S : |Arg z| < δ

2

}s

.

Then B is big in Ss and by Proposition 4.26 the set (B −B) ∩ h(A) is big with respect to h(A). Since

B −B ⊆ C = {(z1, . . . , zs) ∈ Ss : ‖Arg zi‖ < δ for i = 1, . . . , s},

we have that C ∩ h(A) is big with respect to h(A). Therefore U(χ1, . . . , χs; δ) = h−1(C) is big in A.
The second statement follows from Proposition 4.26, since

U

(
χ1, . . . , χs;

δ

2

)
− U

(
χ1, . . . , χs;

δ

2

)
⊆ U(χ1, . . . , χs; δ).

Corollary 4.31. For an abelian group G all topologies of the form TH , where H ≤ G∗, are totally bounded.
Moreover, TH is precompact iff H separates the points of G.

It requires a considerable effort to prove that, conversely, every totally bounded group topology has the form
TH for some H (see Remark 6.3).

It follows easily from Corollary 4.31 and Proposition 4.30 that for every neighborhood E of 0 in the Bohr
topology (namely, a set E containing a subset of the form U(χ1, . . . , χn; ε) with characters χi : G → S,
i = 1, 2, . . . , n, and ε > 0) there exists a big set B of G such that B(8) ⊆ E (just take B = U(χ1, . . . , χn; ε/8)).
Surprisingly, the converse is also true. Namely, we shall obtain as a corollary of Følner’s lemma that every set
E satisfying B(8) ⊆ E for some big set B of G must be a neighborhood of 0 in the Bohr topology of G (see
Corollary 5.8).

Exercise 4.32. If G is a countably infinite Hausdorff abelian group, then for every compact set K in G the set
K(2n) is big for no n ∈ N.

(Hint. By Lemma 4.3 every set K(2n) is compact. So if K(2n) were big for some n, then G itself would be
compact. Now Lemma 4.8 applies.)

Exercise 4.33. Call a subset S of an infinite abelian group G small if there exist (necessarily distinct) elements
g1, g2, . . . , gn, . . . of G such that (gn + S) ∩ (gm + S) = ∅ whenever m 6= n.

(a) Show that a subset S of G such that S − S is not big is necessarily small.

(b) Show that every finite subset is small.

(c) Show that the group Z is not a finite union of small sets.

(d) ∗ Show that no infinite abelian group G is a finite union of small sets.

(e) If S = (an) is a one-to-one T -sequence in an abelian group G, then for every n ∈ N the set S(2n) is small
in G.

(f) Show that the sequence (pn) of prime numbers in Z is not a T -sequence.
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(Hint. (d) Use a finitely additive invariant (Banach) measure on G. For (e) consider the (countable) subgroup
generated by S and note that if an → 0 in some Hausdorff group topology τ on G, then the set S ∪ {0} would
be compact in τ , so item (a) and Exercise 4.32 apply. For (f) use (e) and the fact that there exists a constant
m such that every integer number is a sum of at most m11 prime numbers.)

Exercise 4.34. Show that for an infinite abelian group G and a subgroup H of G the following are equivalent:

(a) H has infinite index;

(b) H is not big;

(c) H is small.

Exercise 4.35. ∗ Every infinite abelian group has a small set of generators.

This can be extended to arbitrary groups [30]. One can find in the literature also different (weaker) forms
of smallness ([4, 11]).

Exercise 4.36. (a) If f : G → H is a continuous surjective homomorphism of topological groups, then H is
totally bounded whenever G is totally bounded.

(b) Prove that a topological group G is totally bounded iff G/{1} is totally bounded.

(c) If {Gi : i ∈ I} is a family of topological groups, then
∏

iGi is totally bounded iff each Gi is totally bounded.

(d) Prove that every topological abelian group G admits a “universal” totally bounded continuous surjective
homomorphic image q : G → q(G) (i.e., every continuous homomorphsm G → P , where P is a totally
bounded group, factors through q12).

4.3 Subgroups of Rn

Our main goal here is to prove that every closed subgroup of Rn is topologically isomorphic to Rs × Zm, with
s,m ∈ N and s+m ≤ n. More precisely:

Theorem 4.37. Let n ∈ N+ and let H be a closed subgroup of Rn. Then there exist closed subgroups V and D
of Rn such that H = V +D ∼= V ×D, V ∼= Rs, D ∼= Zm and s+m ≤ n.

The proof is split in several steps. Before starting it, we note the following curious dichotomy hidden in this
theorem:

• the closed connected subgroups of Rn are always isomorphic to some Rs with s ≤ n;

• the totally disconnected closed subgroups D of Rn must be free and have free-rank r0(D) ≤ n; in particular
they are discrete.

In the general case, for every closed subgroup H of Rn the connected component c(H) is open in H and
isomorphic to Rs for some s ≤ n. Therefore, by the divisibility of Rs one can write H = c(H) × D for some
discrete subgroup D of H (see Corollary 2.8). Necessarily r0(D) ≤ n − s as c(H) ∼= Rs contains a discrete
subgroup D1 of rank s, so that D1 ×D will be a discrete subgroup of Rn.

It is not hard to see that every discrete subgroup of R is cyclic (Exercise 3.20). The first part of the proof
consists in appropriately extending this property to discrete subgroups of Rn (see Proposition 4.39). The first
step is to see that the free-rank r0(H) of a discrete subgroup H of Rn coincides with the dimension of the
subspace of Rn generated by H.

Lemma 4.38. Let H be a discrete subgroup of Rn. If the elements v1, . . . , vm of H are Q-linearly independent,
then they are also R-linearly indipendent.

11use the fact that according to the positive solution of the ternary Goldbach’s conjecture a there exists a constant C > 0 such
that every odd integer ≥ C is a sum of three primes (see [96] for further details on Goldbach’s conjecture).

12in other words, the subcategory of all totally bounded groups forms an epireflective subcategory of the category of all topological
groups.
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Proof. Let V ∼= Rk be the subspace of Rn generated by H. We can assume wlog that V = Rn, i.e., k = n.
Hence we have to prove that the free-rank m = r0(H) of H coincides with n. Obviously m ≥ n. We need to
prove that m ≤ n. Let us fix n R-linearly independent vectors v1, . . . , vn in H. It is enough to see that for
every h ∈ H the vectors v1, . . . , vn, h are not Q-linearly independent. This would imply m ≤ n. Let us note
first that we can assume wlog that H ⊇ Zn. Indeed, as v1, . . . , vn are R-linearly independent, there exists a
linear isomorphism α : Rn → Rn with α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base of
Rn. Clearly, α(H) is still a discrete subgroup of Rn and the vectors v1, . . . , vn, h are Q-linearly independent iff
the vectors e1 = α(v1), . . . , en = α(vn), α(h) are. The latter fact is equivalent to α(h) 6∈ Qn. Therefore, arguing
for a contradiction, assume for simplicity that H ⊇ Zn and there exists h = (h1, . . . , hn) ∈ H such that

h 6∈ Qn. (4)

By the discreteness of H there exists an ε > 0 with max{|hi| : i = 1, 2, . . . , n} ≥ ε for every 0 6= h =
(h1, . . . , hn) ∈ H. Represent the cube C = [0, 1]n as a finite union

⋃
i Ci of cubes Ci of diameter < ε (e.g., take

them with faces parallel to the coordinate axes, although their precise position is completely irrelevant). For a
real number r denote by {r} the unique number 0 ≤ x < 1 such that r − x ∈ Z. Then ({mv1}, . . . , {mvn}) 6=
({lh1}, . . . , {lhn}) for every positive l 6= m, since otherwise, (m− l)h ∈ Zn with m− l 6= 0 in contradiction with
(4). Among the infinitely many points am = ({mh1}, . . . , {mhn}) ∈ C there exist two am 6= al belonging to the
same cube Ci. Hence, |{mhj} − {lhj}| < ε for every j = 1, 2, . . . , n. So there exists a z = (z1, . . . , zn) ∈ Zn,
such that 0 6= (m− l)h− z ∈ H and |(m− l)hj − zj | < ε for every j = 1, 2, . . . , n, this contradicts the choice of
ε.

The aim of the next step is to see that the discrete subgroups of Rn are free.

Proposition 4.39. If H is a discrete subgroup of Rn, then H is free and r(H) ≤ n.

Proof. In fact, let m = r(H). By the definition of r(H) there exist m Q-linearly independent vectors v1, . . . , vm

of H. By the previous lemma the vectors v1, . . . , vm are also R-linearly independent. Hence, m ≤ n. Let
V ∼= Rm be the subspace of Rn generated by v1, . . . , vm. Obviously, H ⊆ V , since H is contained in the
Q-subspace of Rn generated by the free subgroup F = 〈v1, . . . , vm〉 di H. Since H is a discrete subgroup of V
too, we can argue with V in place of Rn. So, we can assume wlog that m = n and V = Rn. It suffices to see
that H/F is finite. Then H will be finitely generated and torsion-free, hence H must be free.

Since the vectors v1, . . . , vn are linearly independent on R we can assume wlog that H ⊇ Zn. In fact, let
α : Rn → Rn be the linear isomorphism with α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base
of Rn. Then α(H) is still a discrete subgroup of Rn, Zn = α(F ) ⊆ α(H) and H/F is finite iff α(H)/α(F ) ∼= H/F
is finite.

In the sequel we assume H ⊇ Zn = F for the sake of simplicity. To check that H/F is finite consider the
canonical homomorphism q : Rn → Rn/Zn ∼= Tn. According to Theorem 3.23, q sends the closed subgroup H
onto a closed (hence compact) subgroup q(H) of Tn; moreover H = q−1(q(H)), hence the restriction of q to H
is open and q(H) is discrete. Thus q(H) ∼= H/F is both compact and discrete, so q(H) must be finite.

Now we are in position to prove Theorem 4.37. We advise the reader to review the warming exercise 3.20.

Proof of Theorem 4.37. Let H 6= 0 a closed subgroup of Rn. If H discrete, then H is free and generates a
linear subspace of Rn of dimension r(H) ≤ n by Proposition 4.39, so the assertion is true with s = 0.

In case H is not discrete we argue by induction on n. The case n = 1 is Exercise 3.20. Let n > 1 and assume
the theorem is true for n− 1. Consider the subset

M = {u ∈ Rn : ‖u‖ = 1 and ∃λ ∈ (0, 1) with λu ∈ H}

of the unitary sphere S in Rn. For u ∈ S let Nu = {r ∈ R : ru ∈ H}. Then Nu is a closed subgroup of R and
H ∩ Ru = Nuu. Our aim will be to find some u ∈ S such that the whole line Ru is contained in H. This will
allow us to use our inductive hypothesis. Since the proper closed subgroups of R are cyclic (see Exercise 3.20),
it suffices to find some u ∈ S such that Nu is not cyclic.

Case 1. If M = {u1, . . . , un} is finite, then there exists an index i such that λui ∈ H for infinitely many
λ ∈ (0, 1). Then the closed subgroup Nui

cannot be cyclic, so H contains to line Rui and we are done.
Case 2. Assume M is infinite. By the assumption H is not discrete there exists a sequence un ∈ M such

that the corresponding λn, with λnun ∈ H, converge to 0. By the compactness of S there exists a limit point
u0 ∈ S for the sequence un ∈M . We can assume wlog that un → u0. Let ε > 0 and let ∆ε be the open interval
(ε, 2ε). As λn → 0, there exists n0 such that λn < ε for every n ≥ n0. Hence for every n ≥ n0 there exists an
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appropriate kn ∈ N with ηn = knλn ∈ ∆ε. Taking again a subsequence we can assume wlog that there exists
some ξε ∈ ∆ε such that ηn → ξε. Hence ξεu0 = limn knλnu0 ∈ H. This argument shows that Nu0 contains
ξε ∈ ∆ε with arbitrarily small ε. Therefore, Nu0 cannot be cyclic. Hence H contains the line Ru0.

We proved in all cases that our assumption of non-discreteness of H yields the existence of a line L ∼= R as
a subgroup of H. Let L′ ∼= Rn−1 be a subspace of Rn complementing L. Then Rn = L× L′ and the projection
Rn → L′ sends H to a closed subgroup H1 of L′ as L ≤ H (cf. 3.23 (b)). Moreover, H = L ×H1 in view of
L ≤ H again. Now proceed by induction with the subgroup H1 of L′ ∼= Rn−1. This proves Theorem 4.37.

The next corollary describes the quotients of Rn.

Corollary 4.40. A quotient of Rn is isomorphic to Rk × Tm, where k + m ≤ n. In particular, a compact
quotient of Rn is isomorphic to Tm for some m ≤ n.

Proof. Let H be a closed subgroup of Rn. Then H = V +D, where V,D are as in Theorem 4.37. If s = dimV
and m = r0(D), then s + m ≤ n. Let V1 be the linear subspace of Rn spanned by D. Pick a complementing
subspace V2 for the subspace V + V1 and let k = n − (s + m). Then Rn = V + V1 + V2 is a factorization in
direct product. Therefore Rn/H ∼= (V1/D) × V2. Since dimV1 = r0(D) = m, one has V1/D ∼= Tm. Therefore,
Rn/H ∼= Tm × Rk.

Let us denote by (x|y) the usual scalar product in Rn. Recall that every base v1, . . . , vn di Rn admits a dual
base v′1, . . . , v

′
n defined by the relations (vi|v′j) = δij . For a subgroup H of Rn define the associated subgroup

H† setting
H† := {u ∈ Rn : (∀x ∈ H)(x|u) ∈ Z}.

Then obviously (Zn)† = Zn.

Lemma 4.41. Let H be a subgroup di Rn. Then:

1. H† is a closed subgroup of Rn and the correspondence H 7→ H† is decreasing;

2. (H)† = H†.

Proof. The map Rn × Rn → R defined by (x, y) 7→ (x|u) is continuous.
(a) Let q : R → T = R/Z be the canonical homomorphism.Then for every fixed a ∈ Rn the assignment

x 7→ (a|x) 7→ f((a|x)) is a continuous homomorphism χa : Rn → T. Hence the set χ−1
h (0) = {u ∈ Rn : (∀h ∈

H)(h|u) ∈ Z} is closed in Rn. Therefore H† =
⋂

h∈H χ−1
h (0) is closed. The same equality proves that the

correspondence H 7→ H∗ is decreasing.
(b) From the second part of (a) one has (H)† ⊆ H†. Suppose that u ∈ H† e x ∈ H. By the continuity of the

map χx(u) = χu(x), as a function of x, one can deduce that χx(u) = 0, being χu(h) = 0 for every h ∈ H.

We study in the sequel the subgroup H† associated to a closed subgroup H of Rn. According to Theorem
4.37 there exist a base v1, . . . , vn of Rn and k ≤ n, such that for some 0 ≤ s ≤ k H = V ⊕ L where V is the
linear subspace generated by v1, . . . , vs and L = 〈vs+1, . . . , vk〉. Let v′1, . . . , v

′
n be the dual base of v1, . . . , vn.

Lemma 4.42. In the above notation the subgroup H† coincides with 〈v′s+1, . . . , v
′
k〉+W , where W is the linear

subspace generated by v′k+1, . . . , v
′
n.

Proof. Let V ′ be the linear subspace generated by v′1, . . . , v
′
s, V

′′ the linear subspace generated by v′s+1, . . . , v
′
k

and L′ = 〈v′s+1, . . . , v
′
k〉. Then L† = V ′ +L′ +W , while V † = V ′′ +W . Hence H† ≤ L† ∩ V † = L′ +W . On the

other hand, obviously L′ +W ≤ H†.

Corollario 4.43. H = (H†)† for every subgroup H of Rn.

Proof. If H is closed of the form V +L in the notation of the previous lemma, then H† = L′+W with v′1, . . . , v
′
n,

L′ and W defined as above. Now H† = L′ +W is a closed subgroup of Rn by Lemma 4.41 and v1, . . . , vn is a
dual base of v′1, . . . , v

′
n. Therefore, H = V + L coincides with (H†)†.

Lemma 4.44. Let V be a hyperplain in Rn determined by the equation
∑n

i=1 aixi = 0 such that there exists
at least one coefficient ai = 1. Then the subgroup H = V + Zn of Rn is not dense iff all the coefficients ai are
rational.

Proof. We can assume wlog that i = n. Suppose that H is not dense in Rn. Then H† 6= 0 by Corollary
4.43. Let 0 6= z ∈ H†. Since Zn ≤ H, one has H† ≤ Zn = (Zn)†, so z ∈ Zn. If j < n, then aj ∈ Q as
v = (0, . . . , 0, 1, 0, . . . , 0,−aj) ∈ V
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The next proposition is a particular case of the well-known Kronecker’s theorem.

Proposition 4.45. Let v1, . . . , vn ∈ R. Then for v = (v1, . . . , vn) ∈ Rn the subgroup 〈v〉 + Zn of Rn is dense
iff v0 = 1, v1, . . . , vn ∈ R are linearly independent as elements of the vector space R over Q.

Proof. Assume v0 = 1, v1, . . . , vn ∈ R are linearly independent and let H = 〈v〉+ Zn. Then H† ⊆ Zn = (Zn)†.
It is easy to see now that some z ∈ Zn belongs to (〈v〉)† iff z = 0. This proves that H† = 0. Consequently H is
dense in Rn by Corollary 4.43. If

∑n
i=0 kivi = 0 is a non-trivial linear combination with ki ∈ Z, then the vector

k = (k1, . . . , kn) ∈ Zn is non-zero and obviously k ∈ H†. Thus H† 6= 0, hence H is not dense.

Theorem 4.46. Tc is monothetic.

