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Welcome!

Dear participant,

It is a pleasure to welcome you to the 16th edition of Géométrie Algébrique
en Liberté, also known as GAeL. As the title suggests, this conference aims
to give you an opportunity to discuss algebraic geometry freely amongst
other young researchers. Therefore we encourage you to ask questions, no
matter how silly you think they might be, just go ahead and ask them.

Apart from the abundance of junior speakers, three senior speakers will each
give a mini course. We are very grateful to Jean-Pierre Demailly, Daniel
Huybrechts and Angelo Vistoli for agreeing to lecture at GAeL.

This 16th edition of GAeL would not have been possible without our spon-
sors. We want to thank Foundation Compositio Mathematica, i-MATH In-
genio Mathematica, CES Felipe II, Instituto de Matemática Interdisciplinar,
Universidad Complutense de Madrid, Universidad Autónoma de Madrid,
Real Sociedad Matemática Española and la Dirección General de Universi-
dades e Investigación de la Consejeŕıa de Educación de la Comunidad de
Madrid for their generous support.

Last but not least, we thank Frances Kirwan (University of Oxford, United
Kingdom) and Frans Oort (Utrecht University, Netherlands), GAeL’s scien-
tific committee, for encouraging us and helping us out with good advice.

We hope you will consider this year’s GAeL as an interesting conference
where you both learned a lot and met new research colleagues.

The organizing committee,

Stephen Coughlan,
Sultan Erdoğan,
Michael Kerber,
Alberto López,
Maŕıa Pe Pereira,
Sönke Rollenske,
Damiano Testa,
İnan Utku Türkmen and
Tim Wouters
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Surface fibrations and their relative canonical algebra

Elisa Tenni (Università degli Studi di Pavia, Italy - University of Warwick,

UK)

I will define the relative canonical algebra of a fibred surface and I will show

its importance when we are looking for the invariants of the surface.

I will prove that when the genus of the fibre is 5 or 7 the study of the relative

canonical algebra leads to an explicit relation between the invariants.

Cohomological support loci for Abel-Prym curves

Filippo Viviani (Humboldt Universität Berlin, Germany)

Cohomological support loci were introduced by Green-Lazarsfeld to

prove some generic vanishing theorems for irregular varieties. Later,

Pareschi-Popa used them to define a concept of regularity on principally

polarized abelian varieties which resembles many of the property of the

Castelnuovo-Mumford regularity on projective spaces. As an application,

they studied the cohomological support loci of the Abel-Jacobi curve on a

Jacobian, obtaining a cohomological characterization of them. In this talk,

based on a joint work with S. Casalaina-Martin and M. Lahoz, we consider

the analogous problem for the “next class of curves”, namely Abel-Prym

curves inside Prym varieties.

Torus actions and deformation theory

Robert Vollmert (Freie Universität Berlin, Germany)

I will describe how toric deformations fit into the language of T -varieties

and how they may be generalized in this setting. Here, a T -variety is a

normal affine variety with an action by a possible lower-dimensional torus

T . It has a partially combinatorial description by a polyhedral divisor on a

quotient by T . Toric deformation theory allows the construction of some

deformations of toric varieties, mostly those with toric total space. Such a

deformation corresponds to a decomposition of a polytope as a Minkowski

sum.
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Schubert decomposition for double Grassmannians

Evgeny Smirnov (Université Joseph Fourier, Grenoble 1, France)

Classical Schubert calculus deals with orbits of a Borel subgroup B ⊂ GL(V )
acting on a Grassmann variety Gr(k, V ) of k-planes in a finite-dimensional

vector space V . These orbits (Schubert cells) and their closures (Schu-

bert varieties) are very well studied both from the combinatorial and the

geometric points of view.

One can go one step farther, considering the direct product of two Grass-

mannians Gr(k, V ) × Gr(l , V ) and the Borel subgroup B ⊂ GL(V ) acting
diagonally on this variety. In this case, the number of orbits still remains

finite, but their combinatorics and geometry of their closures become much

more involved. It would be challenging to extend the whole body of the

Schubert calculus to this situation.

I will explain how to index the B-orbit closures in Gr(k, V )×Gr(l , V ) com-
binatorially, describe the inclusion relations between them, and construct

their desingularizations, which are analogous to Bott–Samelson desingu-

larizations for ordinary Schubert varieties. If time allows, I will also try to

discuss the relations of this situation with geometry of quiver representa-

tions; these relations were recently found by Bobinski and Zwara.