Proof. Let B be a Hamel base of R on Q that contains 1 and let B0 = B\{1}. Applying the previous proposition
one can see that the element x = (xb)b∈B0 ∈ TB0 , defined by xb = b+ Z ∈ R/Z = T, is a generator of the group
TB0 . To conclude note that |B0| = |R| = c.

Corollary 4.47. Let C be a closed subgroup of Tn. Then C is isomorphic to Ts × F where s ≤ n and F is a
finite abelian group.

Proof. Let q : Rn → Tn = Rn/Zn be the canonical projection. If C is a closed subgroup of Tn, then H = q−1(C)
is a closed subgroup of Rn that contains Zn = ker q. Hence H is a direct product H = V + D with V ∼= Rs

and D ∼= Zm, where s and m satisfy s+m = n as Zn ≤ H. Since the restriction of q to H is open by Theorem
3.23, we conclude that the restriction of q to V is open as far as V is open in H. Hence q �V : V → q(V ) is an
open surjective homomorphism and the subgroup q(V ) is open in C. Since q(V ) is also divisible, we can write
C = q(V )× F , where the subgroup F of C must be discrete. Since C is compact, this implies that F is finite.
On the other hand, as a compact quotient of V ∼= Rs the group q(V ) is isomorphic to Ts by Corollary 4.40.
Therefore, C ∼= Ts × F .

Exercise 4.48. Determine for which of the following possible choices of the vector v ∈ R4

(
√

2,
√

3,
√

5,
√

6), (
√

2,
√

3,
√

5,
√

7), (log 2, log 3, log 5, log 6),

(log 2, log 3, log 5, log 7), (log 3, log 5, log 7, log 9) and (log 5, log 7, log 9, log 11)

the subgroup 〈v〉+ Z4 of R4 is dense.

Exercise 4.49. (a) Prove that a subgroup H of T is dense iff H is infinite.

(b) Determine the minimal (w.r.t. inclusion) dense subgroups T.

(c) ∗ Determine the minimal (w.r.t. inclusion) dense subgroups T2.

5 Følner’s theorem

This section is entirely dedicated to Følner’s theorem.

5.1 Fourier theory for finite abelian groups

In the sequel G will be a finite abelian group, so G∗ ∼= G, so in particular |G∗| = |G|.
Here we recall some well known properties of the scalar product in finite-dimensional complex spaces V = Cn.

Since our space will be “spanned” by a finite abelian group G of size n (i.e., V = CG), we have also an action
of G on V . We normalize the scalar product in a such way to let the vector (1, 1, . . . , 1) (i. e., the constant
function 1) to have norm 1. The reader familiar with Haar integration may easily recognize in this the Haar
integral on G.

Define the scalar product by

(f, g) =
1
|G|

∑
x∈G

f(x)g(x).

Let us see first that the elements of the subset G∗ of V are pairwise orthogonal and have norm 1:

Proposition 5.1. Let G be an abelian finite group and ϕ, χ ∈ G∗, x, y ∈ G. Then:



5.1 Fourier theory for finite abelian groups 33

(a) 1
|G|

∑
x∈G ϕ(x)χ(x) =

{
1 if ϕ = χ

0 if ϕ 6= χ
;

(b) 1
|G∗|

∑
χ∈G∗ χ(x)χ(y) =

{
1 if x = y

0 if x 6= y.
.

Proof. (a) If ϕ = χ then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If ϕ 6= χ there exists z ∈ G such that ϕ(z) 6= χ(z). Therefore the following equalities∑

x∈G

ϕ(x)χ(x) =
ϕ(z)
χ(z)

∑
x∈G

ϕ(x− z)χ(x− z) =
ϕ(z)
χ(z)

∑
x∈G

ϕ(x)χ(x)

imply that
∑

x∈F ϕ(x)χ(x) = 0.
(b) If x = y then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If x 6= y, by Corollary 2.7 there exists χ0 ∈ G∗ such that χ0(x) 6= χ0(y). Now we can proceed as before,

that is ∑
χ∈G∗

χ(x)χ(y) =
χ0(x)
χ0(y)

∑
χ∈G∗

(χχ0)(x)(χχ0)(y) =
χ0(x)
χ0(y)

∑
χ∈G∗

χ(x)χ(y)

yields
∑

χ∈G∗ χ(x)χ(y) = 0.

If G is a finite abelian group and f is a complex valued function on G, then for every χ ∈ G∗ we can define

cχ = (f, χ) =
1
|G|

∑
x∈G

f(x)χ(x),

that is the Fourier coefficient of f corresponding to χ.
For complex valued functions f, g on a finite abelian group G define the convolution f ∗ g by (f ∗ g)(x) =

1
|G|

∑
y∈G f(y)g(x+ y).

Proposition 5.2. Let G be an abelian finite group and f a complex valued function on G with Fourier coefficients
cχ where χ ∈ G∗. Then:

(a) f(x) =
∑

χ∈G∗ cχχ(x) for every x ∈ G;

(b) if {aχ}χ∈G∗ is such that f(x) =
∑

χ∈G∗ aχχ(x), then aχ = cχ for every χ ∈ G∗;

(c) 1
|G|

∑
x∈G |f(x)|2 =

∑
χ∈G∗ |cχ|2;

(d) if g is an other complex valued function on G with Fourier coefficients (dχ)χ∈G∗ , then f ∗ g has Fourier
coefficients (cχdχ)χ∈G∗ .

Proof. (a) The definition of the coefficients cχ yields∑
χ∈G∗

cχχ(x) =
∑

χ∈G∗

1
|G|

∑
y∈G

f(y)χ(y)χ(x).

Computing
∑

χ∈G∗ χ(y)χ(x) with Proposition 5.1(b) we get
∑

χ∈G∗ cχχ(x) = |G∗|
|G| f(x) for every x ∈ G. Now

|G| = |G∗| gives f(x) =
∑

χ∈G∗ cχχ(x) for every x ∈ G.
(b) By Proposition 5.1 the definition of the coefficients cχ and the relation f(x) =

∑
χ∈G∗ aχχ(x)

cχ =
1
|G|

∑
ϕ∈G∗

aϕ

∑
x∈G

ϕ(x)χ(x) = aχ.

(d) By item (a) g(x) =
∑

ϕ∈G∗ dϕϕ(x) for every x ∈ G. Therefore∑
y∈G

f(y)g(x+ y) =
∑
y∈G

( ∑
χ∈G∗

cχχ(y)
)( ∑

ϕ∈G∗

dϕϕ(x)ϕ(y)
)

=

=
∑

χ∈G∗

∑
ϕ∈G∗

cχdϕϕ(x)
∑
y∈G

χ(y)ϕ(y) = |G|
∑

χ∈G∗

cχdχχ(x).

(c) It is sufficient to apply (d) with g = f and let x = 0.
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Corollary 5.3. Let G be a finite abelian group, E be a non-empty subset of G and let f be the characteristic
function of E. Then for the convolution g = f ∗ f one has

(a) g(x) > 0 iff x ∈ E(2);

(b) g(x) =
∑

χ∈G∗ |cχ|2χ(x).

Proof. (a) g(x) > 0 if and only if there exists y ∈ E with x+ y ∈ E, that is x ∈ E − E = E(2).
(b) follows obviously from Proposition 5.2(d).

5.2 Bogoliouboff and Følner Lemmas

Lemma 5.4 (Bogoliouboff lemma). If F is a finite abelian group and E is a non-empty subset of F , then
there exist χ1, . . . , χm ∈ F ∗, where m =

[( |F |
|E|

)2], such that U(χ1, . . . , χm; π
2 ) ⊆ E(4).

Proof. Let f be the characteristic function of E. By Proposition 5.2(a) we have

f(x) =
∑

χ∈F∗

cχχ(x), with cχ =
1
|F |

∑
x∈F

f(x)χ(x). (1)

Define g = f ∗ f and h = g ∗ g. The functions f and g = f ∗ f have real values and by Corollary 5.3

g(x) =
∑

χ∈F∗

|cχ|2χ(x) and h(x) =
∑

χ∈F∗

|cχ|4χ(x) for x ∈ F. (2)

Moreover, g(x) > 0 if and only if x ∈ E − E = E(2). Analogously h(x) > 0 if and only if x ∈ E(4).
By Proposition 5.2(c)

∑
χ∈F ′ |cχ|2 = |E|

|F | . Set a = |E|
|F | and order the Fourier coefficients of f so that

|cχ0 | ≥ |cχ1 | ≥ . . . ≥ |cχk
| ≥ . . .

(note that they are finitely many). Thus χ0 = 1 and cχ0 = a by (1). Then
∑k

i=0 |cχi
|2 ≤

∑
χ∈F∗ |cχ|2 = a for

every k ≥ 0. Consequently (k + 1)|cχk
|2 ≤ a, so

|cχk
|4 ≤ a2

(k + 1)2
. (3)

Now let m =
[

1
a2 ]. We are going to show now that with these χ1, . . . , χm ∈ F ∗ one has

h(x) > 0 for every x ∈ U(χ1 . . . , χm;
π

2
). (4)

Clearly Reχk(x) ≥ 0 for k = 1, 2, ...,m whenever x ∈ U(χ1 . . . , χm; π
2 ) thus

|a4 +
m∑

k=0

|cχk
|4χk(x)

∣∣ ≥ Re(a4 +
m∑

k=1

|cχk
|4χk(x)) ≥ a4. (5)

On the other hand, (3) yields∑
k≥m+1

|cχk
|4 ≤

∑
k≥m+1

a2

(k + 1)2
< a2

∑
k≥m+1

1
k(k + 1)

≤ a2

m+ 1
. (6)

Since h has real values, (2), (5) and (6) give

h(x) = |h(x)| = |a4+|cχ1 |4χ1(x)+. . .
∣∣ ≥ ∣∣∣∣∣a4 +

m∑
k=1

|cχk
|4χk(x)

∣∣∣∣∣− ∑
k≥m+1

|cχk
|4 ≥ a4− a2

m+ 1
≥ a2(a2− 1

m+ 1
) > 0.

This proves (4). Therefore U(χ1 . . . , χm; π
2 ) ⊆ E(4).

Let us note that the estimate for the number m of characters is certainly non-optimal when E is too small.
For example, when E is just the singleton {0}, the upper bound given by the lemma is just |F |2, while one
can certainly find at most m = |F | − 1 characters χ1, . . . , χm (namely, all non-trivial χi ∈ F ∗) such that
U(χ1, . . . , χm; π

2 ) = {0}. For certain groups (e.g., F = Zk
2) one can find even a much smaller number (say

m = log2 |F |). Nevertheless, in the cases relevant for the proof of Følner’s theorem, namely when the subset E
is relatively large with respect to F , this estimate seems more reasonable.

The next lemma will be needed in the following proofs.
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Lemma 5.5. Let A be an abelian group and {An}∞n=1 be a sequence of finite subsets of A such that

lim
n→∞

|(An − a) ∩An|
|An|

= 1

for every a ∈ A. If k is a positive integer and V is a subset of A such that k translates of V cover A, then for
every ε > 0 there exists N > 0 such that

|V ∩An| >
(

1
k
− ε

)
|An|

for every n ≥ N .

Proof. Let a1, . . . , ak ∈ A be such that
⋃k

i=1(ai +V ) = A. If ε > 0, then there exists N1 > 0 such that for every
n ≥ N1

|(An − ai) ∩An| > (1− ε)|An|

and consequently,
|(An − ai) \An| < ε|An| (7)

for every i = 1, . . . , k. Since An =
⋃k

i=1(ai + V ) ∩An, for every n there exists in ∈ {1, . . . , k} such that

1
k
|An| ≤ |(ain

+ V ) ∩An| = |V ∩ (An − ain
)|.

Since V ∩ (An − ain) ⊆ (V ∩An) ∪ ((An − ain) \An), (7) yields

1
k
|An| ≤ |V ∩ (An − ain

)| ≤ |V ∩An|+ |(An − ain
) \An| < |V ∩An|+ ε|An|.

Lemma 5.6 (Bogoliouboff-Følner lemma). Let A be a finitely generated abelian group and let r = r0(A). If
k is a positive integer and V is a subset of A such that k translates of V cover A, then there exist ρ1, . . . , ρs ∈ A∗,
where s = 32rk2, such that UA(ρ1, . . . , ρs; π

2 ) ⊆ V(4).

Proof. By Theorem 2.1 we have A ∼= Zr × F , where F is a finite abelian group; so we can identify A with the
group Zr×F . Define An = (−n, n]r×F , let a = (a1, . . . , ar; f) ∈ Zr×F . Then Jni = (−n, n]∩ (−n−ai, n−ai]
satisfies |Jni| ≥ 2n−|ai|. In particular, Jni 6= ∅ for every n > n0 = max{|ai| : i = 1, 2, . . . , n}. As (An−a)∩An =∏r

i=1 Jni × F , we have

|(An − a) ∩An| ≥ |F | ·
r∏

i=1

(2n− |ai|)

or all n > n0. Since |An| = |F |(2n)r, we can apply Lemma 5.5. Thus for every ε > 0 we have

|V ∩An| >
(

1
k
− ε

)
|An|. (8)

for every sufficiently large n. For n with (8) define G = A/(6nZr) and E = q(V ∩An) where q is the canonical
projection of A onto G. Observe that q �An is injective, as (An −An) ∩ ker q = {0}. Then (8) gives

|E| = |V ∩An| >
(

1
k
− ε

)
|An| =

(
1
k
− ε

)
(2n)r|F |

and so
|G|
|E|

≤ (6n)r|F |
( 1

k − ε)(2n)r|F |
=

3rk

1− kε
.

Fix ε > 0 sufficiently small to have
[

32rk2

(1−kε)2

]
= 32rk2 and pick sufficiently large n to have (8). Now apply the

Bogoliouboff Lemma 5.4 to find s = 32rk2 characters ξ1n, . . . , ξsn ∈ G∗ such that UG(ξ1n, . . . , ξsn; π
2 ) ⊆ E(4).

For j = 1, . . . , s define %jn = ξjn◦π ∈ A∗. If a ∈ An∩UA(%1n, . . . , %sn; π
2 ) then q(a) ∈ UA(ξ1n, . . . , ξsn; π

2 ) ⊆ E(4)

and so there exist b1, b2, b3, b4 ∈ V ∩An and c = (ci) ∈ 6nZr such that a = b1 − b2 + b3 − b4 + c. Now

c = a− b1 + b2 − b3 + b4 ∈ (An)(4) +An
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implies |ci| ≤ 5n for each i. So c = 0 as 6n divides ci for each i. Thus a ∈ V(4) and so

An ∩ UA

(
%1n, . . . , %sn;

π

2

)
⊆ V(4) (9)

for all n satisfying (8).
By Lemma 4.2 there exist %1, . . . , %s ∈ A∗ and a subsequence {nl}l of {n}n∈N+ such that %i(a) = liml %inl

(a)
for every i = 1, . . . , s and a ∈ A. We are going to prove now that

UA

(
%1, . . . %s;

π

2

)
⊆ V(4). (10)

Take a ∈ UA(%1, . . . , %s; π
2 ). Since A =

⋃∞
l=k Anl

for every k ∈ N+, there exists n0 satisfying (8) and a ∈ An0 .
As %i(a) = liml %inl

(a) for every i = 1, . . . , s, we can pick l to have nl ≥ n0 and |Arg(%inl
(a))| < π/2 for every

i = 1, . . . , s, i.e., a ∈ UA(%1nl
, . . . , %snl

; π
2 ) ∩Anl

. Now (9), applied to nl, yields a ∈ V(4). This proves (10).

Our next aim is to eliminate the dependence of the number m of characters on the free rank of the group A
in Bogoliouboff - Følner’s lemma. The price to pay for this is taking V(8) instead of V(4).

Lemma 5.7 (Følner lemma). Let A be an abelian group. If k is a positive integer and V be a subset of A such
that k translates of V cover A, then there exist χ1, . . . , χm ∈ A∗, where m = k2, such that UA(χ1, . . . , χm; π

2 ) ⊆
V(8).

Proof. We consider first the case when A is finitely generated. Let r = r0(A). By Lemma 5.6 there exist
%1, . . . , %s ∈ A∗, where s = 32rk2, such that

UA

(
%1, . . . , %s;

π

2

)
⊆ V(4).

Since it is finitely generated, we can identify A with Zr×F , where F is a finite abelian group. For t ∈ {1, . . . , r}
define a monomorphism it : Z ↪→ A by letting

it(n) = (0, . . . , 0, n︸ ︷︷ ︸
t

, 0, . . . , 0; 0) ∈ A.

Then each κjt = %j ◦ it, where j ∈ {1, . . . , s}, t ∈ {1, . . . , r}, is a character of Z. By Proposition 4.30 the subset

L = UZ

(
{κjt : j = 1, . . . , s, t = 1, . . . , r}; π

8r

)
of Z is infinite. Let L0 =

⋃r
t=1 it(L), i.e., this is the set of all elements of A of the form ±it(n) with n ∈ L and

t ∈ {1, . . . , r}. Then obviously L0 = −L0 ⊆ UA

(
%1, . . . , %s; π

8r

)
, therefore,

L0
(4r) ⊆ UA

(
%1, . . . , %s;

π

2

)
⊆ V(4). (λ)

Define An = (−n, n]r × F and pick ε > 0 such that
[(

k
1−kε

)2] = k2. As in Lemma 5.6 An satisfies the
hypotheses of Lemma 5.5 and so |V ∩ An| > ( 1

k − ε)|An| for sufficiently large n. Moreover, we choose this
sufficiently large n from L. Let Gn = A/(2nZr) ∼= Zr

2n × F and E = q(An ∩ V ) where q is the canonical
projection A→ Gn. Then q �An

is injective as (An −An) ∩ ker q = 0. So q induces a bijection between An and
Gn on one hand, and between V ∩An and E. Thus |An| = |Gn| = (2n)r|F |, |E| > ( 1

k − ε)|An| and so(
|Gn|
|E|

)2

≤
(

k

εk − 1

)2

≤ k2.