Scalar curvature and polystability

Jacopo Stoppa (Università degli Studi di Pavia, Italy - Imperial College

London, UK)

S. Donaldson proved that a polarised manifold admitting a constant

scalar curvature Kaehler metric is algebraically K-semistable. But the

standard analogy with HYM bundles suggests that this can be strengthened

to algebraic K-polystability. We present some work in progress in this

direction.
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Università degli Studi di Firenze, Italy

Sylvain Brochard Sylvain.Brochard@math.uvsq.fr
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Université Pierre et Marie Curie - Paris 6, France

Andre Chatzistamatiou Andre.Chatzistamatiou@ens.fr
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Bilkent Üniversitesi Ankara, Turkey

École Polytechnique Fédérale de Lausanne, Switzerland

Ron Erez erezron@post.tau.ac.il
Tel Aviv University, Israel

Javier Fernández de Bobadilla javier@mat.csic.es
Consejo Superior de Investigaciones Cientificas Madrid, Spain
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Università degli Studi Roma Tre, Italy

Holger Partsch partsch@math.uni-duesseldorf.de
Heinrich-Heine-Universität Düsseldorf, Germany

Nikola Penev penev@stanford.edu
Stanford University, USA

4

default

Topology of Plane curves and Disrciminants

Zahid Raza (Abdus Salam School of Mathematical Sciences, GCU Lahore

Pakistan)

We explore the relation between the topology of the fibers of a

polynomial in two complex variables and the degree of the associated

discriminant. This gives, in particular, lower and upper bounds for this

degree, and the polynomials realizing these bounds, or even close values,

can be described geometrically.

References

[1] E. Artal Bartolo, P. Cassou-Nogues, I. Luengo Velasco, On polynomials

whose fibers are irreducible with no critical points, Math. Ann. 299

(1994), 477-490.

[2] P. Cassou-Nogues, A. Dimca: Topology of complex polynomials via

polar curves, Kodai Math. J. 22 (1999),131–139.

[3] A. Dimca, L. Paunescu On the connectivity of complex affine hypersur-

faces II, Topology 39 (2000) 1035-1043.

[4] A.H. Durfee, Five definitions of Critical Points at Infinity, Singularities:

the Brieskorn Anniversary Volume, Progress in Mathematics 162.
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Functional equations for polylogarithms in motivic cohomology

Oliver Petras (Johannes-Gutenberg Universität Mainz, Germany)

For an infinite field F , we study the integral relationship between

the Bloch group B2(F ) and the higher Chow group CH
2(F, 3) by proving

some relations corresponding to the functional equations of the dilogarithm.

The groups involved in Suslin’s exact sequence

0→ TorMZ1 (Fs , Fs)∼ → CH2(F, 3)→ B2(F )→ 0
are identified with homology groups of the cycle complex Z2(F, •)
computing higher Chow groups.

Using these results, we can give explicit cycles in motivic cohomol-

ogy generating the integral motivic cohomology groups of number fields

and determine whether a given cycle in the Chow group already lives in

one of the other subgroups of Suslin’s sequence.

At last, we give some indications about similar computations in codimension

three.

Non-General Type Surface in Weighted P4
Lisema Rammea (University of Bath, UK)

Looking at a particular example carefully chosen so that the weights are

pairwise coprime, we discuss construction of smooth surfaces not of general

type in weighted four dimensional projective space. Using our example

we shall show how to write the Riemann-Roch formula and application of

Beilinson (1978) Theorem.
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Universität Zürich, Switzerland

Jacopo Stoppa jacopo.stoppa@unipv.it
Università degli Studi di Pavia, Italy
Imperial College London, UK

Evgeny Smirnov evgeny.smirnov@gmail.com
Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Kaisa Taipale taipale@math.umn.edu
University of Minnesota, USA

Elisa Tenni elisa.tenni@unipv.it
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Around the McKay correspondence with G-Hilb

Álvaro Nolla de Celis (University of Warwick, UK)

I this talk I will give an introduction to the McKay correspondence

established in the early 80’s and explain various ways of looking at it,

giving special attention to the G-Hilb approach. Since is the last talk of

the conference, to entertain the audience I promise lots of pictures and

examples, which I hope will show the beauty of this correspondence.

Perfect stratifications and the Chow ring ofMg for 3 ≤ g ≤ 6
Nikola Penev (Stanford University, USA)

Finding the rational Chow ring A∗Q(Mg) of the coarse moduli space of

smooth genus g curves is, in general, a very difficult task. For small genera

however, one can fully describe the ring: for g = 3, 4, 5 one can prove that

A∗Q(Mg) ≃ Q[λ1]/(λg−11 ) where λ1 is the first Chern class of the Hodge
bundle as proved in the 1990’s by Faber for g = 3, 4 and Izadi for g = 5.

In a recent preprint Fontanari and Looijenga give significantly shorter proofs

of the same results by presenting Mg as a disjoint union of affine subva-

rieties with trivial rational Chow ring, one for each codimension ≤ g − 2.
Each stratum has a nice geometric construction: for example in genus 4

one has M4 ⊃ M′
4 ⊃ H4 where M4 \ M′

4 is the set of curves whose

canonical model is a complete intersection of a smooth quartic and a cu-

bic andM′
4 \ H4 is the set of curves whose canonical model is a complete

intersection of a cone and a cubic while H4 is the set of hyperelliptic curves.
In my talk I will introduce the general strategy, discuss briefly Fontanari

and Looijenga’s stratifications and give idea how one can find a similar,

though slightly more complicated stratification of M6 and potentially use

it to describe the rational chow ring of that moduli space.
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Regularity and Splitting Criteria for Vector Bundles on Projective

Varieties

Francesco Malaspina (Politecnico di Torino, Italy)

A classical result by Horrocks characterizes the vector bundles with-

out intermediate cohomology on a projective space as direct sum of line

bundles. A very simple proof of this criterion uses Castelnuovo-Mumford

regularity.

It was soon clear that Mumfords definition of Castelnuovo-Mumford

regularity was a key notion and a fundamental tool in many areas of

algebraic geometry and commutative algebra. Several extensions of this

notion were proposed to handle different situations.

In this talk we will introduce suitable denitions of regularity on quadric

hypersurfaces, multiprojective spaces and Grassmannians of lines in order

to obtain splitting criteria for vector bundles.

Compactified Picard stacks over M̄g.

Margarida Melo (Università degli Studi Roma Tre, Italy)

Let X be a projective curve of genus g. The generalized jacobian of X,

J(X), parameterizing isomorphism classes of invertible sheaves on X having

degree 0 on every irreducible component of X, is projective if and only if X

is a curve of compact type. There are several constructions of compactifi-

cations of J(X), differing from one another in various aspects such as the

geometric interpretation or the functorial properties.

In this talk we will explain how to construct geometrically meaningful alge-

braic (Artin) stacks P̄d,g over the moduli stack of stable curves, M̄g, giving

a functorial way of compactifying the relative degree d Picard variety for

families of stable curves. The functorial property of these stacks consists

on the fact that, giving a family of stable curves f : X → S, the fiber
product of its moduli map onto M̄g by P̄d,g is either isomorphic to Capo-
raso’s compactification of the degree d Picard variety of X over S or has
a canonical map onto it.
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Senior speakers

Differential equations and hyperbolicity of algebraic varieties

Jean-Pierre Demailly (Université de Grenoble I, France)

The goal of the lectures is to provide an introduction to the theory of hy-

perbolic varieties, which are interesting for their geometric properties (e.g.,

partially negative curvature) as well as for their conjectured diophantine

properties.

A complex variety is said to be hyperbolic in the sense of Kobayashi if the

holomorphic mappings from the unit disk sending the origin to any given

point form a normal family. In the compact case - actually our main interest

is the case of projective varieties - this is equivalent to the non existence

of non constant entire holomorphic curves defined on the whole complex

line, and in particular this property implies the non existence of rational or

elliptic curves.

Although hyperbolicity looks like an analytic property, it is expected that

it can be expressed in purely algebraic terms, at least as far as projec-

tive varieties are concerned. One of the deepest conjectures states that

hyperbolicity should be equivalent to the fact that all subvarieties are of

general type. On the other hand, one of the main tools is the study of

algebraic differential equations, namely sections of certain jet bundles and

their cohomology.

In the last two decades various new techniques have been developped, which

borrow tools from quite central parts of algebraic geometry : vanishing /

non vanishing theorems, Riemann Roch calculations, Morse inequalities,

meromorphic connections, meromorphic vector fields ... We will try to

present a fair amount of these fundamental techniques.
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References

• A good reference is the recent survey written by Erwan Rousseau
(http://arxiv.org/abs/0709.3882 - however the notes are written in

French, so a few people might find this unsuitable.)