To the finite group Gn apply the Bogoliouboff Lemma 5.4 to get ξ1n, . . . , ξmn ∈ G∗
n, where m = k2, such that

UGn

(
ξ1n, . . . , ξmn;

π

2

)
⊆ E(4).

Let χjn = ξjn ◦ q ∈ A∗. If a ∈ An ∩ UA(χ1n, . . . , χmn; π
2 ), then q(a) ∈ UGn

(ξ1n, . . . , ξmn; π
2 ) ⊆ E(4). Therefore

there exist b1, b2, b3, b4 ∈ An ∩ V and c = (ci) ∈ 2nZr such that a = b1− b2 + b3− b4 + c. Since 2n divides ci for
every i and |ci| ≤ 5n, we conclude that ci ∈ {0,±2n± 4n} for i = 1, 2, . . . , r. This means that c can be written
as a sum of at most 4r elements of L0. This gives c ∈ L0

(4r) ⊆ V(4) by (λ), consequently a ∈ V(8). Therefore

An ∩ UA

(
χ1n, . . . , χmn;

π

2

)
⊆ V(8)
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for n ∈ L sufficiently large n. By Lemma 4.2 there exist χ1, . . . , χm ∈ A∗ and a subsequence {nl}l of {n}n∈N+

such that χj(a) = liml χjnl
(a) for every j = 1, . . . ,m and for every a ∈ A. Being A =

⋃
{An : l > k, nl ∈ L} for

every k ∈ N+ we can conclude as above that UA

(
χ1, . . . , χm; π

2

)
⊆ V(8).

Consider now the general case. Let g1, . . . , gk ∈ A be such that A =
⋃k

i=1(gi + V ). Suppose that G is a
finitely generated subgroup of A containing g1, . . . , gk. Then G =

⋃k
1=1(gi +V ∩G) and so k translates of V ∩G

cover G. By the above argument and by Theorem 2.5 there exist ϕ1G, . . . , ϕmG ∈ G∗, where m = k2, such that

UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ (V ∩G)(8) ⊆ V(8).

By Corollary 2.6 we can extend each ϕiG to a character of A, so that we assume from now on ϕ1G, . . . , ϕmG ∈ A∗
and

G ∩ UA

(
ϕ1G, . . . , ϕmG;

π

2

)
= UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ V(8). (11)

Let G be the family of all finitely generated subgroups G of A containing g1, . . . , gk. It is a directed set under
inclusion. So we get m nets {ϕjG}G∈G in A∗ for j = 1, . . . ,m. By Lemma 4.2 there exist subnets {ϕjGβ

}β and
χ1, . . . , χm ∈ A∗ such that

ϕj(x) = lim
β
ϕjGβ

(x) for every x ∈ A and j = 1, . . . ,m. (12)

From (11) and (12) we conclude as before that UA(χ1, . . . , χm; π
2 ) ⊆ V(8).

As a corollary of Følner’s lemma we obtain the following description of the neighborhoods of 0 in the Bohr
topology of A.

Corollary 5.8. For a subset E of an abelian group A the following are equivalent:

(a) E contains V(8) for some big subset V of A;

(b) for every n ∈ N+ E contains V(2n) for some big subset V of A;

(c) E is a neighborhood of 0 in the Bohr topology of A.

Proof. The implication (c) ⇒ (b) follows from Følner’s lemma. The implication (c) ⇒ (b) follows from Corollary
4.31 and Proposition 4.30.

It follows from results of Følner [45] obtained by less elementary tools, that (b) can be replaced by the weaker
assumption V(4) ⊆ E (see also Ellis and Keynes [43] or Cotlar and Ricabarra [24] for further improvements).
Nevertheless the following old problems concerning the group Z is still open (see Cotlar and Ricabarra [24],
Ellis and Keynes [43], Følner [45], Glasner [54], Pestov [80, Question 1025] or Veech [94]):

Question 5.9. Does there exist a big set V ⊆ Z such that V − V is not a neighborhood of 0 in the Bohr
topology of G?

It is known that every infinite abelian group G admits a big set with empty interior with respect to the Bohr
topology [4] (more precisely, these authors prove that every totally bounded group has a big subset with empty
interior).

5.3 Prodanov’s lemma and proof of Følner’s theorem

Let C be a set in a real or complex vector space. Then C is said to be convex if, for all x, y ∈ C and all t ∈ [0, 1],
the point (1− t)x+ ty ∈ C.

The next lemma, due to Prodanov [84], allows us to eliminate the discontinuous characters in uniform
approximations of continuous functions via linear combinations of characters.

Lemma 5.10 (Prodanov’s lemma). Let G be a topological abelian group, let U be an open subset of G, f a
complex valued continuous function on G and M a convex closed subset of C. Let k ∈ N+ and χ1, . . . , χk ∈ G′.
Suppose that c1, . . . , ck ∈ C are such that

∑k
j=1 cjχj(x) − f(x) ∈ M for every x ∈ U . If χm1 , . . . , χms

, with
m1 < · · · < ms, s ∈ N, {m1, . . . ,ms} ⊆ {1, . . . , k}, are the continuous among χ1, . . . , χk, then

∑s
i=1 cmi

χmi
(x)−

f(x) ∈M for every x ∈ U .
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Proof. Let χk ∈ G∗ be discontinuous. Then it is discontinuous at 0. Consequently there exists a net {xγ}γ in
G such that limγ xγ = 0 and there exist yj = limγ χj(xγ) for all j = 1, . . . , k, but yk 6= 1. Notice that always
|yj | = 1. Moreover, yj = 1 when χj is continuous because xγ → 0, so yj = limχj(xγ) = 1.

Consider
∑k

j=1 cjχj(x+ txγ)− f(x+ txγ), where t ∈ Z. Since limγ xγ = 0, we have x+ txγ ∈ U for every

x ∈ U and for every sufficiently large γ. Thus
∑k

j=1 cjχj(x)χj(xγ)t − f(x + txγ) ∈ M and so passing to the

limit
∑k

j=1 cjχj(x)yt
j − f(x) ∈M , because f is continuous and M is closed.

Take an arbitrary n ∈ N. By the convexity of M and the relation above for t = 0, . . . , n, we obtain

1
n+ 1

n∑
t=0

 k∑
j=1

cjχj(x)yt
j − f(x)

 ∈M.

Note that
∑n

t=0 y
t
k = yn+1

k −1

yk−1 because yk 6= 1. Hence we get

k−1∑
j=1

cjnχj(x) +
ck

1 + n

1− yn+1
k

1− yk
χk(x)− f(x) ∈M

for every x ∈ U , where cjn =
∑n

t=0 cjyt
j

n+1 . Now for every j = 1, 2, . . . , k − 1

• |cjn| ≤ |cj |
∑n

t=0 |yj |t
n+1 = |cj | (because |yj | = 1), and

• if yj = 1 then cjn = cj .

By the boundedness of the sequences {cjn}∞n=1 for j = 1, . . . , k − 1, there exists a subsequence {nm}∞m=1 such
that all limits c′j = limm cjnm

exist for j = 1, . . . , k − 1. On the other hand, |yk| = 1, so

lim
n

ck
n+ 1

1− yn+1
k

1− yk
= 0.

Taking the limit for m→∞ in

k−1∑
j=1

cjnm
χj(x) +

ck
1 + nm

1− ynm+1
k

1− yk
χk(x)− f(x) ∈M

gives
k−1∑
j=1

c′jχj(x)− f(x) ∈M for x ∈ U ; (13)

moreover c′j = cj for every j = 1, . . . , k − 1 such that χj is continuous.
The condition (13) is obtained by the hypothesis, removing the discontinuous character χk in such a way

that the coefficients of the continuous characters remain the same. Iterating this procedure, we can remove all
discontinuous characters among χ1, . . . , χk.

Now we give an (apparently) topology-free form of the local version of the Stone-Weierstraß theorem 2.19.

Proposition 5.11. Let G be an abelian group and H be a group of characters of G. If X is a subset of G and
f is a complex valued bounded function on X then the following conditions are equivalent:

(a) f can be uniformly approximated on X by a linear combination of elements of H with complex coefficients;

(b) for every ε > 0 there exist δ > 0 and χ1, . . . , χm ∈ H such that x − y ∈ UG(χ1, . . . , χm; δ) yields
|f(x)− f(y)| < ε for every x, y ∈ X.

Proof. (a)⇒(b) Let ε > 0. By (a) there exist c1, . . . , cm ∈ C and χ1, . . . , χm ∈ H such that ‖
∑m

i=1 c1χi−f‖∞ <
ε
4 , that is |

∑m
i=1 c1χi(x)− f(x)| < ε

4 for every x ∈ X.
On the other hand note that |

∑m
i=1 ciχi(x) −

∑m
i=1 ciχi(y)| ≤

∑m
i=1 |ci| · |χi(x) − χi(y)| and that |χi(x −

y)− 1| = |χi(x)χi(y)−1 − 1| = |χi(x)− χi(y)|. If we take

δ =
ε

2mmaxi=1,...,m |ci|
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then x−y ∈ U(χ1, . . . , χm; δ) implies
∑m

i=1 |ci|·|χi(x)−χi(y)| < ε
2 and so also |

∑m
i=1 ciχi(x)−

∑m
i=1 ciχi(y)| < ε

2 .
Consequently,

|f(x)− f(y)| ≤

∣∣∣∣∣f(x)−
m∑

i=1

ciχi(x)

∣∣∣∣∣ +

∣∣∣∣∣
m∑

i=1

ciχi(x)−
m∑

i=1

ciχi(y)

∣∣∣∣∣ +

∣∣∣∣∣
m∑

i=1

ciχi(y)− f(y)

∣∣∣∣∣ < ε.

(b)⇒(a) Let βX be the Čech-Stone compactification of X endowed with the discrete topology. If F : X → C is
bounded, there exists a unique continuous extension F β of F to βX. Let S be the collection of all continuous
functions g on βX such that g =

∑n
j=1 cjχ

β
j with χj ∈ H, cj ∈ C and n ∈ N+. Then S is a subalgebra

of C(βX,C) closed under conjugation and contains all constants. In fact in S we have χβ
kχ

β
j = (χkχj)β by

definition and χβ = (χ)β because χχ = 1 and so (χχ)β = χβ(χ)β = 1, that is (χ)β = (χ−1)β = χβ .
Now we will see that S separates the points of βX separated by fβ , to apply the local Stone-Weierstraß

Theorem 2.19. Let x, y ∈ βX and fβ(x) 6= fβ(y). Consider two nets {xi}i and {yi}i in X such that xi → x and
yi → y. Since fβ is continuous, we have fβ(x) = lim f(xi) and fβ(y) = lim f(yi). Along with fβ(x) 6= fβ(y) this
implies that there exists ε > 0 such that |f(xi)−f(yi)| ≥ ε for every sufficiently large i. By the hypothesis there
exist δ > 0 and χ1, . . . , χk ∈ H such that for every u, v ∈ X if u− v ∈ UG(χ1, . . . , χk; δ) then |f(u)− f(v)| < ε.
Assume χβ

j (x) = χβ
j (y) holds true for every j = 1, . . . , k. Then xi − yi ∈ UG(χ1, . . . , χk; δ) for every sufficiently

large i, this contradicts (a). So each pair of points of βX separated by fβ is also separated by S. Since βX is
compact, one can apply the local version of the Stone-Weierstraß Theorem 2.19 to S and fβ and so fβ can be
uniformly approximated by S. To conclude note that if g =

∑
cjχ

β
j on βX then g �X=

∑
cjχj .

The reader familiar with uniform spaces will note that item (b) is nothing else but uniform continuity of f
w.r.t. the uniformity on X induced by the uniformity of the whole group G determined by the topology TH .

Theorem 5.12 (Følner theorem). Let G be a topological abelian group. If k is a positive integer and E
is a subset of G such that k translates of E cover G, then for every neighborhood U of 0 in G there exist
χ1, . . . , χm ∈ Ĝ, where m = k2, and δ > 0 such that UG(χ1, . . . , χm; δ) ⊆ U − U + E(8).

Proof. By Følnerś lemma 5.7 there exist ϕ1, . . . , ϕm ∈ G∗ such that UG(ϕ1, . . . , ϕm; π
2 ) ⊆ E(8), where the

characters ϕj can be discontinuous. Our aim will be to replace these characters by continuous ones “enlarging”
E(8) to U − U + E(8).

It follows from Lemma 3.18 that C := E(8) + U ⊆ E(8) + U − U . Consider the open set X = U ∪ (G \ C)
and the function f : X → C defined by

f(x) =

{
0 if x ∈ U
1 if x ∈ G \ C

Then f is continuous as X = U ∪ (G \ C) is a clopen partition of X.
Let H be the group generated by ϕ1, . . . , ϕm. Take x, y ∈ X with x− y ∈ UG(ϕ1, . . . , ϕm; π

2 ) ⊆ E(8). So if
y ∈ U then x ∈ E(8) + U and consequently x 6∈ G \ E(8) + U , that is x ∈ U . In the same way it can be showed
that x ∈ U yields y ∈ U . This gives f(x) = f(y) by the definition of f . So by Proposition 5.11 one can uniformly
approximate f on X by characters of H. Hence one can find a finite number of m-uples j̃ = (j1, . . . , jm) of
integers and cj̃ ∈ C such that ∣∣∣∣∑

j̃

cj̃ϕ
j1
1 (x) · . . . · ϕjm

m (x)− f(x)
∣∣∣∣ ≤ 1

3
(13)

holds for every x ∈ X. Since X is open and f is continuous, we can apply Lemma 5.10 to the convex closed set
M = {z ∈ C : |z| ≤ 1

3} and this permits us to assume that all products ϕj1
1 · . . . · ϕjm

m are continuous. Letting
x = 0 in (13) one gets |

∑
j̃ cj̃ | ≤

1
3 , and consequently,

2
3
≤

∣∣∣∣∑
j̃

cj̃ − 1
∣∣∣∣. (14)

Let now Φ be the subgroup of H consisting of all continuous characters of H, i.e., Φ = H ∩ Ĝ. By Theorem
2.1 there exist χ1, . . . , χm ∈ Φ that generate Φ. Choose ε > 0 with ε

∑
j̃ |cj̃ | <

1
3 . By the continuity of

χ1, . . . , χm ∈ Φ there exists δ > 0 such that x ∈ UG(χ1, . . . , χm; δ) implies |ϕj1
1 (x) · . . . · ϕjm

m (x)− 1| ≤ ε for all
summands ϕj1

1 · . . . · ϕjm
m in (13).
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To prove
UG(χ1, . . . , χm; δ) ⊆ U − U + E(8)

assume for a contradiction that some z ∈ UG(χ1, . . . , χm; δ) and z 6∈ U − U + E(8). Since C = E(8) + U ⊆
E(8) + U − U , then z ∈ G \ C ⊆ X. Thus, by the definition of f , (13), (14) and |ϕj1

1 (z) · . . . · ϕjm
m (z) − 1| ≤ ε,

we have

2
3
≤

∣∣∣∣∑
j̃

cj̃ − 1
∣∣∣∣ ≤ ∣∣∣∣∑

j̃

cj̃(1− ϕj1
1 (z) · . . . · ϕjm

m (z))
∣∣∣∣ +

∣∣∣∣∑
j̃

cj̃ϕ
j1
1 (z) · . . . · ϕjm

m (z)− f(z)
∣∣∣∣ ≤ ε

∑
j̃

|cj̃ |+
1
3
.

These inequalities together give 2
3 ≤ ε

∑
j̃ |cj̃ |+

1
3 . This contradicts the choice of ε.

6 Peter-Weyl’s theorem and other applications of Følner’s theorem

In this section we prove Peter-Weyl’s theorem using Følner’s theorem.

6.1 Precompact group topologies on abelian groups

Let us recall here that for an abelian group G and a subgroup H of G∗, the group topology TH generated by H
is the coarsest group topology on G that makes every character from H continuous. We recall its description
and properties in the next proposition:

Proposition 6.1. Let G be an abelian group and let H be a group of characters of G. A base of the neighborhoods
of 0 in (G, TH) is given by the sets U(χ1, . . . , χm; δ), where χ1, . . . , χm ∈ H and δ > 0. Moreover (G, TH) is a
Hausdorff if and only if H separates the points of G.

Now we can characterize the precompact topologies on abelian groups.

Theorem 6.2. Let (G, τ) be an abelian group. The following conditions are equivalent:

(a) τ is precompact;

(b) τ is Hausdorff on G and the neighborhoods of 0 in G are big subsets;

(c) there exists a group H of continuous characters of G that separates the points of G and such that τ = TH .

Proof. (a)⇒(b) is the definition of precompact topology.
(b)⇒(c) If H = (̂G, τ) then TH ⊆ τ . Let U and V be open neighborhoods of 0 in (G, τ) such that V(10) ⊆ U .

Then V is big and by Følner’s Theorem 5.12 there exist continuous characters χ1, . . . , χm of G such that
UG(χ1, . . . , χm; δ) ⊆ V(10) ⊆ U for some δ > 0. Thus U ∈ TH and τ ⊆ TH .

(c)⇒(a) Even if this implication is contained in Corollary 4.31, we give a direct proof here. Let i : G→ SH

be defined by i(g) = ig : H → S (if g ∈ G) with ig(χ) = χ(g) for every χ ∈ H. Since H separates the points
of G, the function i is injective. The product SH endowed with the product topology is compact and so i is
a topological immersion by Proposition 6.1. The closure of i(G) in SH is compact and G̃ is isomorphic to it,
hence G̃ is compact.

Remark 6.3. The above theorem essentially belongs to Comfort and Ross [23]. It can be given in the following
simpler “Hausdorff-free” version: τ is totally bounded iff τ = TH for some group H of continuous characters of
G.

Corollary 6.4 (Peter-Weyl’s theorem). If G is a compact abelian group, then Ĝ separates the points of G.

Proof. Let τ be the topology of G. By Theorem 6.2 there exists a group H of continuous characters of G (i.e.,
H ⊆ Ĝ) such that τ = TH . Since τ ⊇ TĜ and H ⊆ Ĝ we conclude that H = Ĝ separates the points of G.

The next theorem will allow us to sharpen this property (see Corollary 6.6).

Theorem 6.5. Let G be an abelian group. Let H be the set of all groups of characters of G separating the
points of G and P be the set of all precompact group topologies on G. Then the function T : H → P which
associates to H ∈ H the topology TH ∈ P is an order preserving bijection (if H1,H2 ∈ H then TH1 ⊆ TH2 if and
only if H1 ⊆ H2).
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Proof. The equivalence (a)⇔(c) of Theorem 6.2 yields that TH ∈ P for every H ∈ H and that T is surjective.
Let H ∈ H and suppose that χ ∈ ̂(G, TH). To show that χ ∈ H let ε > 0. Since χ is continuous in 0,

by Proposition 6.1 there exist χ1, . . . , χm ∈ H and δ > 0 such that |χ(x) − 1| < ε for x ∈ U(χ1, . . . , χm; δ).
Therefore for every x, y ∈ G with x− y ∈ U(χ1, . . . , χm; δ) we get |χ(x− y)− 1| < ε, that is |χ(x)− χ(y)| < ε.
Apply now Proposition 5.11 to find χ1, . . . , χm ∈ H and ci, . . . , cm ∈ C such that

∣∣ ∑m
j=1 cjχj(x) − χ(x)

∣∣ ≤ 1
2

for every x ∈ G. This yields
∣∣ ∑m

j=1 cjχj(x)χ−1(x)− 1
∣∣ ≤ 1

2 .
Suppose now that χ 6∈ H. Then each χjχ

−1 in the previous condition is non-constant. Equip G with the
indiscrete topology. Then each character χjχ

−1 is discontinuous. Applying Lemma 5.10 we get the inequality
1 ≤ 1

2 , which is a contradiction. Therefore χ ∈ H and so H = ̂(G, τH) for every H ∈ H.
If H1,H2 ∈ H and TH1 = TH2 then H1 = H2, so T is a bijection.
The last statement of the theorem is obvious.

As a corollary of Theorem 6.5 we obtain the following important fact that completes Corollary 6.4. It will
be essentially used in the proof of the duality theorem.

Corollary 6.6. If (G, τ) is a compact abelian group and H ≤ Ĝ separates the points of G, then H = Ĝ.

Proof. By Theorem 6.2 it holds τ = TĜ. Since TH ⊆ TĜ by Theorem 6.5 and TH is Hausdorff, then TH = TĜ.
Now again Theorem 6.5 yields H = Ĝ.

Definition 6.7. An abelian topological group is elementary compact if it is topologically isomorphic to Ts×F ,
where n is a positive integer and F is a finite abelian group.

Proposition 6.8. Let G be a compact abelian group and let U be an open neighborhood of 0 in G. Then
there exists a closed subgroup C of G such that C ⊆ U and G/C is an elementary compact abelian group. In
particular, G is an inverse limit of elementary compact abelian groups.

Proof. By the Peter-Weyl Theorem 6.4
⋂

χ∈Ĝ kerχ = {0} and each kerχ is a closed subgroup of G. By the

compactness of G there exists a finite subset F of Ĝ such that C =
⋂

χ∈F kerχ ⊆ U . Define now g =
∏

χ∈F χ :
G → TF . Thus ker g = C and G/C is topologically isomorphic to the closed subgroup g(G) of TF by the
compactness of G. So G/C is elementary compact abelian by Lemma 4.47.

To prove the last statement, fix for every open neighborhood Ui of 0 in G a closed subgroup Ci of G with
Ci ⊆ U and such that G/Ci is elementary compact abelian. Note that for Ci and Cj obtained in this way
the subgroup Ci ∩ Cj has the same property as G/Ci ∩ Cj is isomorphic to a closed subgroup of the product
G/Ci × G/Cj which is again an elementary compact abelian group. Enlarging the family (Ci) with all finite
intersections we obtain an inverse system of elementary compact abelian groups G/Ci where the connecting
homomorphisms G/Ci → G/Cj , when Ci ≤ Cj , are simply the induced homomorphisms. Then the inverse limit
G′ of this inverse system is a compact abelian group together with a continuous homomorphism f : G → G′

induced by the projections pi : G→ G/Ci. Assume x ∈ G is non-zero. Pick on open neighborhood U of 0. By
the first part of the proof, there exists Ci ⊆ U , hence x 6∈ Ci. Therefore, pi(x) 6= 0, so f(x) 6= 0 as well. This
proves that f is injective. To check surjectivity of f take an element x′ = (xi +Ci) of the inverse limit G′. Then
the family of closed cosets xi + Ci in G has the finite intersection property, so has a non-empty intersection.
For every element x of that intersection one has f(x) = x′. Finally, the continuous isomorphism f : G → G′

must be open by the compactness of G.

For a topological abelian group G we say that G has no small subgroups, or shortly, G is NSS, if there exists
a neighborhood U of 0 such that U contain no non-trivial subgroups of G. It follows immediately from the
above proposition that the compact abelian group G has no small subgroups precisely when G is an elementary
compact abelian group.

6.2 Precompact group topologies determined by sequences

Large and lacunary sets (mainly in Z or elsewhere) are largely studied in number theory, harmonic analysis and
dynamical systems ([43], [24], [80], [52], [53], [54], [55], [59]).

Let us consider a specific problem. For a strictly increasing sequence u = (un)n≥1 of integers, the interest in
the distribution of the multiples {unα : n ∈ N} of a non-torsion element α of the group T = R/Z has roots in
number theory (Weyl’s theorem of uniform distribution modulo 1) and in ergodic theory (Sturmian sequences
and Hartman sets [99]). According to Weyl’s theorem, the set {unα : n ∈ N} will be uniformly dense in T for
almost all α ∈ T. One can consider the subset tu(T) of all elements α ∈ T such that limn unα = 0 in T. Clearly



42 6 PETER-WEYL’S THEOREM AND OTHER APPLICATIONS OF FØLNER’S THEOREM

it will have measure zero. Moreover, it is a subgroup of T as well as a Borel set, so it is either countable or has
size c. It was observed by Armacost [3] that when un = pn for all n and some prime p, then tu(T) = Z(p∞).
He posed the question of describing the subgroup tu(T) for the sequence un = n!, this was done by Borel [19]
(see also [36] and [31] for the more general problem concerning sequences u with un−1|un for every n).

Another motivation for the study of the subgroups of the form tu(T) come from the fact that they lead to
the description of precompact group topologies on Z that make the sequence un converge to 0 in Z (see the
comment after proposition 6.9). Let us start by an easy to prove general fact:

Proposition 6.9. [7] A sequence A = {an}n in a precompact abelian group G converges to 0 in G iff χ(an) → 0
in T for every continuous character of G.

In the case of G = Z the characters of G are simply simply elements of T, i.e., a precompact group topology
on Z has the form TH for some subgroup H of T. Thus the above proprosition for G = Z can be reformulated
as: a sequence A = {an}n in (Z, TH) converges to 0 iff anx→ 0 for every x ∈ H, i.e., simply H ⊆ ta(T).

Now we can discuss a counterpart of the notion of T -sequences (introduced in §3.5), defined with respect to
topologies induced by characters, i.e., precompact topologies.

Definition 6.10. [7, 9] A sequence A = {an}n in an abelian group G is called a TB-sequence is there exists a
precompct group topology on G such that an → 0.

Clearly, every TB-sequence is a T-sequence (see Example 6.12 for a T-sequence in Z that is not a TB-
sequence). The advantage of TB-sequences over the T-sequences is in the easier way of determining sufficient
condition for a sequence to be a TB-sequence [7, 9]. For example, a a sequence (an) in Z is a TB-sequence iff
the subgroup ta(T) of T is infinite.

Egglestone [42] proved that the asymptotic behavior of the sequence of ratios qn = un+1
un

may have an impact
on the size of the subgroup tu(T) in the following remarkable dichotomy:

Theorem 6.11. Let (an) be a sequence in Z.

• If limn
an+1
an

= +∞, then (an) is a TB-sequence and |ta(T)| = c.

• If an+1
an

is bounded, then ta(T) is countable.

Example 6.12. [9] There exists a TB-sequence (an) in Z with limn
an+1
an

= 1 .

Here is an example of a T-sequence in Z that is not a TB-sequence.

Example 6.13. For every TB-sequence A = {an} in Z such that ta(T) is countable, there exists a sequence {cn}
in Z such that the sequence qn defined by q2n = cn and q2n−1 = an, is a T -sequence, but not a TB-sequence.

Proof. Let {z1, . . . , zn, . . .} be an enumeration of ta(T).
According to Lemma 3.51 there exists a sequence bn in Z such that for every choice of the sequence (en),

where en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a T -sequence. Now we define
the sequence qn with q2m−1 = am and q2m = bm when m is not a prime power. Let p1, . . . , pn, . . . be all prime
numbers enumerated one-to-one. Now fix k and define ek ∈ {0, 1} depending on limn bpn

k
zk as follows:

• if limn bpn
k
zk = 0, let ek = 1,

• if limn bpn
k
zk 6= 0 (in particular, if the limit does not exists) let ek = 0.

Now let q2pn
k

= bpn
k

+ ek for n ∈ N. Hence for every k ∈ N

lim
n
q2pn

k
zk = 0 =⇒ ek = 1. (∗)

To see that (qn) is not a TB-sequence assume that χ : Z → T a character such that χ(qn) → 0 in T. Then
x = χ(1) ∈ T satisfies qnx→ 0, so x ∈ tq(T) ⊆ ta(T). So there exists k ∈ N with x = zk. By (*) ek = 1. Hence
q2pn

k
= bpn

k
+ 1 and limn bpn

k
zk = 0, so x ∈ tq(T) yields 0 = limn q2pn

k
x = 0 + x, i.e., x = 0. This proves that

every character χ : Z → T such that χ(qn) → 0 in T is trivial. In particular, (qn) not a TB-sequence.

Let us note that the above proof gives much more. Since qn → 0 in τ(qn), it shows that every τ(qn)-continuous

character of Z is trivial, i.e., ̂(Z, τ(qn) = 0.
The information accumulated on the properties of the subgroups tu(T) of T motivated the problem of

describing those subgroups H of T that can be characterized as H = tu(T) for some sequence u. As already
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mentioned, such an H can be only countable or can have size c being of measure zero. A measure zero subgroup
H of T of size c that is not even contained in any proper subgroup of T of the form tu(T) was built in [7]
(under the assumption of Martin Axiom) and in later in [61, 62] (in ZFC). Much earlier Borel [19] had already
resolved in the positive the remaining part of the problem showing that every countable subgroup of T can be
characterized (in the above sense). Unaware of his result, Larcher [74], and later Kraaikamp and Liardet [71],
proved that some cyclic subgroups of T are characterizable (see also [16, 15, 12, 14, 13] for related results). The
paper [9] describes the algebraic structure of the subgroup tu(T) when the sequence u := (un) verifies a linear
recurrence relation of order ≤ k,

un = a(1)
n un−1 + a(2)

n un−2 + . . .+ a(k)
n un−k

for every n > k with a(i)
n ∈ Z for i = 1, . . . , k.

Three proofs of Borel’s theorem of characterizability of the countable subgroups of T were given in [13]. These
author mentioned that the theorem can be extended to compact abelian groups in place of T, without giving
any precise formulation. There is a natural way to extend the definition of tu(T) to an arbitrary topological
abelian group G by letting tu(G) = {x ∈ G : limn unx = 0 in G}. Actually, for the sequence un = pn (resp.,
un = n!) an element x satisfying limn unx = 0 has been called topologically p-torsion (resp., topologically torsion)
by Braconnier and Vilenkin in the forties of the last century and these notions played a prominent role in the
development of the theory of locally compact abelian groups. One can easily reduce the computation of tu(G)
for an arbitrary locally compact abelian group to that of tu(T) [26]. Independently on their relevance in other
questions, the subgroups tu(G) turned out to be of no help in the characterization of countable subgroups of
the compact abelian groups. Indeed, a much weaker condition, turned out the characterize the circle group T
in the class of all locally compact abelian groups:

Theorem 6.14. [31] In a locally compact abelian group G every cyclic subgroup of the group G is an intersection
of subgroups of the form tu(G) iff G ∼= T.

Actually, one can remove the “abelian” restraint in the theorem remembering that in the non-abelian case
tu(G) is just a subset of G, not a subgroup in general [31].

The above theorem suggested to use in [35] a different approach to the problem, replacing the sequence of
integers un (characters of T!) by a sequence un in the Pontryagin-van Kampen dual Ĝ. Then the subgroup
su(G) = {x ∈ G : limn un(x) = 0 in T} of G really can be used for such a characterization of all countable
subgroups of the compact metrizable groups (see [35, 33, 17] for major detail).

6.3 On the structure of compactly generated locally compact abelian groups

From now on all groups are Hausdorff; quotients are taken for closed subgroups and so they are still Hausdorff.
An abelian topological group is elementary locally compact if it is topologically isomorphic to Rn×Zm×Ts×F ,

where n,m, s are positive integers and F is a finite abelian group. Observe that the class of elementary locally
compact abelian groups is closed under taking quotient, closed subgroups and finite products (see Theorem 4.37
and Corollary 4.47).

Lemma 6.15. Let G be a locally compact monothetic group. Then G is either compact or is discrete.

Proof. If G is finite, then G is both compact and discrete. So we can suppose without loss of generality that
〈x〉 ∼= Z is infinite and so also that Z is a subgroup of G.

If G induces the discrete topology on Z, then Z is closed and so G = Z is discrete.
Suppose now that G induces on Z a non-discrete topology. Our aim is to show that it is totally bounded.

Then the density of Z in G yields that G = Z̃ = Z is compact, as G is locally compact and so complete (see
Lemma 4.7).

Every open subset of G has no maximal element. Indeed, if U is an open subset of Z that contains 0 and
it has a maximal element, then −U is an open subset of Z that contains 0 and it has a minimal element and
U ∩−U is an open finite neighborhood of 0 in Z; thus Z is discrete against the assumption. Consequently every
open subset of Z contains positive elements.

Let U be a compact neighborhood of 0 in G and V a symmetric neighborhood of 0 in G such that V +V ⊆ U .
There exist g1, . . . , gm ∈ G such that U ⊆

⋃m
i=1(gi + V ). Let n1, . . . , nm ∈ Z be positive integers such that

ni ∈ gi + V for every i = 1, . . . ,m. Equivalently gi ∈ ni − V = ni + V . Thus

U ⊆
m⋃

i=1

(gi + V ) ⊆
m⋃

i=1

(ni + V + V ) ⊆
m⋃

i=1

(ni + U)
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implies

U ∩ Z ⊆
m⋃

i=1

(ni + U ∩ Z). (1)

We show that U ∩Z is big with respect to Z. Let t ∈ Z; since U ∩Z has no maximal element, then there exists
s ∈ U ∩ Z such that s ≥ t. Define st = min{s ∈ U ∩ Z : s ≥ t}. By (1) st = ni + ut for some i ≤ m and
ut ∈ U ∩Z. Since ni > 0, then ut < st and so ut < t ≤ st. Now put N = max{n1, . . . , nm} and F = {1, . . . , N}.
Hence U ∩ Z + F = Z. This proves that the topology induced on Z by G is totally bounded.

Corollary 6.16. Let G be a locally compact abelian group and x ∈ G. Then 〈x〉 is either compact or discrete.

Proposition 6.17. Let G be a compactly generated locally compact abelian group. Then there exists a discrete
subgroup H of G such that H ∼= Zn for some n ∈ N and G/H is compact.

Proof. Suppose first that there exist g1, . . . , gm ∈ G such that G = 〈g1, . . . , gm〉. We proceed by induction. For
m = 1 apply Lemma 6.15: if G is infinite and discrete take H = G and if G is compact H = {0}. Suppose
now that the property holds for m ≥ 1 and G = 〈g1, . . . , gm+1〉. If every 〈gi〉 is compact, then so is G and
H = {0}. If 〈gm+1〉 is discrete, consider the canonical projection π : G → G1 = G/〈gm+1〉. Since G1 has a
dense subgroup generated by m elements, by the inductive hypothesis there exists a discrete subgroup H1 of
G1 such that H1

∼= Zn and G1/H1 is compact. Therefore H = π−1(H1) is a closed countable subgroup of G.
Thus H is locally compact and countable, hence discrete by Lemma 4.8.

Since H is finitely generated, it is isomorphic to H2 × F , where H2
∼= Zs for some s ∈ N and F is a finite

abelian group (see Theorem 2.1). Now G/H is isomorphic to G1/H1 and H/H2 is finite, so G/H2 is compact
thanks to Lemma 4.5.