• Older (very detailed, still useful) notes of mine are on my web page
http://www-fourier.ujf-grenoble.fr/ demailly/research.html

see especially :

[50] Algebraic criteria for Kobayashi hyperbolic projective varieties and

jet differentials, Proceedings of Symposia in Pure Math., Vol. 62.2

(AMS Summer Institute on Algebraic Geometry, Santa Cruz, July 1995),

ed. J. Kollar, R. Lazarsfeld, (1997), 285-360 [hyperbolic.pdf]

[55] (in collaboration avec J. El Goul) Hyperbolicity of generic surfaces

of high degree in projective 3-space, math.AG/9804129, Amer. J.

Math. 122 (2000) 515-546. [hyp generic.pdf]

• See also the recent papers of my PhD student Simone Diverio :
– Differential Equations on Complex Projective Hypersurfaces of Low

Dimension, arXiv:0706.1031,

– Existence of Global Invariant Jet Differentials on Projective Hyper-

surfaces of High Degree, arXiv:0802.0045.
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Algebraic stacks and the Picard functor

Sylvain Brochard (Université de Versailles, France)

The Picard functor of a scheme, classifying invertible sheaves on it,

has been studied extensively in the 60’s. However, the work of Giraud,

Deligne, Mumford and Artin gave birth in the 70’s to the notion of an

algebraic stack, which generalizes that of a scheme. The following question

arises then: does the Picard functor of an algebraic stack behave like that

of a scheme?

We will explain how the study of deformations of invertible sheaves

allows us to prove that the Picard functor is representable by an algebraic

space (under suitable hypothesis). We will also try to see, through a few

examples, what is the effect on the Picard scheme, when we modify a

scheme by adding some “stacky structure”.

Topology of Plane curves and Disrciminants

Almar Kaid (University of Sheffield, UK)

Let R be an integral domain of finite type over Z and let f : X → Spec R be
a smooth projective morphism of relative dimension d ≥ 1. We investigate,
for a vector bundle E on the total space X, under what arithmetical prop-

erties of a sequence (pn, en)n∈N, consisting of closed points pn in Spec R
and Frobenius descent data Epn

∼= F en∗(F ) on the closed fibers Xpn, the
bundle E0 on the generic fiber X0 is semistable.

13



default

Junior speakers

Good moduli spaces for Artin stacks

Jarod Alper (Stanford University, USA)

I will develop an intrinsic theory for associating schemes or algebraic spaces

with nice geometric properties to arbitrary Artin stacks. This theory offers

a stack-theoretic approach to geometric invariant theory. I will define the

notion of a good moduli space which simultaneously generalizes the existing

notions of good GIT quotients and tame stacks. I will give the fundamental

properties of good moduli spaces and discuss applications to the geometry

of certain moduli spaces.

Quantum Cohomology of Root Gerbes

Elena Andreini (Universität Zürich, Switzerland)

I will give a short introduction to quantum cohomology and to gerbes

over smooth projective varieties. For gerbes which are obtained as roots

of line bundles I will explain how to compute the genus zero orbifold

Gromov-Witten theory in terms of the genus zero Gromov-Witten theory

of the base variety.

Homogeneous vector bundles on flag manifolds and quiver represen-

tations

Ada Boralevi (Università degli studi di Firenze, Italy)

The category of homogeneous vector bundles on a flag manifold X = G/P

of ADE-type is equivalent to the category of representations of a certain

quiver QX with relations. This equivalence was found in some cases by

Bondal, Kapranov and Hille. In the particular case of Hermitian symmetric

varieties, Ottaviani and Rubei used this equivalence as a tool to compute

the cohomology of homogeneous vector bundles, thus generalizing the well-

known Bott Theorem.

I will show results holding in the general case. If time permits, I will also

show an interesting application to simplicity of tangent bundles.
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K3 surfaces: Cycles, Chow groups, and derived categories.

Daniel Huybrechts (Universität Bonn, Germany)

In these lectures I will try to approach the geometry of K3 surfaces

by using three fundamental invariants: Chow groups, Hodge structures,

derived categories.