Now consider the general case. There exists a compact subset K of G that generates G. By Lemma 4.14 we
can assume wlog that K = U , where U is a symmetric neighborhood of 0 in G with compact closure. We show
now that there exists a finite subset F of G such that

K +K ⊆ K + 〈F 〉. (2)

In fact, pick a symmetric neighborhood V of 0 in G such that V + V ⊆ U . For the compact set K satisfying
K ⊆

⋃
x∈K(x+ V ) there exists a finite subset F of K such that K ⊆

⋃
x∈F (x+ V ) = F + V . Then

K +K ⊆ F + F + V + V ⊆ 〈F 〉+ U ⊆ 〈F 〉+K.

gives (2). An easy inductive argument shows that 〈K〉 = G and (2) imply G = 〈K〉 ⊆ K + 〈F 〉.
Let G1 = 〈F 〉. By G = 〈F 〉+K the quotient π(K) = G/G1 is compact. By the first part of the proof there

exists a discrete subgroup H of the locally compact subgroup G1 of G, such that H ∼= Zn for some n ∈ N and
G1/H is compact. Since G1/H is a compact subgroup of G/H such that (G/H)/(G1/H) ∼= G/G1 is compact,
we conclude that also G/H is compact.

Proposition 6.18. Let G be a compactly generated locally compact abelian group. Then there exists a compact
subgroup K of G such that G/K is elementary locally compact abelian.

Proof. By Proposition 6.17 there exists a discrete subgroup H of G such that the quotient G/H is compact.
Consider the canonical projection π of G onto G/H. Let U be a compact symmetric neighborhood of 0 in G
such that (U + U + U) ∩H = {0}. So π(U) is a neighborhood of 0 in G/H and applying Lemma 6.8 we find a
closed subgroup L ⊇ H of G such that the closed subgroup L/H of G/H satisfies

L/H ⊆ π(U) and (G/H)/(L/H) = G/L ∼= Tt × F, (4)

where F is a finite abelian group and t ∈ N, i.e., G/L is elementary compact abelian.
The set K = L ∩ U is compact being closed in the compact neighborhood U . Let us see now that K is a

subgroup of G. To this end take x, y ∈ K. Then x− y ∈ L and π(x− y) ∈ C ⊆ π(U). Thus π(x− y) = π(u) for
some u ∈ U . As π(x−y−u) = 0 in G/H, one has x−y−u ∈ (U+U+U)∩H = {0}. Hence x−y = u ∈ L∩U = K.

Now take x ∈ L; consequently π(x) ∈ C ⊆ π(U) so π(x) = π(u) for some u ∈ U . Clearly, u ∈ L ∩ U = K,
hence π(L) = π(K). Thus L = K + H and K ∩ H = {0} yields that the canonical projection l : G → G/K
restricted to H is a continuous isomorphism of H onto l(H) = l(L). Let us see now that l(H) is discrete. The
compact set K is contained in the open set W1 = G \ (H \ {0}) = G \H ∪ {0} (H is discrete). By Lemma 4.3
(c) there exists an open neighborhood V of 0 in G such that K+V ⊆W1. This implies that (K+V )∩H = {0}
and so (K + V ) ∩ (K +H) = K, that gives l(V ) ∩ l(H) = {0} in G/K. Thus

l(L) = l(H) ∼= H ∼= Zs
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is discrete in G/K.
Observe that (4) yields the following isomorphisms:

(G/K)/l(L) = (G/K)/(L/K) ∼= G/L ∼= Tt × F.

Denote by % the composition G/K → G/L → Tt × F . Let W be a compact neighborhood of 0 in G/K such
that W +W ⊆ l(V ) and %(W ) ⊆ Tt × {0}. Then % �W is injective because l(V ) ∩ l(L) = {0}. In particular, %
is a local homeomorphism.

Consider now the canonical projection q : Rt → Tt. Our aim is to lift it to a continuous homomorphism
f : Rt → G/K such that % ◦ f = q. The existence of such a lifting is immediate from the facts that both q
and % are covering homomorphisms and Rt simply connected. In particular, D = f(Rt) is an open subgroup of
G/K as has a non-empty interior (as q and % are local homeomorphisms). Since Rt is divisible, by Lemma 2.8
G/K = D × B where B is a discrete subgroup of G/K because D ∩ B = {0} and D is open. Moreover B is
compactly generated as it is a quotient of G. Since it is also discrete, B is finitely generated. Then f : Rt → D
is open by Theorem 4.9 and so D is isomorphic to a quotient of Rt, which is elementary locally compact abelian.

For the reader who is not familiar with covering maps we provide now a self-contained proof.
Take an open neighborhood U of 0 in Rt such that U − U ∩ ker q = {0} and let U0 = U ∩ q−1(%(W )).

Then U0 is an open neighborhood of 0 in Rt such that q �U0 is one-to-one from U0 to %(W ). Pick a symmetric
neighborhood U1 of 0 in Rt such that U1 + U1 ⊆ U0. Define a map f : Rt → G/K as follows: f �U0 is simply
the composition %−1 ◦ q. So f maps U0 onto the open subset %−1(q(U0)) of G/K. If x ∈ Rt there exists n ∈ N+

such that 1
nx ∈ U0. We put f(x) = nf( 1

nx) and we note that this definition does not depend on n. Moreover,
f(x1 + x2) = f(x1) + f(x2) for every x1, x2 ∈ U1.

We can prove now that f is a homomorphism. First of all we note that for every x ∈ Rt f �〈x〉 is a
homomorphism, i.e., f(kx) = kf(x) for every k ∈ Z. Now take x, y ∈ Rt. There exists an integer n > 0 such
that 1

nx,
1
ny ∈ U1 and so 1

nx+ 1
ny ∈ U0. By the the previous step

f(x+ y) = nf

(
1
n

(x+ y)
)

= nf

(
1
n
x+

1
n
y

)
= nf

(
1
n
x

)
+ nf

(
1
n
y

)
= f(x) + f(y),

for all x, y ∈ Rt.
So f is continuous and also a local homeomorphism on Rt because it is the composition of local homeomor-

phisms: restricted to the open subset U0, f is the composition of q and %−1 (note that both % �W and q �U0 are
continuous and open).

To prove the Pontryagin-van Kampen duality theorem in the general case (for G ∈ L), we need Theorem
6.19, which generalizes the Peter-Weyl Theorem 6.4.

Theorem 6.19. If G is a locally compact abelian group, then Ĝ separates the points of G.

Proof. Let V be a compact neighborhood of 0 in G. Take x ∈ G \ {0}. Then G1 = 〈V ∪ {x}〉 is an open (it
has non-void interior) compactly generated subgroup of G. In particular G1 is locally compact. By Proposition
6.17 there exists a discrete subgroup H of G1 such that H ∼= Zm for some m ∈ N and G1/H is compact. Thus⋂

n∈N+
nH = {0} and so there exists n ∈ N+ such that x 6∈ nH. Since H/nH is finite, the quotient G2 = G1/nH

is compact by Lemma 4.5. Consider the canonical projection π : G1 → G2 and note that π(x) = y 6= 0 in G2.
By the Peter-Weyl Theorem 6.4 there exists ξ ∈ Ĝ such that ξ(y) 6= 0. Consequently χ = ξ ◦ π ∈ Ĝ1 and
χ(x) 6= 0. By Theorem 2.5 there exists χ ∈ Ĝ such that χ �G1= χ.

It follows from Theorem 6.19 and Remark 7.24 that ωG is a continuous monomorphism for every locally
compact abelian group G.

Corollary 6.20. Let G be a locally compact abelian group and K a compact subgroup of G. Then for every
χ ∈ K̂ there exists ξ ∈ Ĝ such that ξ �K= χ.

Proof. Define H = {χ ∈ K̂ : there exists ξ ∈ Ĝ with ξ �K= χ}. By Theorem 6.19 the continuous characters of
G separate the points of G. Therefore H separate the points of K. Now apply Corollary 6.6 to conclude that
H = K̂.

Here is another corollary of Theorem 6.19:

Corollary 6.21. A σ-compact and locally compact abelian group is totally disconnected iff for every continuous
character χ of G the image χ(G) is a proper subgroup of T.
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Proof. Assume that G is a locally compact abelian group such that χ(G) is a proper subgroup of T for every
continuous character χ of G. According to Theorem 6.19 the diagonal homomorphism f : G→

∏
{χ(G) : χ ∈ Ĝ}

of all χ ∈ Ĝ is injective. Since the proper subgroups of T are totally disconnected, the whole product will be
totally disconnected, so also G will be totally disconnected. Now assume that G is σ-compact, locally compact
and totally disconnected. Consider χ ∈ Ĝ and assume for a contradiction that χ(G) = T. Then χ : G → T
will be an open map by the open mapping theorem, so T will be a quotient of G. As total disconnectedness
is inherited by quotiens of locally compact groups (see Corollary 4.20), we conclude that T must be totally
disconnected, a contradiction.

Corollary 6.22. A compact abelian group is totally disconnected iff every continuous character of G is torsion.

Proof. For a compact abelian group G the image χ(G) under a continuous character χ of G is a compact, hence
closed subgroup of T. Hence χ(G) is a proper subgroup of T precisely when it is finite. This means that the
character χ is torsion.

Compactness plays an essential role here. We shall see examples of totally disconnected σ-compact and
locally compact abelian groups G such that no continuous character of G is torsion (e.g., G = Qp).

7 Pontryagin-van Kampen duality

7.1 The dual group

In the sequel we shall write the circle additively as (T,+) and we denote by q0 : R → T = R/Z the canonical
projection. For every k ∈ N+ let Λk = q0((− 1

3k ,
1
3k )). Then {Λk : k ∈ N+} is a base of the neighborhoods of 0

in T, because {(− 1
3k ,

1
3k ) : k ∈ N+} is a base of the neighborhoods of 0 in R.

For every abelian group G∗ = Hom (G,T). For a subset K of G and a subset U of T let

WG∗(K,U) = {χ ∈ G : χ(K) ⊆ U}.

For any subgroup H of G∗ we abbreviate H ∩W (K,U) to WH(K,U). When there is no danger of confusion
we shall write only W (K,U) in place of WG∗(K,U). The group G∗ will be considered only with one topology,
namely the induced from TG compact topology (see Remark 4.1).

If G is a topological abelian group, Ĝ will denote the subgroup of G∗ consisting of continuous characters.
The group Ĝ will carry the compact open topology that has as basic neighborhoods of 0 the sets WĜ(K,U),

where K is a compact subset of G and U is neighborhood of 0 in T. We shall see below that when U ⊆ Λ1,
then WĜ(K,U) coincides with WG∗(K,U) in case K is a neighborhood of 0 in G. Therefore we shall use mainly
the notation W (K,U) when the group G is clear from the context.

Let us start with an easy example.

Example 7.1. Let G be an abelian topological group.

(1) If G is compact, then Ĝ is discrete.

(2) If G is discrete, then Ĝ is compact.

Indeed, to prove (1) it is sufficient to note that WĜ(G,Λ1) = {0} as Λ1 contains no subgroup of T beyond 0.
(2) Suppose that G is discrete. Then Ĝ = Hom (G,T) is a subgroup of the compact group TG. The compact-

open topology of Ĝ coincides with the topology inherited from TG: let F be a finite subset of G and U an open
neighborhood of 0 in T, then

⋂
x∈F

π−1
x (U) ∩ Hom (G,T) = {χ ∈ Hom (G,T) : πx ∈ U for every x ∈ F}

= {χ ∈ Hom (G,T) : χ(x) ∈ U for every x ∈ F} = W (F,U).

Moreover Hom (G,T) is closed in the compact product TG by Remark 4.1 and we can conclude that Ĝ is
compact.

Now we prove that the dual group is always a topological group. If the group G is locally compact, then its
dual is locally compact too. This is the first step of the Pontryagin-van Kampen duality theorem.
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Theorem 7.2. For an abelian topological group G the following assertions hold true:

(a) if x ∈ T and k ∈ N+, then x ∈ Λk if and only if x, 2x, . . . , kx ∈ Λ1;

(b) χ ∈ Hom (G,T) is continuous if and only if χ−1(Λ1) is a neighborhood of 0 in G;

(c) {WĜ(K,Λ1) : K compact ⊆ G} is a base of the neighborhoods of 0 in Ĝ, in particular Ĝ is a topological
group.

(d) WĜ(A,Λs) + WĜ(A,Λs) ⊆ WĜ(A,Λs−1) and WĜ(A,Λs) + WĜ(A,Λs) ⊆ WĜ(A,Λs−1) for every A ⊆ G
and s > 1.

(e) if F is a closed subset of T, then for every K ⊆ G the subset WG∗(K,F ) of G∗ is closed (hence, compact);

(f) if U is neighborhoodof 0 in G, then

(f1) WĜ(U, V ) = WG∗(U, V ) for every neighborhood of 0 V ⊆ Λ1 in T;

(f2) W (U,Λ4) has compact closure;

(f3) if U has compact closure, then W (U,Λ4) is a neighborhood of 0 in Ĝ with compact closure, so Ĝ is
locally compact.

Proof. (a) Note that for s ∈ N, sx ∈ Λ1 if and only if x ∈ As,t = Λs+πT( t
s ) for some integer t with 0 ≤ t ≤ s. On

the other hand, As,0 = Λs and Λs∩As+1,t is non-empty if and only if t = 0. Hence, if x ∈ Λs and (s+1)x ∈ Λ1,
then x ∈ Λs+1 and this holds in particular for 1 ≤ s < k. This proves that sx ∈ Λ1 for s = 1, . . . , k if and only
if x ∈ Λk.

(b) Suppose that χ−1(Λ1) is a neighborhood of 0 in G. So there exists an open neighborhood U of 0 in G
such that U ⊆ χ−1(Λ1). Moreover, there exists an other neighborhood V of 0 in G with V + · · ·+ V︸ ︷︷ ︸

k

⊆ U where

k ∈ N+. Now sχ(y) ∈ Λ1 for every y ∈ V and s = 1, . . . , k. By item (a) χ(y) ∈ Λk and so χ(V ) ⊆ Λk.
(c) Let k ∈ N+ and K be a compact subset of G. Define L = K + · · ·+K︸ ︷︷ ︸

k

, which is a compact subset of

G because it is a continuous image of the compact subset Kk of Gk. Take χ ∈ W (L,Λ1). For every x ∈ K we
have sχ(x) ∈ Λ1 for s = 1, . . . , k and so χ(x) ∈ Λk by item (a). Hence W (L,Λ1) ⊆W (K,Λk).

(d) obvious.
(e) If πx : TG → T is the projection defined by the evaluation at x, for x ∈ G, then obviously

WG∗(K,F ) =
⋂

x∈K

{χ ∈ G∗ : χ(x) ∈ F} =
⋂

x∈K

π−1
x (F )

is cloased as each π−1
x (F ) is closed in G∗.

(f1) follows immediately from item (c).
(f2) To prove that the closure ofW0 = W (U,Λ4) is compact it is sufficient to note thatW0 ⊆W1 := W (U,Λ4)

and prove that W1 is compact. Let τs denote the subspace topology of W1 in Ĝ. We prove in the sequel that
(W1, τs) is compact.

Consider on the set W1 also the weaker topology τ induced from G∗ and consequently from TG. By (e)
(W1, τ) is compact.

It remains to show that both topologies τs and τ of W1 coincide. Since τs is finer than τ , it suffices to show
that if α ∈ W1 and K is a compact subset of G, then (α + W (K,Λ1)) ∩W1 is also a neighborhood of α in
(W1, τ).

Since
⋃
{a + U : a ∈ K} ⊇ K and K is compact, K ⊆ F + U , where F is a finite subset of K. We prove

now that
(α+W (F,Λ2)) ∩W1 ⊆ (α+W (K,Λ1)) ∩W1. (∗)

Let ξ ∈W (F,Λ2), so that α+ ξ′ ∈W1 = W (U,Λ4). As α ∈W1 as well, we deduce from items (c) and (d) that
ξ = (α+ ξ′)− α ∈W1 −W1. Hence ξ(U) ⊆ Λ2 and consequently

ξ(K) ⊆ ξ(F + U) ⊆ Λ2 + Λ2 ⊆ Λ1.

This proves ξ ∈W (K,Λ1) and (*).
(f3) Follows obviously from (f2) and the definition of the compact open topology.
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The above proof shows another relevant fact. The neighborhood W (U,Λ4) of 0 in the dual group Ĝ carries
the same topology in Ĝ and G∗, nevertheless the inclusion map j : Ĝ ↪→ G∗ need not be an embedding:

Corollary 7.3. For a locally compact abelian group G the following are equivalent:

(a) the inclusion map j : Ĝ ↪→ G∗ is an embedding;

(b) G is discrete;

(c) Ĝ = G∗ is compact.

Proof. Since G∗ is compact, j can be an embedding iff Ĝ itself is compact. According to Example 7.1 this
occurs precisely when G is discrete. In that case Ĝ = G∗ is compact.

Actually, it can be proved, once the duality theorem is available, that j : Ĝ ↪→ G∗ need not be even a local
homeomorphism. (If j is a local homeomorphism, then the topological subgroup j(Ĝ) of G∗ will be locally
compact, hence closed in G∗. This would yield that j(Ĝ) is compact. On the other hand, the topology of
j(Ĝ) is precisely the initial topology of all projections px restricted to Ĝ. By the Pontryagin duality theorem,
these projections form the group of all continuous characters of Ĝ. So this topology coincides with T ̂̂

G
. By a

general theorem of Glicksberg, a locally compact abelian groups H and (H, TĤ) have the same compact sets.
In particular, compactness of (H, TĤ) yields compactness of H. This proves that if j : Ĝ ↪→ G∗ is a local
homeomorphism, then Ĝ is compact and consequently G is discrete.)

7.2 Computation of some dual groups

In the next proprosition we show, roughly speaking, that the projective order between continuous surjective
open homomorphisms with the same domain corresponds to the order by inclusion of their kernels.

Proposition 7.4. Let G,H1 and H2 be topological abelian groups and let χi : G→ Hi, i = 1, 2, be continuous
surjective open homomorphisms. Then there exists a continuous homomorphism ι : H1 → H2 such that χ2 =
ι ◦ χ1 iff kerχ1 ≤ kerχ2. If kerχ1 = kerχ2 then ι will be a topological isomorphism.

Proof. The necessity is obvious. So assume that kerχ1 ≤ kerχ2 holds. By the homomorphism theorem applied
to χi there exists a topological isomorphismsji : G/ kerχi → Hi such that χi = ji ◦ qi, where qi : G→ G/ kerχi

is the canonical homomorphism for i = 1, 2. As kerχ1 ≤ kerχ2 we get a continuous homomorphism t that
makes commutative the following diagram

G

q1zzvvvvvvvvv
χ1

uujjjjjjjjjjjjjjjjjjjj

q2 $$HHHHHHHHH
χ2

))TTTTTTTTTTTTTTTTTTTT

H1

ι

66G/ kerχ1
j1

oo t //_______ G/ kerχ2
j2 // H2

Obviously ι = j2 ◦ t ◦ j−1
1 works. If kerχ1 = kerχ2, then t is a topological isomorphism, hence ι will be a

topological isomorphism as well.

In the sequel we denote by k · idG the endomorphism of an abelian group G obtained by the map x 7→ kx,
for a fixed k ∈ Z. The next lemma will be used for the computation of the dual groups in Example 7.7.

Lemma 7.5. Every continuous homomorphism χ : T → T has the form k · idT, for some k ∈ Z. In particular,
the only topological isomorphisms χ : T → T are ±idT.

Proof. We prove first that the only topological isomorphisms χ : T → T are ±idT. The proof will exploit the
fact that the arcs are the only connected sets of T. Hence χ sends any arc of T to an arc, sending end points to
end points. Denote by ϕ the canonical homomorphism R → T and for n ∈ N let cn = ϕ(1/2n) be the generators
of the Prüfer subgroup Z(2∞) of T. Then, c1 is the only element of T of order 2, hence g(c1) = c1. Therefore,
the arc A1 = ϕ([0, 1/2]) either goes onto itself, or goes onto its symmetric image −A1. Let us consider the first
case. Clearly, either g(c2) = c2 or g(c2) = −c2 as o(g(c2)) = 4 and being ±c2 the only elements of order 4 of T.
By our assumption g(A1) = A1 we have g(c2) = c2 since c2 is the only element of order 4 on the arc A1. Now
the arc A2 = [0, c2] goes onto itself, hence for c3 we must have g(c3) = c3 as the only element of order 8 on the
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arc A2, etc. We see in the same way that g(cn) = cn. Hence g is identical on the whole subgroup Z(2∞). As
this subgroup is dense in T, we conclude that g coincides with idT. In the case g(A1) = −A1 we replace g by
−g and the previous proof gives −g = idT, i.e., g = −idT.

For k ∈ N+ let πk = k · idT. Then kerπk = Zk and πk is surjective. Let now χ : T → T be a non-trivial
continuous homomorphism. Then kerχ is a closed proper subgroup of T, hence kerχ = Zk for some k ∈ N+.
Moreover, χ(T) is a connected non-trivial subgroup of T, hence χ(T) = T. By Proposition 7.4 χ = ±πk.

Obviously, χ = ±ξ for characters χ, ξ : G → T implies kerχ = ker ξ and χ(G) = ξ(G). More generally,
if χ = k · ξ for some k ∈ Z, then kerχ ≥ ker ξ and χ(G) ≤ ξ(G). Now we see that this implication can be
(partially) inverted under appropriate hypotheses.

Corollary 7.6. Let G be a σ-compact locally compact abelian group and let χ, ξ : G → T be continuous
characters such that kerχ ≥ ker ξ and χ(G) ≤ ξ(G).

(a) If χ(G) = ξ(G) = T then χ = k · ξ for some k ∈ Z; moreover, kerχ = ker ξ iff χ = ±ξ.

(b) If G is compact and |ξ(G)| = m for some m ∈ N+, then χ = kξ for some k ∈ Z; moreover, kerχ = ker ξ
iff χ(G) = ξ(G), in such a case k must be coprime to m.

(c) If ker ξ = ker ξ is open and H = χ(G) = ξ(G), then χ = ι ◦ ξ, where ι : H → H is an arbitrary
automorphism of the subgroup H of T equipped with the discrete topology.

Proof. (a) As χ(G) = ξ(G) = T and G is σ-compact, we can apply Lemma 7.4 and observe that the only ι given
by the lemma can be k · idT for some k ∈ Z in view of the previous lemma. The same lemma yields k = ±1
when kerχ = ker ξ.

(b) If G is compact and |ξ(G)| = m for some m ∈ N+, ξ(G) is a cyclic subgroup of T of order m. Note that
T has a unique such cyclic subgroup. By Proposition 7.4 there exists a homomorphism ι : ξ(G) → χ(G) such
that χ = ι ◦ ξ. The hypothesis χ(G) ≤ ξ(G) implies that there such a ι must by the multiplication by some
k ∈ Z. In case χ(G) = ξ(G) this k is coprime to m.

(c) Obvious.

Example 7.7. Let p be a prime. Then Ẑ(p∞) ∼= Jp, Ĵp
∼= Z(p∞), T̂ ∼= Z, Ẑ ∼= T and R̂ ∼= R.

Proof. The first isomorphism Ẑ(p∞) = Jp follows from our definition Jp = End(Z(p∞)) = Hom(Z(p∞),T) =
Ẑ(p∞).

To verify the isomorphism Ĵp
∼= Z(p∞) consider first the quotient homomorphism ηn : Jp → Jp/p

nJp
∼= Zpn ≤

T. With this identifications we consider ηn ∈ Ĵp. It is easy to see that under this identification pηn = ηn−1.
Therefore, the subgroup H of Ĵp generated by the characters ηn is isomorphic to Z(p∞). Let us see that H = Ĵp.
Indeed, take any non-trivial character χ : Jp → T. Then N = kerχ is a closed proper subgroup of Jp. Moreover,
N 6= 0 as Jp is not isomorphic to a subgroup of T by Exercise 4.49. Thus N = pnJp for some n ∈ N+. Since
N = ker ηn, we conclude with (b) of Corollary 7.6 that χ = kηn for some k ∈ Z. This proves that χ = H and
consequently Ĵp

∼= Z(p∞).
The isomorphism g : Ẑ → T is obtained by setting g(χ) := χ(1) for every χ : Z → T. It is easy to check that

this isomorphism is topological.
According to 7.5 every χ ∈ T̂ has the form χ = k · idT for some k ∈ Z. This gives a homomorphism T̂ → Z

assigning χ 7→ k. It is obviously injective and surjective. This proves T̂ ∼= Z since both groups are discrete.
To prove R̂ ∼= R consider the character χ1 : R → T obtained simply by the canonical map R → R/Z. For

every non-zero r ∈ R consider the map ρr : R → R defined by ρr(x) = rx. Then its composition χr = χ1 ◦ ρr

with χ1 gives a continuous character of R that is surjective and kerχr = 〈1/r〉. Now consider any continuous
non-trivial character χ ∈ R̂. Then χ is surjective and N = kerχ is a proper closed subgroup of R. Hence N
is cyclic by Exercise 3.20. Let N = 〈1/r〉. Then kerχ = kerχr, so that Corollary 7.6 yields χ = ±χr. The
assignment χ 7→ ±r defines a homomorphism R̂ → R that is obviously injective and surjective. Its continuity
immediately follows from the definition of the compact-open topology of R̂. As R is σ-compact, this isomorphism
is also open by the open mapping theorem.

Exercise 7.8. Let G be an abelian group and p be a prime. Prove that

(a) χ ∈ pĜ iff χ(G[p]) = 0.

(b) pχ = 0 in Ĝ iff χ(pG) = 0.
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Conclude that

(i) a discrete abelian group G is divisible (resp., torsion-free) iff Ĝ is torsion-free (resp., divisible).

(ii) the groups Q̂ and Q̂p are torsion-free and divisible.

Exercise 7.9. Let G be a totally disconnected locally compact abelian group. Prove that kerχ is an open
subgroup of G for every χ ∈ Ĝ.

(Hint. Use the fact that by the continuity of χ and the total disconnectedness of G there exists an open
subgroup O of G such that χ(O) ⊆ Λ1.)

Exercise 7.10. Let p be a prime. Prove that Q̂p
∼= Qp, where Qp denotes the field of all p-adic numbers.

(Hint. Fix N = {χ ∈ Q̂p : kerχ ≥ Jp}. By the compactness of Jp, conclude that N is an open subgroup of Q̂p

topologically isomorphic to Jp using Exercise 7.9 and Corollary 7.6 (c). For every n ∈ N+ let ξn : Qp → Qp/p
nJp

be the canonical homomorphism. As Qp/p
−nJp

∼= Z(p∞) ≤ T, we can consider ξn ∈ Q̂p. Show that pξn+1 = ξn
for n ∈ N+ and pξ1 ∈ N . The subgroup of Q̂p generated by N and (ξn) is isomorphic to Qp. Using Corollary
7.6 (c) and Exercise 7.9 deduce that it coincides with the whole group Q̂p.)

Exercise 7.11. Let H be a subgroup of Rn. Prove that every χ ∈ Ĥ extends to a continuous character of Rn.

7.3 Some general properties of the dual

We prove next that the dual group of a finite product of abelian topological groups is the product of the dual
groups of each group.

Lemma 7.12. If G and H are topological abelian groups, then Ĝ×H is isomorphic to Ĝ× Ĥ.

Proof. Define Φ : Ĝ × Ĥ → Ĝ×H by Φ(χ1, χ2)(x1, x2) = χ1(x1) + χ2(x2) for every (χ1, χ2) ∈ Ĝ × Ĥ and
(x1, x2) ∈ G×H. Then Φ is a homomorphism, in fact Φ(χ1+ψ1, χ2+ψ2)(x1, x2) = (χ1+ψ1)(x1)+(χ2+ψ2)(x2) =
χ1(x1) + ψ1(x1) + χ2(x2) + ψ2(x2) = Φ(χ1, χ2)(x1, x2) + Φ(ψ1, ψ2)(x1, x2).

Moreover Φ is injective, because

ker Φ = {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ) = 0}

= {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ)(x, y) = 0 for every (x, y) ∈ G×H}

= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) + ψ(y) = 0 for every (x, y) ∈ G×H}

= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) = 0 and ψ(x) = 0 for every (x, y) ∈ G×H}
= {(0, 0)}.

To prove that Φ is surjective, take ψ ∈ Ĝ×H and note that ψ(x1, x2) = ψ(x1, 0) + ψ(0, x2). Now define
ψ1(x1) = ψ(x1, 0) for every x1 ∈ G and ψ2(x2) = ψ(0, x2) for every x2 ∈ H. Hence ψ1 ∈ Ĝ, ψ2 ∈ Ĥ and
ψ = Φ(ψ1, ψ2).

Now we show that Φ is continuous. Let W (K,U) be an open neighborhood of 0 in Ĝ×H (K is a compact
subset of G ×H and U is an open neighborhood of 0 in T). Since the projections πG and πH of G ×H onto
G and H are continuous, KG = πG(K) and KH = πH(K) are compact in G and in H respectively. Taking an
open symmetric neighborhood V of 0 in T, it follows Φ(W (KG, V )×W (KH , V )) ⊆W (K,U).

It remains to prove that Φ is open. Consider two open neighborhoods W (KG, UG) of 0 in Ĝ and W (KH , UH)
of 0 in Ĥ, where KG ⊆ G and KH ⊆ H are compact and UG, UH are open neighborhoods of 0 in T. Then
K = (KG ∪ {0}) × (KH ∪ {0}) is a compact subset of G × H and U = UG ∩ UH is an open neighborhood of
0 in T. Thus W (K,U) ⊆ Φ(W (KG, UG) ×W (KH , UH)), because if χ ∈ W (K,U) then χ = Φ(χ1, χ2), where
χ1(x1) = χ(x1, 0) ∈ U ⊆ UG for every x1 ∈ G and χ2(x2) = χ(0, x2) ∈ U ⊆ UH for every x2 ∈ H.

It follows from Proposition 7.7 that the groups T, Z, Z(p∞), Jp e R satisfy ̂̂
G ∼= G, namely the Pontryagin-

van Kampen duality theorem. Using the next theorem this propertiy extends to all finite direct products of
these groups.

Call a topological abelian group G autodual, if G satisfies Ĝ ∼= G. We have seen already that R and Qp are
autodual. By Lemma 7.12 finite direct products of autodual groups are autodual. Now using this observation
and Lemma 7.12 we provide a large supply of groups for which the Pontryagin-van Kampen duality holds true.
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Proposition 7.13. Let P1, P2 and P3 be finite sets of primes, m,n, k, kp ∈ N (p ∈ P3) and np,mp ∈ N+

(p ∈ P1 ∪ P2). Then every group of the form

G = Tn × Zm × Rk × F ×
∏

p∈P1

Z(p∞)np ×
∏

p∈P2

Jmp
p ×

∏
j∈P3

Qkp
p ,

where F is a finite abelian group, satisfies ̂̂
G ∼= G.

Moreover, such a group is autodual iff n = m, P1 = P2 and np = mp for all p ∈ P1 = P2. In particular,̂̂
G ∼= G holds true for all elementary locally compact abelian groups.

Proof. Let us start by proving F̂ = F ∗ ∼= F . Recall that F has the form F ∼= Zn1 × . . . × Znm
. So applying

Theorem 7.14 we are left with the proof of the isomorphism Z∗n ∼= Zn for every n ∈ N+. The elements x of
T satisfying nx = 0 are precisely those of the unique cyclic subgroup of order n of T, we shall denote that
subgroup by Zn. Therefore, the group Hom(Zn,Zn) of all homomorphisms Zn → Zn is isomorphic to Zn.

It follows easily from Lemma 7.12 that if ̂̂
Gi

∼= Gi (resp., Ĝi
∼= Gi) for a finite family {Gi}n

i=1 of topological

abelian groups, then also G =
∏n

i=1Gi satisfies ̂̂
G ∼= G (resp., Ĝ ∼= G). Therefore, it suffices to verify that the

groups T, Z, Z(p∞), and Jp e satisfy ̂̂
G ∼= G, while R̂ ∼= R, Q̂p

∼= Qp were already checked.

It follows from Proposition 7.7 that Ẑ ∼= T and T̂ ∼= Z, hence Z ∼= ̂̂Z and T ∼= ̂̂T. Analogously, Ẑ(p∞) ∼= Jp

and Ĵp
∼= Z(p∞) yield Z(p∞) ∼=

̂̂Z(p∞) and Jp
∼= ̂̂Jp.

The problem of characterizing all autodual locally compact abelian groups is still open [47, 48].

Theorem 7.14. Let {Di}i∈I be a family of discrete abelian groups and let {Gi}i∈I be a family of compact
abelian groups. Then ⊕̂

i∈I

Di
∼=

∏
i∈I

D̂i and
∏̂
i∈I

Gi
∼=

⊕
i∈I

Ĝi. (5)

Proof. Let χ :
⊕

i∈I Di → T be a character and let χi : Di → T be its restriction to Di. Then χ 7→ (χi) ∈∏
i∈I D̂i is the first isomorphism in (5).
Let χ :

∏
i∈I Gi → T be a continuous character. Pick a neighborhood U of 0 containing no non-trivial

subgroups of T. Then there exists a neighborhood V of 0 in G =
∏

i∈I Gi with χ(V ) ⊆ U . By the definition of
the Tychonov topology there exists a finite subset F ⊆ I such that V contains the subproduct B =

∏
i∈I\F Gi.

Being χ(B) a subgroup of T, we conclude that χ(B) = 0 by the choice of U . Hence χ factorizes through the
projection p : G →

∏
i∈F Gi = G/B; so there exists a character χ′ :

∏
i∈F Gi → T such that χ = χ′ ◦ p.

Obviously, χ′ ∈ ⊕i∈IĜi. Then χ 7→ χ′ is the second isomorphism in (5).

In order to extend the isomorphism (5) to the general case of locally compact abelian groups one has to
consider a specific topology on the direct sum.

Algebraic properties of the dual group Ĝ of a compact abelian group G can be described in terms of
topological properties of the group G. We saw in Corollary 6.22 that Ĝ is torsion precisely when G is totally
disconnected. Here is the counterpart of this property in the connected case:

Proposition 7.15. Let G be a topological abelian group.

(a) If G is connected, then the dual group Ĝ is torsion-free.

(b) If G is compact, then the dual group Ĝ is torsion-free iff G is connected.

Proof. (a) Since for every non-zero continuous character χ : G → T the image χ(G) is a non-trivial connected
subgroup of T, we deduce that χ(G) = T for every non-zero χ ∈ Ĝ. Hence Ĝ is torsion-free.

(b) If the group G is compact and disconnected, then by Theorem 4.19 there exists a proper open subgroup
N of G. Take any non-zero character ξ of the finite group G/N . Then mξ = 0 for some positive integer m.
Now the composition χ of ξ and the canonical homomorphism G→ G/N satisfies mχ = 0 as well. So Ĝ haas a
non-zero torsion character. This proves the implication left open by item (a).