The cohomology of a K3 surface together with the intersection pairing

and the Hodge structure is an important invariant. The non-algebraic

part, the transcendental lattice, is a weight two Hodge structure whose

automorphisms (over Q) form a field of a very particular type. See Zarhin:
Hodge group of K3 surface. J. Reine Angew. Math. 341 (1983), 193-220.

The Chow group of a K3 surface has ‘infinite rank’ (result of Mum-

ford), but contains a natural subring studied by Beauville and Voisin in:

On the Chow ring of a K3 surface. J. Algebraic Geom. 13 (2004), 417-426.

The bounded derived category of the abelian category of coherent

sheaves is a triangulated category which in the case of a K3 surface has

an interesting group of autoequivalences. I will discuss examples of such

autoequivalences and explain how they act on cohomology.

See Mukai’s paper: On the moduli space of bundles on K3 surfaces, in

Vector bundles on algebraic varieties. Bombay (1984)

and my book Fourier–Mukai transforms in algebraic geometry, OUP.

Gerbes and Essential Dimension

Angelo Vistoli (Scuola Normale Superiore Pisa, Italy)

A basic invariant of an algebraic group is its essential dimension, defined

by Buhler and Reichstein in [BR97] (see also [Rei00]). Subsequently the

notion of essential dimension has been generalized to a much wide context

by Merkurjev ([BF03]).

Fix a base field k , which we always going to assume to have characteristic 0.

Suppose that ξ is a geometric, or algebraic object, defined over a field

extension K of k . A basic question that one can ask is the following: how

many paramaters does one need to write ξ?

9
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Here is the precise definition. Let k be a field. We will write Fieldsk for the

category of field extensions K/k . Let F : Fieldsk → Sets be a covariant
functor.

Definition (Merkurjev). Let ξ ∈ F (K), where K is an object of Fieldsk . A
field of definition for ξ is an intermediate field k ⊆ L ⊆ K such that ξ is in
the image of the induced function F (L)→ F (K).
The essential dimension ed ξ of ξ (with respect to L) is the minimum of

the transcendence degrees tr degk L taken over all fields of definition of ξ.

The essential dimension edF of the functor F is the supremum of ed ξ

taken over all ξ ∈ F (K) with K in Fieldsk .

When G is an algebraic group over k , the essential dimension of G is de-

fined to be the essential dimension of the functor that associates to K the

set of isomorphism classes of G-torsors over K. For example, when G is

the orthogonal group On, the G-torsors correspond to non-degenerate n-

dimensional quadratic forms over K; hence the essential dimension of On is

the exact upper bound for the number of independent parameters needed

to write an arbitrary non-degenerate n-dimensional quadratic form, up to

isomorphism. Since every such form can be written in the diagonal form

a1x
2
1 + · · ·+ anx2n , the essential dimension of On is at most n. It is a non-

trivial fact, first shown by Reichstein, that the essential dimension of On is

exactly n.

So far almost all of the work on essential dimension has been about essential

dimension of algebraic groups. However, Merkurjev’s more general setup

generates very natural questions. For example, given a non-negative inte-

ger g, what is the essential dimension of the functor of isomorphism classes

of smooth curves of genus g over Q, or over C? For example, when g = 0,
every smooth curve of genus 0 over a field K is a conic, and every conic

is isomorphic to one with equation ax2 + by 2 + z2 = 0, hence its essential

dimension is at most 2. It follows from Tsen’s theorem that the essential

dimension of a the generic conic, that of equation ax2 + by 2 + z2 = 0,

where a and b are independent variables, is in fact 2.
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The question is best viewed from the point of view of algebraic stacks.

Brosnan, Reichstein and myself have introduced some machinery for study-

ing the essential dimension of algebraic stacks in [BRV07]. A key point

is the study of essential dimension of gerbes (gerbes may be though of as

point-like algebraic stacks). Using this, we have answer the question above

completely for arbitrary genus g. The answer is the following.

Theorem. Let k be an arbitrary field of characteristic 0. The essential

dimension of the functor of isomorphism classes of smooth curves of genus g

over extensions of k is 
2 for g = 0,

+∞ for g = 1,

5 for g = 2,

3g − 3 for g ≥ 3.

This theory is also useful in the “classical” case of algebraic dimension of

algebraic groups: for example, we have been able to show the surprising

result that the essential dimension of the group Spinn grows exponentially

with n.

In my lectures I will give an introduction to the theory sketched above,

assuming no familiarity with algebraic stacks. I will also give a self-contained

treatment of gerbes.
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