Let G and H be abelian topological groups. If f : G→ H is a continuous homomorphism, define f̂ : Ĥ → Ĝ
putting f̂(χ) = χ ◦ f for every χ ∈ Ĥ.
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Lemma 7.16. If f : G→ H is a continuous homomorphism of topological abelian group, then f̂(χ) = χ ◦ f is
a continuous homomorphism as well.

(a) If f(G) is dense in H, then f̂ is injective.

(b) If f is injective and f(G) is either open or dense in H, then f̂ is surjective.

(c) if f is a surjective homomorphism, such that every compact subset of H is covered by some compact subset
of G, then f̂ is an embedding.

(d) if f is a quotient homomorphism and G is locally compact, then f̂ is an embedding.

(e) If f is a topological isomorphism, then f̂ is a topological isomorphism too.

Proof. Assume K is a compact subset of G and U a neighborhood of 0 in T. Then f(K) is a compact set in H,
so W = WĜ(f(K), U) is a neighborhood of 0 in Ĥ and f̂(W ) ⊆W (K,U). This proves the continuity of f̂ .

(a) If f̂(χ) = 0, then χ ◦ f = 0. By the density of f(G) in H this yields χ = 0.

(b) Let χ ∈ Ĝ. If f(G) is open in H, then any extension ξ : H → T of χ will be continuous on f(G). There
exists at least one such extension ξ by Corollary 2.6. Hence ξ ∈ Ĥ and χ = f̂(ξ). Now consider the case
when f(G) is dense in H. Then H̃ = G̃ and the characters of H can be extended to characters of G (see
Theorem 3.79).

(c) Assume L is a compact subset of G/H and U a neighborhood of 0 in T. Let K be a compact set in G

such that f(K) = L. Then f̂(WĤ(L,U)) = Imf̂ ∩WĜ(K,U), so f̂ is an embedding.

(d) Follows from (c) and Lemma 4.6.

(e) Obvious.

Exercise 7.17. Prove that Q̂/Z ∼=
∏

p Jp.

(Hint. Use the isomorphism Q/Z ∼=
⊕

p Z(p∞), Example 7.7 and Theorem 7.14.)
Now we shall see that the group Q satisfies the duality theorem (see item (b) below).

Example 7.18. Let K denote the compact group Q̂. Then:

(a) K contains a closed subgroup H isomorphic to Q̂/Z such that K/H ∼= T;

(ii) K̂ ∼= Q.

(a) Denote by H the subgroup of all χ ∈ K such that χ(Z) = 0. To prove that H is a closed subgroup of K such
that K/H is isomorphic to T. To this end consider the continuous map ρ : K → Ẑ obtained by the restriction
to Z of every χ ∈ K. Obviously, ker ρ = H, so T ∼= Ẑ ∼= K/H. To see that H ∼= Q̂/Z note that the characters
of Q/Z correspond precisely to those characters of Q that vanish on Z, i.e., precisely H.

(b) By Exercise 7.8 K is a divisible torsion-free group, every non-zero r ∈ Q defines a continuous automor-
phism λr of K by setting λr(x) = rx for every x ∈ K. Then the composition ρ ◦λr : K → T defines a character
χr ∈ K̂ with kerχr = r−1H. For the sake of completeness let χ0 = 0. By Exercise 7.17 Q̂/Z ∼=

∏
p Jp is totally

disconnected, so by Corollary 6.21 H has no surjective characters χ : H → T. Now let χ ∈ K̂ be non-zero.
Then χ(K) will be a non-zero closed divisible subgroup of T, hence χ(K) = T. On the other hand, N = kerχ is
a proper closed subgroup of K such that N +H 6= T, as χ(H) is a proper closed subgroup of T by the previous
argument. Hence, χ(H) is finite, say of order m. Then N + H contains N is a finite-index subgroup, more
precisely [H : (N ∩ H)] = [(N + H) : N ] = m. Then mH ≤ N . Consider the character χm−1 of K having
kerχm−1 = mH ≤ N . By Corollary there exists k ∈ Z such that χ = kχm−1 = χr, where r = km−1 ∈ Q. This
shows that K̂ = {χr : r ∈ Q} ∼= Q.)

The compact group Q̂ is closely related to the adele rings of the field Q, more detail can be found in
[34, 38, 75, 97].

Exercise 7.19. Prove that a discrete abelian group G satisfies ̂̂
G ∼= G whenever
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(a) G is divisible;

(b) G is free;

(c) G is of finite exponent;

(d) G is torsion and every primary component of G is of finite exponent.

(Hint. (a) Use Examples 7.7 and 7.18 (b) and the fact that every divisible group is a direct sum of copies of
Q and the groups Z(p∞).

(c) and (d) Use that fact that every abelian group of finite exponent is a direct sum of cyclic subgroups (i.e.,
Prüfer’s theorem, see (d) of Example 2.3).

Exercise 7.20. Prove that every torsion compact abelian group G is bounded. More precisely, there exists
natural numbers m1, . . . ,mn and cardinals α1, . . . , αn such that G ∼=

∏n
i=1 Z(mi)αi .

(Hint. Use the Baire category theorem for the union G =
⋃∞

n=1G[n!] of closed subgroups. Conclude that
G[n!] is open for some n, so must have finite index by the compactness of G. This yields mG = 0 for some m.

Show that this yields also mĜ = 0. Now apply Prüfer’s theorem to Ĝ and the fact that G ∼= ̂̂
G.)

7.4 The natural transformation ω

Let G be a topological abelian group. Define ωG : G→ ̂̂
G such that ωG(x)(χ) = χ(x), for every x ∈ G and for

every χ ∈ Ĝ. We show now that ωG(x) ∈ ̂̂
G.

Proposition 7.21. If G is a topological abelian group. Then ωG(x) ∈ ̂̂
G and ωG : G→ ̂̂

G is a homomorphism.
If G is locally compact, then the homomorphism ωG is a continuous.

Proof. In fact,
ωG(x)(χ+ ψ) = (χ+ ψ)(x) = χ(x) + ψ(x) = ωG(x)(χ) + ωG(x)(ψ),

for every χ, ψ ∈ Ĝ. Moreover, if U is an open neighborhood of 0 in T, then ωG(x)(W ({x}, U)) ⊆ U . This

proves that ωG(x) is a character of Ĝ, i.e., ωG(x) ∈ ̂̂
G. For every x, y ∈ G and for every χ ∈ Ĝ we have

ωG(x+ y)(χ) = (χ)(x+ y) = χ(x) + χ(y) = ωG(χ)(x) + ωG(χ)(y) and so ωG is a homomorphism.
Now assume G is locally compact. To prove that ωG is continuous, pick an open neighborhood A of 0 in T and

a compact subset K of Ĝ. Then W (K,A) is an open neighborhood of 0 in ̂̂
G. Let U be an open neighborhood of

0 in G with compact closure. Take an open symmetric neighborhood B of 0 in T with B+B ⊆ A. Thus W (U,B)
is an open neighborhood of 0 in Ĝ. Since K is compact, there exist finitely many characters χ1, . . . , χm of G
such that K ⊆ (χ1 +W (U,B)) ∪ · · · ∪ (χm +W (U,B)). For every i = 1, . . . ,m there is an open neighborhood
Vi of 0 in G such that χi(Vi) ⊆ B. Define V = U ∩ V1 ∩ · · · ∩ Vm ⊆ U and note that χi(V ) ⊆ B for every
i = 1, . . . ,m. Thus ωG(V ) ⊆W (K,A). Indeed, if x ∈ V and χ ∈ K, then χi(x) ∈ B for every i = 1, . . . ,m and
there exists i0 ∈ {1, . . . ,m} such that χ ∈ χi0 +W (U,B); so χ(x) = χi0(x) +ψ(x) with ψ ∈W (U,B) and then
ωG(x)(χ) = χ(x) ∈ B +B ⊆ A.

In this chapter we shall have a precise approach, by saying that a group G satisfies the Pontryagin-van
Kampen duality theorem when ωG is a topological isomorphism.

Lemma 7.22. If the topological abelian groups Gi satisfy Pontryagin-van Kampen duality theorem for i =
1, 2, . . . , n, then also G =

∏n
i=1Gi satisfies Pontryagin-van Kampen duality theorem.

Proof. Apply Lemma 7.12 twice to obtain an isomorphism j :
∏n

i=1
̂̂
Gi →

̂̂
G. It remains to verify that the

product π : G→
∏n

i=1
̂̂
Gi of the isomorphisms ωGi : Gi →

∏n
i=1

̂̂
Gi given by our hypothesis composed with the

isomorphism j gives precisely ωG.

Consider two categories A and B. A covariant [contravariant] functor F : A → B assigns to each object
A ∈ A an object FA ∈ B and to each arrow f : A→ A′ in A an arrow Ff : FA→ FA′ [Ff : FA′ → FA] such
that FidA = idFA and F (g ◦ f) = Fg ◦ Ff [F (g ◦ f) = Ff ◦ Fg] for every arrow f : A → A′ and g : A′ → A′′

in A.
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Let F, F ′ : A → B be covariant functors. A natural transformation γ from F to F ′ assigns to each A ∈ A
an arrow γA : FA→ F ′A such that for every arrow f : A→ A′ in A the following diagram is commutative

FA
Ff−−−−→ FA′

γA

y yγA′

F ′A −−−−→
F ′f

F ′A′

A natural equivalence is a natural transformation γ such that each γA is an isomorphism.
If H denote the category of all Hausdorff abelian topological groups, the Pontryagin-van Kampen duality

functor , defined by
G 7→ Ĝ and f 7→ f̂

for objects G and morphisms f of H, is a contravariant functor ̂: H → H. Let L be the full subcategory of H
having as objects all locally compact abelian groups. According to Proposition 7.2, the functor ̂ sends L to
itself, i.e., defines a functor ̂: L → L. The Pontryagin-van Kampen duality theorem states that ω is a natural
equivalence from idL to ̂̂ : L → L. We start by proving that ω is a natural transformation.

Proposition 7.23. ω is a natural transformation from idL to ̂̂ : L → L.

Proof. By Proposition 7.21 ωG is continuous for every G ∈ L. Moreover for every continuous homomorphism
f : G→ H the following diagram commutes:

G
f−−−−→ H

ωG

y yωĤ̂
G −−−−→̂̂

f

̂̂
H

In fact, if x ∈ G and ξ ∈ Ĥ, then ωH(f(x))(ξ) = ξ(f(x)). On the other hand,

(̂̂f(ωG(x)))(ξ) = (ωG(x) ◦ f̂)(ξ) = ωG(x)(f̂(ξ)) = ωG(x)(ξ ◦ f) = ξ(f(x)).

Hence ωH(f(x)) = ̂̂
f(ωG(x)) for every x ∈ G.

Remark 7.24. Note that ωG is a monomorphism if and only if Ĝ separates the points of G. Moreover, ωG(G)

is a subgroup of ̂̂
G that separates the points of Ĝ.

Now we can prove the Pontryagin-van Kampen duality theorem in the case when G is either compact or
discrete.

Theorem 7.25. If the abelian topological group G is either compact or discrete, then ωG is a topological
isomorphism.

Proof. If G is discrete, then Ĝ separates the points of G by Corollary 2.7 and if G is compact, then Ĝ separates
the points of G by the Peter-Weyl Theorem 6.4. Therefore ωG is injective by Remark 7.24. If G is discrete,

then Ĝ is compact and ωG(G) = ̂̂
G by Corollary 6.6. Since ̂̂

G is discrete, ωG is a topological isomorphism.
Let now G be compact. Then ωG is open thanks to Theorem 4.9. Suppose that ωG(G) is a proper subgroup

of ̂̂
G. By the compactness of G, ̂̂

G is compact, hence closed in ̂̂
G. By the Peter-Weyl Theorem 6.4 applied

to ̂̂
G/ωG(G), there exists ξ ∈

̂̂̂
G \ {0} such that ξ(ωG(G)) = {0}. Since Ĝ is discrete, ωĜ is a topological

isomorphism and so there exists χ ∈ Ĝ such that ωĜ(χ) = ξ. Thus for every x ∈ G we have 0 = ξ(ωG(x)) =
ωĜ(χ)(ωG(x)) = ωG(x)(χ) = χ(x). It follows that χ ≡ 0 and so that also ξ ≡ 0, a contradiction.

Our next step is to prove the Pontryagin-van Kampen duality theorem when G is elementary locally compact
abelian:

Theorem 7.26. If G is an elementary locally compact abelian group, then ωG is a topological isomorphism of

G onto ̂̂
G.



7.4 The natural transformation ω 55

Proof. According to Lemma 7.22 and Theorem 7.25 it suffices to prove that ωR is a topologically isomorphism.

Of course, by the fact that R̂ is topologically isomorphic to R, one concludes immediately that also R and ̂̂R
are topologically isomorphism. A more careful analysis of the dual R̂ shows the crucial role of the (Z-)bilnear
map λ : R×R → T defined by λ(x, y) = χ1(xy), where χ1 : R → T is the character determined by the canonical
quotient map R → T = R/Z. Indeed, for every y ∈ R the map χy : R → T defined by x 7→ λ(x, y) is an element
of R̂. Hence the second copy {0}×R of R in R×R can be identified with R̂. On the other hand, every element
x ∈ R gives a continuous characterR → T defined by y 7→ λ(x, y), so can be considered as the element ωR(x) of̂̂R. We have seen that every ξ ∈ ̂̂R has this form. This means that ωR is surjective. Since continuity of ωR, as

well as local compactness of ̂̂R are already established, ωR is a topological isomorphism by the open mapping
theorem.

For a subset X of G the annihilator of X in Ĝ is AĜ(X) = {χ ∈ Ĝ : χ(A) = {0}} and for a subset Y of Ĝ
the annihilator of Y in G is AG(Y ) = {x ∈ G : χ(x) = 0 for every x ∈ Y }. When no confusion is possible we
shall omit the subscripts Ĝ and G.

The next lemma will help us in computing the dual of a subgroup and a quotient group.

Lemma 7.27. Let G be a locally compact abelian group. If M is a subset of G, then AĜ(M) is a closed subgroup
of Ĝ.

Proof. It suffices to note that

AĜ(M) =
⋂

x∈M

{χ ∈ Ĝ : χ(x)} =
⋂
{kerωG(x) : x ∈M},

where each kerω(x) is a closed subgroup of Ĝ.

Call a continuous homomorphism f : G→ H of topological groups proper if f : G→ f(G) is open, whenever
f(G) carries the topology inherited from H. In particular, a surjective continuous homomorphism is proper iff
it is open.

A short sequence 0 → G1
f−→ G

h−→ G2 → 0 in L, where f and h are continuous homomorphisms, is exact if
f is injective, h is surjective and im f = kerh. It is proper if f and h are proper.

Lemma 7.28. Let G be a locally compact abelian group, H a subgroup of G and i : H → G the canonical
inclusion of H in G. Then

(a) î : Ĝ→ Ĥ is surjective if H is dense or open or compact;

(b) î is injective if and only if H is dense in G;

(c) if H is closed and π : G→ G/H is the canonical projection, then the sequence

0 → Ĝ/H
π̂−→ Ĝ

î−→ Ĥ

is exact, π̂ is proper and im π̂ = AĜ(H). If H is open or compact, then î is open and surjective.

Proof. (a) Note that î is surjective if and only if for every χ ∈ Ĥ there exists ξ ∈ Ĝ such that ξ �H= χ. If H is
compact apply Corollary 6.20. Otherwise Lemma 7.16 applies.

(b) If H is dense, then î is injective by Lemma 7.16. Conversely, assume that H is a proper subgroup of G

and let q : G→ G/H be the canonical projection. By Theorem 6.19 there exists χ ∈ Ĝ/H not identically zero.
Then ξ = χ ◦ q ∈ Ĝ is non-zero and satisfies ξ(H) = {0}, i.e., î(ξ) = 0. This implies that î is not injective.

(c) According to Lemma 7.16 π̂ is a monomorphism, since π is surjective. We have that î ◦ π̂ = π̂ ◦ i = 0.
If ξ ∈ ker î = {χ ∈ Ĝ : χ(H) = {0}}, then ξ(H) = {0}. So there exists ξ1 ∈ Ĝ/H such that ξ = ξ1 ◦ π (i.e.
ξ = π̂(ξ1)) and we can conclude that ker î = im π̂. So the sequence is exact and im π̂ = ker î = AĜ(H).

To show that π̂ is proper it suffices to apply Lemma 7.16.
If H is open or compact, (a) implies that î is surjective. It remains to show that î is open. If H is compact

then Ĥ is discrete by Example 7.1(2), so î is obviously open. If H is open, let K be a compact neighborhood
of 0 in G such that K ⊆ H. Then W = WĜ(K,Λ4) is a compact neighborhood of 0 in Ĝ. Since î is surjective,
V = î(W ) = WĤ(K,Λ4) is a neighborhood of 0 in Ĥ. Now M = 〈W 〉 and M1 = 〈V 〉 are open compactly
generated subgroups respectively of Ĝ and Ĥ, and î(M) = M1. Since M is σ-compact by Lemma 4.12, we can
apply Theorem 4.9 to the continuous surjective homomorphism î �M : M →M1 and so also î is open.
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The lemma gives these immediate corollaries:

Corollary 7.29. Let G be a locally compact abelian group and let H be a closed subgroup of G. Then Ĝ/H ∼=
AĜ(H). Moreover, if H is open or compact, then Ĥ ∼= Ĝ/AĜ(H).

The next corollary says that the duality functor preserves proper exactness for some sequences.

Corollary 7.30. If the sequence 0 → G1
f−→ G

h−→ G2 → 0 in L is proper exact, with G1 compact or G2 discrete,

then 0 → Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ1 → 0 is proper exact with the same property.

Now we can prove prove the Pontryagin-van Kampen duality theorem, namely ω is a natural equivalence
from idL tô̂: L → L.

Theorem 7.31. If G is a locally compact abelian group, then ωG is a topological isomorphism of G onto ̂̂
G.

Proof. We know by Proposition 7.23 that ω is a natural transformation from idL to ̂̂: L → L. Our plan is to
chase the given locally compact abelian group G into an appropriately chosen proper exact sequence

0 → G1
f−→ G

h−→ G2 → 0

in L, with G1 compact or G2 discrete, such that G1 and G2 satisfy the duality theorem. By Corollary 7.30 the
sequences

0 → Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ2 → 0 and 0 → ̂̂
G1

̂̂
f−→ ̂̂
G

̂̂
h−→ ̂̂
G2 → 0

are proper exact. According to Proposition 7.23 the following diagram commutes:

0 −−−−→ G1
f−−−−→ G

h−−−−→ G2 −−−−→ 0

ωG1

y yωG

yωG2

0 −−−−→ ̂̂
G1 −−−−→̂̂

f

̂̂
G −−−−→̂̂

h

̂̂
G2 −−−−→ 0

According to Theorem 6.19, ωG1 , ωG, ωG2 are injective. Moreover, ωG1 and ωG2 are surjective by our

choice of G1 and G2. Then ωG must be surjective too. (Indeed, if x ∈ ker ̂̂
h, then there exists y ∈ ωG(G) witĥ̂

h(x) = ̂̂
h(y), because ̂̂

h(ωG(G)) = ̂̂
G2. Now y − x ∈ ker ̂̂

h ⊆ ωG(G) and so x ∈ y + ωG(G) = ωG(G).)

If G is locally compact abelian and compactly generated, by Proposition 6.18 we can choose G1 compact
and G2 elementary locally compact abelian. Then G1 and G2 satisfy the duality theorem by Theorems 7.25
and 7.26, hence ωG is surjective. Since ωG is a continuous isomorphism and G is σ-compact, we conclude with
Theorem 4.9 that ωG is a topological isomorphism.

In the general case of locally compact abelian group G, we can take an open compactly generated subgroup
G1 of G. This will produce a proper exact sequence 0 → G1

f−→ G
h−→ G2 → 0 with G1 compactly generated and

G2
∼= G/G1 discrete. By the previous case ωG1 is a topological isomorphism and ωG2 is an isomorphism thanks

to Theorem 7.25. Therefore ωG is a continuous isomorphism.

Moreover ωG �f(G1): f(G1) →
̂̂
f( ̂̂
G1) is a topological isomorphism (as ωG1 , f : G1 → f(G1) and ̂̂

f : ̂̂
G1 →̂̂

f( ̂̂
G1) are topological isomorphisms) and f(G1) and ̂̂

f( ̂̂
G1) are open subgroups respectively of G and ̂̂

G. Thus
ωG is a topological isomorphism.

Our last aim is to prove that the annihilators define an inclusion-inverting bijection between the family of
all closed subgroups of a locally compact group G and the family of all closed subgroups of Ĝ. We use that fact

that one can identify G and ̂̂
G by the topological isomorphism ωG. In more precise terms:

Exercise 7.32. Let G be a locally compact abelian group and Y be a subset of Ĝ. Then A ̂̂
G

(Y ) = ωG(AG(Y )).

Lemma 7.33. Let G be a locally compact abelian group and H a closed subgroup of G. If a ∈ G \H then there
exists χ ∈ A(H) such that χ(x) 6= 0.

Proof. Let ρ : Ĝ/H → A(H) be the topological isomorphism of Corollary 7.29. By Theorem 6.19 there exists
ψ ∈ Ĝ/H such that ψ(a+H) 6= 0. Therefore χ = ρ(ψ) ∈ A(H) and χ(a) = ρ(ψ)(a) = ψ(a+H) 6= 0.
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Corollary 7.34. If G is a locally compact abelian group and H a closed subgroup of G, then

H = AG(AĜ(H))) = ω−1
G (A ̂̂

G
(AĜ(H))).

Proof. The first equality follows immediately from the above lemma.
The last equality follows from the equality H = AG(AĜ(H))) and Exercise 7.32.

By Lemma 7.29 the equality H = AG(AĜ(H))) holds if and only if H is a closed subgroup of G.

Proposition 7.35. Let G be a locally compact abelian group and H a closed subgroup of G. Then Ĥ ∼= Ĝ/A(H).

Proof. Since H = ω−1
G (A ̂̂

G
(AĜ(H))) by Lemma 7.34 we have a topological isomorphism φ from H to ̂̂G/A(H)

given by φ(h)(α+A(H)) = α(h) for every h ∈ H and α ∈ Ĝ. This gives rise to another topological isomorphism

φ̂ :
̂̂

Ĝ/A(H) → Ĥ. By Pontryagin’s duality theorem 7.31 ωĜ/A(H) is a topological isomorphism from Ĝ/A(H)

to
̂̂

Ĝ/A(H). The composition gives the desired isomorphism.

Finally, let us resume for reader’s benefit some of the most relevant points of Pontryagin-van Kampen duality
theorem established so far:

Theorem 7.36. Let G be a locally compact abelian group. Then Ĝ is a locally compact abelian group and:

(a) the correspondence H 7→ AĜ(H), N 7→ AG(N), where H is a closed subgroup of G and N is a closed
subgroup of Ĝ, defines an order-inverting bijection between the family of all closed subgroups of G and the
family of all closed subgroups of Ĝ;

(b) for every closed subgroup H of G the dual group Ĥ is isomorphic to Ĝ/A(H), while A(H) is isomorphic
to the dual Ĝ/H;

(c) ωG : G→ ̂̂
G is a topological isomorphism;

(d) G is compact (resp., discrete) if and only if Ĝ is discrete (resp., compact);

Proof. The first sentence is proved in Theorem 7.2. (a) is Corollary 7.34 while (b) is Proposition 7.35. (c) is
Theorem 7.31. To prove (d) apply Theorem 7.31 and Lemma 7.1.

Using the full power of the duality theorem one can prove the following structure theorem on compactly
generated locally compact abelian groups.

Theorem 7.37. Let G be a locally compact compactly generated abelian group. Prove that G ∼= Rn × Zm ×K,
where n,m ∈ N and K is a compact abelian group.

Proof. According to Theorem 6.18 there exists a compact subgroup K of G such that G/K is an elementary
locally compact abelian group. Taking a bigger compact subgroup one can get the quotient G/K to be of the
form Rn × Zm for some n,m ∈ N. Now the dual group Ĝ has an open subgroup A(K) ∼= Ĝ/K ∼= Rn × Tm.
Since this subgroup is divisible, one has Ĝ ∼= Rn×Tm×D, where D ∼= Ĝ/A(K) is discrete and D ∼= K̂. Taking

duals gives G ∼= ̂̂
G ∼= Rn × Zm ×K.

Making sharp use of the annihilators one can prove the structure theorem on locally compact abelian groups
(see [67, 36] for a proof).

Theorem 7.38. Let G be a locally compact abelian group. Then G ∼= Rn ×G0, where G0 is a closed subgroup
of G containing an open compact subgroup K.

As a corollary one can prove:

Corollary 7.39. Every locally compact abelian group is isomorphic to a subgroup of a group of the form
Rn ×D ×K, where n ∈ N, D is a discrete abelian group and K is a compact abelian group.

Exercise 7.40. Let G be a locally compact abelian group. Prove that for χ1, . . . , χn ∈ Ĝ and δ > 0 one has

UG(χ1, . . . , χn; δ) = ω−1
G (W ̂̂

G
({χ1, . . . , χn}, U),

where U is the neighborhood of 0 in T ∼= S determined by |Argz| < δ.
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Exercise 7.41. Let G be a compact connected abelian group. Prove that t(G) is dense in G iff Ĝ is reduced.
Deduce that every compact connected abelian group G has the form G ∼= G1 × Qα for some cardinal α, where
the compact subgroup G1 coincides with the closure of the subgroup t(G) of G.

(Hint. Note first that Ĝ is torsion-free. Deduce that Ĝ is reduced iff
⋂∞

n=1 nĜ = 0. Show that this equality
is equivalent to density of t(G) =

⋃∞
n=1G[n] in G. To prove the second assertion consider the torsion-free dual

Ĝ and its decomposition Ĝ = d(Ĝ)×R, where R is a reduced subgroup of Ĝ. Now apply the first part and the

isomorphism G ∼= ̂̂
G.)

Exercise 7.42. Give example of a reduced abelian group G such that
⋂∞

n=1 nG 6= 0.

(Hint. Fix a prime number p and take an appropriate quotient of the group
⊕∞

n=1 Z(pn).

8 Appendix

8.1 Uniqueness of Pontryagin-van Kampen duality

For topological abelian groups G,H denote by Chom(G,H) the group of all continuous homomorphisms G→ H
equipped with the compact-open topology. It was pointed out already by Pontryagin that the group T is the
unique locally compact group L with the property Chom(Chom(T, L), L) ∼= T (note that this is much weaker
than asking Chom(−, L) to define a duality of L). Much later Roeder [91] proved that Pontryagin-van Kampen
dualityis the unique functorial duality of L, i.e., the unique involutive contravariant endofunctor L → L. Several
years later Prodanov [85] rediscovered this result in the following much more general setting. Let R be a locally
compact commutative ring and LR be the category of locally compact topological R-modules. A functorial
duality # : LR → LR is a contravariant functor such that # · # is naturally equivalent to the identity of LR

and for each morphism f : M → N in LR and r ∈ R (rf)# = rf# (where, as usual, rf is the morphism
M → N defined by (rf)(x) = rf(x)). It is easy to see that the restriction of the Pontryagin-van Kampen
duality functor on LR is a functorial duality, since the Pontryagin-van Kampen dual M̂ of an M ∈ LR has a
natural structure of an R-module. So there is always a functorial duality in LR. This stimulated Prodanov
to raise the question how many functorial dualities can carry LR and extend this question to other well known
dualities and adjunctions, such as Stone duality13, the spectrum of a commutative rings [86], etc. at his Seminar
on dualities (Sofia University, 1979/83). Uniqueness of the functorial duality was obtained by L. Stoyanov [93]
in the case of a compact commutative ring R. In 1988 Gregorio [56] extended this result to the general case of
compact (not necessarily commutative) ring R (here left and right R-modules should be distinguished, so that
the dualities are no more endofunctors). Later Gregorio jointly with Orsatti [58] offered another approach to
this phenomenon.

Surprisingly the case of a discrete ring R turned out to be more complicated. For each functorial duality
# : LR → LR the module T = R# (the torus of the duality #) is compact and for every X ∈ LR the module
∆T (X) := ChomR(X,T ) of all continuous R-module homomorphisms X → T , equipped with the compact-open
topology, is algebraically isomorphic to X#. The duality # is called continuous if for each X this isomorphism
is also topological, otherwise # is discontinuous. Clearly, continuous dualities are classified by their tori, which
in turn can be classified by means of the Picard group Pic(R) of R. In particular, the unique continuous
functorial duality on LR is the Pontryagin-van Kampen duality if and only if Pic(R) = 0 ([29, Theorem 5.17]).
Prodanov [85] (see also [36, §3.4]) proved that every functorial duality on L = LZ is continuous, which in view
of Pic(Z) = 0 gives another proof of Roeder’s theorem of uniqueness. Continuous dualities were studied in the
non-commutative context by Gregorio [57]. While the Picard group provides a good tool to measure the failure
of uniqueness for continuous dualities, there is still no efficient way to capture it for discontinuous ones. The
first example of a discontinuous duality was given in [29, Theorem 11.1]. Discontinuous dualities of LQ and its
subcategories are discussed in [34]. It was conjectured by Prodanov that in case R is an algebraic number ring
uniqueness of dualities is available if and only if R is a principal ideal domain. This conjecture was proved to
be true for real algebraic number rings, but Prodanov’s conjecture was shown to fail in case R is an order in an
imaginary quadratic number field [25].

We will not touch other well-known dualities for module categories such as Morita duality (see [76]) or more
general setting of dualities of (representable dualities, adjunctions rather than involutions, etc. [40], [41] and
[83]).

13his conjecture that the Stone duality is the unique functorial duality between compact totally disconnected Hausdorff spaces
and Boolean algebras was proved to be true by Dimov [39].



8.2 Non-abelian or non-locally compact groups 59

8.2 Non-abelian or non-locally compact groups

The Pontryagin-van Kampen duality theorem was extended to some non-locally compact abelian topological
groups (e.g., infinite powers of the reals, the underlying additive groups of certain linear topological spaces,
etc.). A characterization of the abelian topological groups admitting duality were proposed by Venkatamaran
[95] and Kye [73], but they contained flaws. These gaps were removed in the recent paper of Hernández [63].
An important class of abelian groups (nuclear groups) were introduced and studied in the monograph [6] (see
also [5]) in relation to the duality theorem. Further reference can be found also in [21, 51, 65]

We do not discuss here non-commutative versions of duality for locally compact groups. The difficulties
arise already in the compact case – there is no appropriate (or at least, comfortable) structure on the set of
irreducible unitary representations of a compact non-abelian group. The reader is referred to [67] for a historical
panorama of this trend (Tanaka-Kĕın duality, etc.). In the locally compact case one should see the pioneering
paper of H. Chu [22], as well as the monograph of Heyer [68] (see also [69]). In the recent survey of Galindo,
Hernández, and Wu [53] the reader can find the last achievements in this field (see also [64]).

8.3 Relations to the topological theory of topological groups

The Pontryagin-van Kampen dual of a compact abelian group K carries a lot of useful information about the
topology of H. For example,

- w(K) = |K̂|,
- d(K) = log |K̂| = min{κ : 2κ ≥ |K̂|},
- K is connected iff K̂ is torsion-free,
- K is totally connected iff K̂ is torsion,
- c(K) = A(t(K̂)), where t(K̂) is the torsion subgroup of K̂,
- dimK = r0(K̂),
- H1(K,Z) ∼= K̂ if K is connected (here H1(K,Z) denotes the first cohomology group),
- for two compact connected abelian groups K1 and K2 the following are equivalent: (i) K1 and K2 are

homotopically equivalent as topological spaces; (ii) K1 and K2 are homeomorphic as topological spaces; (iii)
K̂1

∼= K̂2; (iv) K1
∼= K2 as topological groups.

The first equality can be generalized to w(K) = w(K̂) for all locally compact abelian groups K.
The Pontryagin-van Kampen duality can be used to easily build the Bohr compactification bG of a locally

compact abelian group G (this is the reflection of G into the subcategory of compact abelian groups). In the
case when G is discrete, bG is simply the completion of G#, the group G equipped with its Bohr topology. One

can prove that bG ∼= ̂̂
Gd, where Ĝd denotes the group Ĝ equipped with the discrete topology. For a comment

on the non-abelian case see [28, 53].
Many nice properties of Z# can be found in Kunnen and Rudin [72]. For a fast growing sequence (an) in

Z# the range is a closed discrete set of Z# (see [53] for further properties of the lacunary sets in Z#), whereas
for a polynomial function n 7→ an = P (n) the range has no isolated points [72, 44, Theorem 5.4]. Moreover,
the range P (Z) is closed when P (x) = xk is a monomial. For quadratic polynomials P (x) = ax2 + bx + c,
(a, b, c,∈ Z, a 6= 0) the situation is already more complicated: the range P (Z) is closed iff there is at most one
prime that divides a, but does not divide b [72, 44, Theorem 5.6]. This leaves open the general question [26,
Problem 954].

Problem 8.1. Characterize the polynomials P (x) ∈ Z[x] such that P (Z) is closed in Z#.

8.4 Relations to dynamical systems

Among the known facts relating the dynamical systems with the topic of these notes let us mention just two.

• A compact group G admits ergodic translations Ta(x) = ax iff G is monothetic. The ergodic rotations Ta

of G are precisely those defined by a topological generator a of G.

• A continuous surjective endomorphism T : K → K of a compact abelian group is ergodic iff the dual
T̂ : K̂ → K̂ has no periodic points except x = 0.

The Pontryagin-van Kampen duality has an important impact also on the computation of the entropy of
endomorphisms of (topological) abelian groups. Adler, Konheim, and McAndrew introduced the notion of
topological entropy of continuous self-maps of compact topological spaces in the pioneering paper [1]. In 1975
Weiss [98] developed the definition of entropy for endomorphisms of abelian groups briefly sketched in [1]. He
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called it “algebraic entropy”, and gave detailed proofs of its basic properties. His main result was that the
topological entropy of a continuous endomorphism φ of a profinite abelian group coincides with the algebraic
entropy of the adjoint map φ̂ of φ (note that pro-finite abelian groups are precisely the Pontryagin duals of the
torsion abelian groups).

In 1979 Peters [82] extended Weiss’s definition of entropy for automorphisms of a discrete abelian group G.
He generalized Weiss’s main result to metrizable compact abelian groups, relating again the opological entropy
of a continuous automorphism of such a group G to the entropy of the adjoint automorphism of the dual group
Ĝ. The definition of entropy of automorphisms given by Peters is easily adaptable to endomorphisms of Abelian
groups, but it remains unclear whether his theorem can be extended to the computation of the topological
entropy of a continuous endomorphism of compact abelian groups.
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[12] A. B́ıró, Characterizing sets for subgroups of compact groups, J, Number Theory, to appear.
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